

2019 ICEAA Professional Development & Training Workshop May 14 - 17, 2019 • Tampa, FL

The 3-Point Method Redux: Estimating Cost Uncertainty Given Only a Baseline Cost

Presented by:

Marc Greenberg Strategic Investment Division (SID) National Aeronautics and Space Administration

Outline

- Review example by Robert L Abramson and Dr. Stephen Book
 - ✓ 2007 paper: Estimating Cost Uncertainty when only Baseline Cost is Available
- Present Notional Example of 3-Point Method
 - ✓ Risk Criteria Matrix
 - Based upon 2007 Maxwell Risk Criteria Matrix
 - 6 *risk-driver* <u>categories</u> (6 columns) by 6 *intensity* <u>levels</u> (6 rows) = 36 descriptors
 - ✓ Apply Analytic Hierarchy Process (AHP) to Risk-Driver Categories
 - Pairwise comparison of risk-driver categories \rightarrow weighted values of each category
 - ✓ Develop Min, Most-Likely and Max Values (= Triangular Distribution)
 - Five-step process
- Describe how this presentation is similar & different from 2007 paper
- 3-Point Method Demonstration (if time permits)

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com **R. L Abramson and Dr. Book Example**

Estimating Cost Uncertainty when only Baseline Cost is Available (2007)

- Example provided in 2007 paper * entitled:
 - Estimating Cost Uncertainty when only Baseline Cost is Available
- F. D. Maxwell (Aerospace Corp.) developed a risk-driver matrix known at the USAF Space and Missile Systems Center (El Segundo, CA) as the Maxwell Risk Criteria Matrix (MRCM)
 - Using the MRCM, R.L. Abramson and S. A. Book (Aerospace Corp.) outlined a procedure for developing a cost estimate of a subsystem incorporating the influence of risk on cost.
 - Risk Driver Criteria weights and Intensity Level weights are determined quantitatively through pairwise comparisons (the Analytical Hierarchy Process, AHP) applied to the MRCM.

* The paper can be downloaded at

http://www.laserlightnetworks.com/Documents/Estimating%20Cost%20Uncertainty %20when%20Only%20Baseline%20Cost%20is%20Available.pdf

R. L Abramson and Dr. Book Example (cont'd)

RISK-DRIVER	INTENSITY LEVEL							
CATEGORY	Low	Medium Low	Medium	Medium High	High			
1. Required Technical Advancement	Nothing new	Minor modifications only	Major modifications	State of the art	Beyond state of the art			
2. Technology Status	Currently in use	Prototype exists	Under development	In design	Concept stage			
3. Complexity	Simple	Somewhat complex	Moderately complex	Highly complex	Highly complex with uncertainties			
4. Interaction/ Dependencies	Independent of other risk drivers	Dependent on one additional risk driver	Dependent on two additional risk drivers	Dependent on three additional risk drivers	Dependent on more than three additional risk drivers			
5. Process Controls	Statistical process controls	Documented controls	Limited controls	Inadequate controls	No known controls			
6. Manufacturing Precision	High	Adequate	Limited margins	Known but inadequate	Unknown			
7. Reliability	Historically high	Average	Known limited problems	Serious problems of unknown scope	Infeasible			
8. Producibility	Established	Demonstrated	Feasible	Known difficulties	Infeasible			
9. Criticality to Mission	Nonessential	Minimum impact	Known altematives a∨ailable	Possible alternatives exist	"Show stopper"			
10. Cost	Established	Known history or close analogies	Predicated by calibrated model	Out of range of experience	Unknown or unsupported estimate			
11. Schedule	Demonstrated	Historical similarity	Validated Analyses	Inadequate analyses	Unknown or unsupported estimate			

For the 2007 paper's example:

Project Baseline Cost is estimated = \$7.55 M

From the MRCM to the left, four risk-driving categories were selected & ranked.

Then, using pairwise comparison & AHP, weights were calculated for each category:

	<u>Weight</u>
Technology Status	0.458
Complexity	0.326
Dependencies	0.128
Reliability	0.088

R. L Abramson and Dr. Book Example (cont'd)

- This "intensity-level assignment" process by the SME is performed for 3 scenarios ...
 - Optimistic: e.g., Complexity Intensity = **Medium-Low** = 0.130٠ = 0.261
 - Baseline: e.g., Complexity Intensity = **Medium-High** ٠ e.g., Technology Status = **High** (concept stage)
 - Pessimistic: ٠

ACTIVITY: Enti	re Program	WEIGHTS	Technology Status	Complexity	Interaction Dependencies	Reliability	These 4 weights
Point Estimate	Composite		0.458	0.326	0.128	0.088	(refer to slide 4)
		Intensity	0.174	0.13	0.348	0.087	
Optimistic	0.174	Sco <i>r</i> e	0.08	0.043	0.044	0.008	
		Intensity	0.174	0.261	0.087	0.348	Intensity values
Baseline	0.206	Sco <i>r</i> e	0.08	0.085	0.011	0.031	selected from table above.
		Intensity	0.348	0.261	0.261	0.13	Higher value
Pessimistic	0.289	Score	0.159	0.085	0.033	0.011	implies higher risk / challenge

Scores for each scenario are the "sum-product" of the AHP weights and intensities

= 0.348

R. L Abramson and Dr. Book Example (cont'd)

- (from previous slide) Calculated <u>composite values</u> for 3 scenarios:
 - Optimistic = 0.174
 - Baseline = 0.206
 - Pessimistic = 0.289
- Next step: Calculate composite value <u>ratios</u> relative to Baseline value:
 - Optimistic / Baseline = 0.174 / 0.206 = 0.8447
 - Pessimistic / Baseline = 0.289 / 0.206 = 1.4029
- The final step: apply these two ratios (of composite values) to Baseline cost (\$7.55 M)
 - Optimistic = Minimum = \$7.55 M x 0.8447 = \$ 6.38 M
 - Pessimistic = Maximum = \$7.55 M x 1.4029 = \$10.59 M
- The 3-Point Method example produced a Triangular Distribution from a Baseline cost
 - Minimum = **\$ 6.38 M**
 - Most-Likely = **\$ 7.55 M**
 - Maximum = **\$10.59 M**

3-POINT METHOD (NOTIONAL EXAMPLE)

Risk Criteria Matrix (6 x 6)

Combining elements of Maxwell Risk Criteria Matrix with Intensity Levels

	6 Risk-Driver	^r Categories		→			
6 Intensity Levels Note: SME specifies	Intensity I Scale: I	Required Tech Advancemt	Technology Status	Design Complexity	Interaction/ Dependencies	Labor Skillset	Program matic Experience
each raw #	Low	Nothingnew	Phase D: Sys Assembly, Integ & Test	Simple	Interaction of 2 key participants	Very high skill mix	Proventrack record; extensive experience
Intensity Raw Normalized	Medium-Low	Minor modifications	Phase C: Final Design & Fab	Somewhat complex	Interaction of 3 key participants	High skill mix	Good amount of experience with similar efforts
Medium-Low 1.5 0.0938 Medium 2 0.1250	Medium	Major modifications	Phase B: Prel Desn & Tech Completion	Moderately complex	Interaction of 4 key participants	Moderate-to- High skill mix	Moderate experience with similar efforts
Medium-High 3 0.1875 High 4 0.2500 Very High 5 0.3125	l Medium-High I	State of the art	Phase A: Concept & Tech Development	Highly complex	Interaction of 5 key participants	Moderate skill mix	Moderate-Low experience with similar efforts
	High	Beyond state of the art	Pre-Phase A: Concept Studies	Highly complex with some uncertainties	Interaction of 6 key participants	Low skill mix	Very limited experience with similar efforts
Each Normalized # = Raw # / Σ (Raw #'s)	Very High	Farexceeds state of the art	Prior to Concept studies	Highly complex with many uncertainties	Interaction of more than 6 key participants	Very low skill	Virtually no experience with similar efforts

Description of each risk-driver category by intensity level

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Applying AHP to Risk-Driver Categories SME Input: Pairwise comparison of risk-driver categories

Example 1: Pairwise comparison of Technology Advancement and Technology Status

Example 2: Pairwise comparison of Design Complexity and Labor Skillset

Pair #1	Pairwise Comparison wrt IMPACTS	S on Average Project Cost	Pair #11 Pairwise Comparison wrt IMPACTS on Average Project Cost
	Risk Factor Risk Factor Required Tech Advancemt Technology Status LHS is More Important RHS is More Important		Risk Factor Risk Factor Design Complexity Labor Skillset LHS is More Important RHS is More Important
	98765432	1 2 3 4 5 6 7 8 9	9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9
	Absolutely More Important Very Strongly More Important Strongly More Important Sightly More Important	Equally Important Sightly More Important Strongly More Important Very Strongly More Important Absolutely More Important	Absolutely More Important Very Strongly More Important Strongly More Important Slightly More Important Equally Important Strongly More Important Very Strongly More Important Desolutely More Important
Q1	Equal? No	(If No, then answer Q2)	Q1 Equal? No (If No, then answer Q2)
Q2	More Important? Requ	uired Tech Advancemt	Q2 More Important? Design Complexity
Q3	Likert Score = 2.0	0	Q3 Likert Score = 2.50

These paired values are the basis for weighting risk-driver categories.

Applying AHP to Risk-Driver Categories

Weighting risk-driver categories based upon pairwise values

Raw P/W Weighting	Required Tech Advancemt	Technology Status	Design Complexity	Interaction/ Dependencies	Labor Skillset	Programmatic Experience
Required Tech Advancemt	1	2	1	3 1/2	3 1/2	4
Technology Status	1/2	1	1	2 1/2	2	3
Design Complexity	1	1	1	3	2 1/2	3 1/2
Interaction/ Dependencies	2/7	2/5	1/3	1	1 1/7	4
Labor Skillset	2/7	1/2	2/5	7/8	1	3 1/2
Programmatic Experience	1/4	1/3	2/7	1/4	2/7	1
Sum	3.321	5.233	4.019	11.120	10.436	19.000

Example for calculating normalized values (as shown in matrix below):

- Raw value * of "Technology Status & Required Tech Advancement" pair = $\frac{1}{2}$ = 0.5
- Normalized value of this pair = 0.5 / 3.321 = 0.151

Normalized Matrix	Required Tech Advancemt	Technology Status	Design Complexity	Interaction/ Dependencies	Labor Skillset	Program matic Experience	Wei	ghts	Product	Ratios
Required Tech Advancemt	0.301	0.382	0.249	0.315	0.335	0.211	0.2	988	1.8901	6.3260
Technology Status	0.151	0.191	0.249	0.225	0.192	0.158	0.19	941	1.2254	6.3119
Design Complexity	0.301	0.191	0.249	0.270	0.240	0.184	0.23	391	1.5087	6.3104
Interaction/ Dependencies	0.086	0.076	0.083	0.090	0.110	0.211	0.10	093	0.6830	6.2461
Labor Skillset	0.086	0.096	0.100	0.078	0.096	0.184	0.10	066	0.6620	6.2130
Programmatic Experience	0.075	0.064	0.071	0.022	0.027	0.053	0.0	521	0.3176	6.0968
Sum	1.000	1.000	1.000	1.000	1.000	1.000	1.0	000	CI	0.0501
									CI/RI	0.0557

* The SME believes that "Required Tech Advancement" is slightly more important than "Technology Status."

<u>Recap of Example (slides 7 – 9):</u>

Intensity Levels & Weight per Risk Category

<u>Referring to Slide 8</u> : The following	
Intensity "look-up" table was created:	

Intensity	Raw	Normalized
Low	0.5	0.0313
Medium-Low	1.5	0.0938
Medium	2	0.1250
Medium-High	3	0.1875
High	4	0.2500
Very High	5	0.3125

11/2:244

<u>Referring to Slide 11</u>: Using pairwise comparison & AHP, the following weights were calculated for each risk category:

	<u>vveigill</u> Biggest
Required Tech Advancement	0.299 influence
Technology Status	0.194
Design Complexity	0.239
Interaction/Dependencies	0.109
Labor Skillset	0.107 Smallest
Programmatic Experience	0.052 influence

These intensity levels & weighted values will be used for calculating the optimistic, baseline and pessimistic estimates (in slides 12 – 15)

Create Triangular Distribution from a Baseline Coefficient of Variation (CV) of a Spacecraft Instrument

Notional Project:

SA

Electro-Nuclear Geosynchronous Observation Instrument (E-NGOI)

- 1. Starting with discrete baseline value, select <u>baseline</u> intensity levels by category
- 2. Select intensity levels for each category for optimistic, most-likely & pessimistic <u>scenarios</u>
- 3. Calculate <u>composite values</u> per scenario
- 4. Calculate composite value <u>ratios</u>.
- 5. Apply composite value ratios to the Baseline value. (Plot triangular distribution).
 - Assess resulting triangular distribution (realistic & credible?)
 - As-needed: Revisit inputs from step #2; revisit pairwise comparisons

One way to estimate discrete Baseline CV is from a CV dataset ...

Develop Min, Most-Likely and Max Values

1. Starting w/baseline value, select baseline intensity levels by category

Median =

17.1%

Project	<u>Approx CV</u>	– <u>Project</u>	<u>Approx CV</u>	– <u>Project</u>	Approx CV
Project A	0%	Rocket W	11%	Spacecraft TT	26%
Project Y	1%	Technology V	12%	Mission QQ	
Project Z	1%	Project T	12%	Instrument "	.
Project N	1%	Mission TT	13%	ant US	5
Project O	1%	Rocket R	. data	Ser	alue
Project P	2%	Research	rv uat	_line V	/0
Project Q	20/	-tional `	Ra	seime	33%
Project R	-m n	000.40/	1 as De	ech Demo BB	34%
Projec	From	, 17.1%	17%	Mission ABC	40%
Project			17%	Tech Demo DE	45%
Droject	Jian V		17%	Mission DEF	46%
me	Ulu-	Instrument ZZ	1/%	Project MNO	48%
Instrume	7%	Mission Q	18%	Mission MO	56%
Instrume o	8%	Mission R	20%	Mission NN	62%
Instrument C	9%	Tech Demo D	23%	Instrument XZ	62%
		Mission LL	23%	Rocket XXX	72%
		Mission MM	25%	Spacecraft MM	117%
				Mean =	23.3%

Using matrix (from slide 8), the median CV represents ...

Intensities based upon Med	Required Tech Advancemt	Technology Status	Design Complexity	Interaction/ Dependencies	Labor Skillset	Programmatic Experience	
Presets (Must be complete prior t making selections)	Baseline Intensities	State of the art	Phase A: Concept & Tech Development	Highly complex	Interaction of 4 key participants	Moderate-to- High skill mix	Moderate experience with similar efforts
* These selections are unrelated to "E-NGOI"		Medium-High	Medium-High	Medium-High	Medium	Medium	Medium
Γ	Baseline Intensities	0.188	0.188	0.188	0.125	0.125	0.125

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Develop Min, Most-Likely and Max Values

- 2. Select intensity levels for each risk-driver category (for 3 scenarios);
- 3. Calculate composite values for each scenario

Composite Baseline Value:

= Sum Product of Baseline Intensities (from previous slide) and Risk-Factor Weights (slide 10)

Risk Factor Weights:	0.299	0.194	0.239	0.109	0.109	0.052	
	Required Tech Advancemt	Technology Status	Design Complexity	Interaction/ Dependencies	Labor Skillset	Programmatic Experience	Sum Product
Baseline Intensities	0.188	0.188	0.188	0.125	0.125	0.125	0.171

Using matrix (from slide 8), select Intensities for each risk-driver category by Scenario

Scenario Intensities:		Tech	Technology	Design	Interaction/		Programmatic	
		Advancemt	Status	Complexity	Dependencies	Labor Skillset	Experience	
Optimistic Intensities	Optimistic Intensities the Intensity Scale		Medium-High	Medium-High	Medium	Medium-Low	Medium-Low	
Most Likely (ML) Intensities		Medium-High	Medium-High	High	Medium	Medium-Low	Medium	
Pessimistic Intensities	Must be higher vs ML on the Intensity Scale	High	High	Very High	High	Medium	Medium-High	

Calculate "Composite Value" for each Scenario

= Sum Product of Baseline Intensities (from previous slide) and Risk-Factor Weights (slide 10)

Risk Factor Weights:	0.299	0.194	0.239	0.109	0.107	0.052	
	Required Tech Advancemt	Technology Status	Design Complexity	Interaction/ Dependencies	Labor Skillset	Programmatic Experience	Sum Product
Optimistic Intensities	0.188	0.188	0.188	0.125	0.094	0.094	0.166
Most Likely Intensities	0.188	0.188	0.250	0.125	0.094	0.125	0.182
Pessimistic Intensities	0.250	0.250	0.313	0.250	0.125	0.188	0.248

14

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com **Develop Min, Most-Likely and Max Values**

- 4. Calculate composite score ratios
- 5. Apply composite score ratios to the Baseline value (plot triang dist'n)
- (from previous slide) Calculated <u>composite values</u> for 3 scenarios (for E-NGOI):
 - Optimistic = 0.166
 - Most-Likely = 0.182
 - Pessimistic = 0.248
- Next step: Calculate composite score <u>ratios</u> relative to Baseline score:
 - Optimistic / Baseline = 0.166 / 0.171 = 0.9091
 - Most-Likely / Baseline = 0.182 / 0.171 = **1.0658**
 - Pessimistic / Baseline = 0.248 / 0.171 = 1.3619
- The final step: apply these 3 ratios (of composite scores) to Baseline CV = 17.1%
 - Optimistic = Minimum = **17.1%** x **0.9091 = 15.5%**
 - Most-Likely = Mode = **17.1%** x **1.0658** = **18.2%**
 - Pessimistic = Maximum = 17.1% x 1.3619 = 23.2%
- The 3-Point Method example produced a Triangular Distribution from a Baseline cost:
 - Minimum = **15.5%**
 - Most-Likely = **18.2%**
 - Maximum = **23.2%**

Baseline Composite Value of 0.171 is based upon the median of the CV dataset

Similarities & Differences (vs. 2007 Paper)

- **Similarities**
 - Data requirement is one value (i.e., Baseline Coeff. of Variation, CV)
 - Select at least four risk-driver categories (from larger MRCM matrix)
 - Intensity "look-up" table (at least 5 intensity levels)
 - Application of pairwise comparison and AHP to calculate weights for each riskdriver category
 - Calculate composite value for each scenario
 - Optimistic, Most Likely and Pessimistic scenarios
 - Composite value = Sum product of weights and intensities
 - Calculate composite value ratios & apply to Baseline CV.

Differences

- Most-likely value not necessarily equal to Baseline value
- Customized (some) risk-driver categories & descriptions
- Reformatted matrix (e.g., intensity levels in rows, not columns)
 - "Automated" look-up of values in Excel with pull-downs, etc.
- Evaluate output graphic of triangular distribution (seem reasonable?)

3-POINT METHOD DEMONSTRATION (If Time Permits)