#### Exceptional service in the national interest



#### A Comparative Analysis of Nuclear Security Enterprise Estimates

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC. a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND 2019-5415



Terry Josserand Leone Young Wendy Lee





- Objectives (1 -2 minutes)
- Background (10 15 minutes)
  - Nuclear Security Enterprise
  - Life Extension 6.X Process
- Model Concept (5 10 minutes)
  - Data, Methods, Approaches, and Techniques
- Comparative Analysis (2 3 minutes)
- Discussion (5 15 minutes)

# **Objectives**

- Share perspectives and a use-case regarding Nuclear Weapon data and estimating
- Exchange cost related knowledge with other defense programs regarding conventional and classified cost estimating practices
- Share contact information, engage in dialogue, and develop relationships for collaborative efforts

# Background



- Sandia National Laboratories Responsible for nuclear weapon systems and components over their entire lifecycle, from original design through final dismantlement and disposal. Responsibility includes design, qualification, certification, and assessment of the non-nuclear subsystems and system qualification as well as integration with delivery vehicles.
- The nation's nuclear weapons must *always* work when commanded and authorized by the President of the US and must *never* detonate otherwise.

https://www.sandia.gov/missions/nuclear\_weapons/index.html https://www.senetgo.gov/miss/articles/miss-awards/sandias/internal\_Development\_&\_Training\_Workshop - www.iceaaonline.com

### **Background Nuclear Weapon Product Lifecycle**



New Weapon Development

 Traceable historic and projected United States nuclear weapon program entrance and exit dates by phase

Jossera Rar, as a for the stuttle of the second for the second bana har a second to the second secon



# Background

30 years in 2020 since the last new weapon entered development engineering

30 years in 2019 since the last new weapon entered production

Josserand, Terry. Nuclear Weapon Talk. Institute for Defense Analyses. August 2018. SAND Report, Sar R

# **1979 Honda Civic**

#### The Honda Civic CVCC 5-Speed.

The Honda Civic CVCC 5-Speed is a car built for people who love to drive. The fifth gear is actually overdrive, which is just right for cruising at highway speeds.

The Civic CVCC 5-Speed has many of the earmarks of a sports car. Four-wheel independent MacPherson strut suspension. Rack and pinion steering. Power-assisted front disc brakes. Steel-belted radial tires. A tachometer, red-lined at 6000 rpm. Plus front-wheel drive. But these features are just the beginning. The fuel and temperature gauges are arranged in a compact, easy-to-see layout. So you don't have to crane your neck to check the gas level or temperature. And a combination light switch on the left side of the steering column controls the lights, including the headlight high-low beams.

The Civic CVCC 5-Speed comes with AM radio. Reclining front bucket seats with adjustable headrests. Full carpeting. Opening rear quarter windows. Tinted glass all around. Rear window defroster.



### **1979 Honda Civic**



# **1979 Honda Civic**

|                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |                                                                           |                                                                    |                                                                           |                                                                           |                                                                    | -       |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------|---------|
| The                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Civic<br>1200<br>2-Dr. Sdn.                                        | Civic<br>1200<br>Hatchback                                                | Civic<br>CVCC<br>2-Dr. Sdn.                                        | Civic<br>CVCC<br>Hatchback                                                | Civic<br>CVCC<br>5-Speed                                                  | Civic<br>CVCC<br>Wagon                                             | 1<br>to |
| The I<br>peopl<br>overdi<br>highw<br>The C<br>of a sp<br>strut s<br>Power<br>tires. A<br>front-y<br>the be | AM Radio<br>AM/FM Radio<br>AM/FM Stereo Radio<br>AM/FM Stereo Radio with 8-Track Player<br>AM/FM Stereo Radio w/Cassette Player<br>MPX Stereo Speakers – Pocket<br>MPX Stereo Speakers – Surface<br>Wood Gearshift Knob<br>Floor Mats – Color-Keyed<br>Tonneau Cover – Black<br>Body Side Decal Stripes<br>Air Conditioning<br>Cigarette Lighter<br>Intermittent Windshield Wiper<br>Roof Console with Clock<br>Rear Window Defroster<br>Luggage Rack<br>Fender Well Trim<br>Body Side Mouldings<br>Door Edge Guards<br>Front Bumper Override<br>Rear Bumper Override<br>Rear Deck Slats | OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT | STD<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT | OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT | STD<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT | STD<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT | OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT<br>OPT | ır      |

OPT = Optional at extra cost NA = Not available STD = Standard at no extra cost



# Honda Civic 1979 to 2019

#### New Weapon Development

| Phase 1         Phase 2         Phase 2A           Weapon |                                                       | Phase 3Phase 4DevelopmentProduction                |                                         | Phase 5 Phase 6<br>First Quantity      | Phase 7<br>Dismantlement                       |                                       |                             |                                                  |                               |
|-----------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-----------------------------------------|----------------------------------------|------------------------------------------------|---------------------------------------|-----------------------------|--------------------------------------------------|-------------------------------|
| Conception                                                | Program<br>Feasibility                                | Design<br>Definition and<br>Cost Study             | Engienering                             | Engineering                            | Production                                     | Production                            | 7A<br>Retirement<br>Storage | 7B<br>Disassembly<br>and Disposal<br>Engineering | 7C<br>Disassembly<br>Disposal |
|                                                           | Life Extension 6.X Process                            |                                                    |                                         |                                        |                                                |                                       |                             | •                                                | •                             |
| Phase 6.1<br>Concept                                      | Phase 6.2<br>Feasibility<br>and Option<br>Down Select | Phase 6.2a<br>Design<br>Definition &<br>Cost Study | Phase 6.3<br>Development<br>Engienering | Phase 6.4<br>Production<br>Engineering | Phase 6.5<br>First<br>Production<br>Unit (FPU) | Phase 6.6<br>Full Scale<br>Production |                             |                                                  |                               |





### **Takeaways from NW Background**

- No *new* nuclear weapon systems
- System complexity
- Cannot execute full-up nuclear weapons tests
- Unique materials
- Life expectancy

# **Cost Estimating Methodologies**



# **Cost Estimating Methodologies**

| Life Extension 6.X Process              |                                                                                                                       |                                                                                                                              |                                                                                                                                   |                                                                                                                                                                                                                                                                                      |                                                                                                                   |                                                                  |  |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|--|--|
| Phase 6.1<br>Concept<br>Table 11: Three | Phase 6.2<br>Feasibility<br>and Option<br>Down<br>Select<br>e Cost Estim                                              | Phase 6.2a<br>Design<br>Definition<br>& Cost<br>Study<br>ating Metho                                                         | Phase 6.3<br>Development<br>Engineering<br>ds Compared                                                                            | Phase 6.4<br>Production<br>Engineering                                                                                                                                                                                                                                               | Phase 6.5<br>First<br>Production<br>Unit (FPU)                                                                    | <b>Phase 6.6</b><br>Full Scale<br>Production                     |  |  |  |
| Method                                  | Streng                                                                                                                | th                                                                                                                           | Weakne                                                                                                                            | ess                                                                                                                                                                                                                                                                                  | Applicatio                                                                                                        | n                                                                |  |  |  |
| Analogy                                 | <ul> <li>Requi</li> <li>Base</li> <li>Rease</li> <li>Good</li> </ul>                                                  | ires few data<br>d on actual da<br>onably quick<br>d audit trail                                                             | <ul> <li>Subjection</li> <li>Accuration</li> <li>simila</li> <li>Difficution</li> <li>design</li> <li>Blind</li> </ul>            | <ul> <li>Subjective adjustments</li> <li>Accuracy depends on similarity of items</li> <li>Difficult to assess effect of design change</li> <li>Blind to cost drivers</li> <li>When few data ar available</li> <li>Rough-order-of-magnitude estimates</li> <li>Cross-check</li> </ul> |                                                                                                                   |                                                                  |  |  |  |
| Engineering<br>build-up                 | <ul> <li>Easily</li> <li>Sens</li> <li>Track</li> <li>Time</li> </ul>                                                 | 7 audited<br>itive to labor r<br>is vendor quo<br>i honored                                                                  | ates Slow a<br>tes Cumb                                                                                                           | <ul> <li>Requires detailed design</li> <li>Slow and laborious</li> <li>Cumbersome</li> <li>Negotiations</li> </ul>                                                                                                                                                                   |                                                                                                                   |                                                                  |  |  |  |
| Parametric                              | <ul> <li>Rease</li> <li>Enco</li> <li>Good</li> <li>Obje</li> <li>Cost</li> <li>Incoreffect</li> <li>risk)</li> </ul> | onably quick<br>urages discipl<br>daudit trail<br>ctive, little bia<br>driver visibilit<br>porates real-v<br>ts (funding, te | <ul> <li>Lacks</li> <li>Mode</li> <li>Cultur</li> <li>As</li> <li>Need</li> <li>mode</li> <li>world</li> <li>echnical,</li> </ul> | detail<br>l investment<br>ral barriers<br>to understand<br>l's behavior                                                                                                                                                                                                              | <ul> <li>Budgeta</li> <li>Design-to<br/>studies</li> <li>Cross-cho</li> <li>Baseline</li> <li>Cost goa</li> </ul> | ry estimates<br>o-cost trade<br>eck<br>estimate<br>I allocations |  |  |  |

Source: © 2003, MCR, LLC, "Cost Estimating: The Starting Point of EVM."

Josserand, Peresented Tat in the 620clis An ICE AGE TO BE COTES SIGNAL DEVElopment & SATURATING Workshop - www.iceaaonline.com

# **Model Concept**



### **Types of Historic Nuclear Weapon Data**

- Effort
  - Phase process
- Time
  - Fiscal years
- Cost
- Characteristics
  - Weight, interfaces, size, etc.
- Performance
  - Yield, speed, range, etc.
- Schedule
  - Time to develop, deploy, test, etc.
- Socio-political
  - Treaties, legislation, policy

- Reliability
  - Failures, issues, etc.
- Production
  - Numbers, processes, etc.
- System engineering complexity
  - Phase paradigm, age, etc.
- Staff
  - Experience, training, etc.

• Other data...

Josser Par esented patatheu 20 ol 9.5 ICE A Agus Porofessional Development & Martining Workshop - www.iceaaonline.com GAO Cost Estimating Guide, GAO-09-3SP

### **Types of Historic Nuclear Weapon Data**

|   | Effort                      | Table 10: Basic Primary and Secon |         |           |              |
|---|-----------------------------|-----------------------------------|---------|-----------|--------------|
|   |                             | Data type                         | Primary | Secondary |              |
|   | Phase                       | Basic accounting records          | x       |           |              |
|   | Time                        | Data collection input forms       | х       |           |              |
|   | Ficeal                      | Cost reports                      | x       | x         | C.           |
|   | - FISCAL                    | Historical databases              | x       | x         |              |
|   | Cost                        | Interviews                        | x       | x         |              |
|   | Character                   | Program briefs                    | x       | x         | es, etc.     |
| _ | Character                   | Subject matter experts            | x       | x         | g complexity |
|   | <ul> <li>Weight,</li> </ul> | Technical databases               | x       | x         | - go otc     |
|   | Performa                    | Other organizations               | x       | x         | ge, etc.     |
|   | Yield si                    | Contracts or contractor estimates |         | x         |              |
|   |                             | Cost proposals                    |         | x         | ng, etc.     |
|   | Schedule                    | Cost studies                      |         | x         |              |
|   | Time to                     | Focus groups                      |         | X         |              |
|   | Socio-pol                   | Research papers                   |         | X         |              |
|   |                             | Surveys                           |         | x         |              |
|   | Ireaties                    | Source: DOD and NASA.             |         |           |              |

Josser Profesented at altheu 20 de 9 se ICE A Gus Porofessional Development & MMTstaining Workshop - www.iceaaonline.com

# **Model Concept**



# **Two Approaches**

- Top-Down
  - System, Subsystem, Major Components
    - Analogous technical data
    - Expert review
- Detailed Engineering Build-Up
  - System, Subsystem, Major Components, Subcomponents, Piece-Parts
    - Analogous technical data
    - Expert review

# **Model Concept**



### **Techniques for System Parameters and Effort Multipliers**

- Material Composition
  - Very High, exotic materials
- SE&I Complexity
  - Very High, system is composed of unique exotic materials and parts of varying ages
- Qualification
  - Very High, system requires qualification unique to conventional systems
- Experience Measures

# **Experience Measures**

### Demographics

- Bi-modal age distribution
- 24% 56 and above
- 64% between 31 and 55
- 11% under 30

- 21% eligible for retirement
- 23% of engineers and 18% of scientists eligible for retirement
- Experience shift



## **Experience Measures**

### Demographics

- 36% less than 5 years of service
- 70% less than 16 years of service
- Knowledge transfer



### **Techniques for System Parameters and Effort Multipliers**

- Material Composition
  - Very High, exotic materials
- SE&I Complexity
  - Very High, system is composed of unique exotic materials and parts of varying ages
- Qualification
  - Very High, system requires qualification unique to conventional systems
- Experience Measures
  - Low, New Weapon to Life Extension 6.X Process staff retention

# **Model Concept**



# **Model Output Comparison**

| Top-Down                | System                    | Engin | Engineering Build-Up System |          |        |  |
|-------------------------|---------------------------|-------|-----------------------------|----------|--------|--|
| <b>Confidence Level</b> | Confidence Level Dev Cost |       | ce Level                    | Dev Cost | v Cost |  |
| 10%                     | 1.00                      | 10    | %                           | 1.06     |        |  |
| 20%                     | 1.00                      | 20    | %                           | 1.09     |        |  |
| 30%                     | 1.00                      | 30    | %                           | 1.11     |        |  |
| 40%                     | 1.00                      | 40    | %                           | 1.13     |        |  |
| 50%                     | 1.00                      | 50    | %                           | 1.14     |        |  |
| 60%                     | 1.00                      | 60    | %                           | 1.15     |        |  |
| 70%                     | 1.00                      | 70    | %                           | 1.15     |        |  |
| 80%                     | 1.00                      | 80    | %                           | 1.16     |        |  |
| 90%                     | 1.00                      | 90    | %                           | 1.17     |        |  |
|                         |                           |       |                             |          |        |  |
| Mean                    | 1.00                      | Me    | an                          | 1.14     |        |  |
| StdDev                  | 1.00                      | StdD  | Dev                         | 1.21     |        |  |

Top-Down to Build-Up Delta

70% - 15%

80% - 16%

### **Model Sensitivity of Part Quantity Detail**



# **Model Output Comparison**

| Top-Down                | System                    | Engin | Engineering Build-Up System |          |        |  |
|-------------------------|---------------------------|-------|-----------------------------|----------|--------|--|
| <b>Confidence Level</b> | Confidence Level Dev Cost |       | ce Level                    | Dev Cost | v Cost |  |
| 10%                     | 1.00                      | 10    | %                           | 1.06     |        |  |
| 20%                     | 1.00                      | 20    | %                           | 1.09     |        |  |
| 30%                     | 1.00                      | 30    | %                           | 1.11     |        |  |
| 40%                     | 1.00                      | 40    | %                           | 1.13     |        |  |
| 50%                     | 1.00                      | 50    | %                           | 1.14     |        |  |
| 60%                     | 1.00                      | 60    | %                           | 1.15     |        |  |
| 70%                     | 1.00                      | 70    | %                           | 1.15     |        |  |
| 80%                     | 1.00                      | 80    | %                           | 1.16     |        |  |
| 90%                     | 1.00                      | 90    | %                           | 1.17     |        |  |
|                         |                           |       |                             |          |        |  |
| Mean                    | 1.00                      | Me    | an                          | 1.14     |        |  |
| StdDev                  | 1.00                      | StdD  | Dev                         | 1.21     |        |  |

Top-Down to Build-Up Delta

70% - 15%

80% - 16%

# Discussion Questions/Suggestions?

A Comparative Analysis of Nuclear Security Enterprise Estimates Terry Josserand Email: tmjosse@sandia.gov Phone: (505)206-6441

> SAND2019-XXXX Unclassified Unlimited Release