THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

Creating a Cost Driver S-Curve

ICEAA 2019 Professional Development & Training Workshop

> Sandy Burney Northrop Grumman Mission Systems

Distribution Statement A: Approved for Public Release; Distribution is Unlimited; #19-0368; Dated 03/27/19

- What is a Cost Driver S-curve
- Why make one?
- Example: From Government perspective
- Example: From Contractor perspective
- Wrap-up

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com What is a Cost Driver S-Curve

- Uses Monte Carlo similar to standard Risk S-curve
- Is not probabilistic
 - Uses Inputs and not Outcomes (results from probabilistic events)
- Uses a Uniform distribution from the min to the max
 - Inputs are choices; not subject to a distribution
- Shows range of possible Costs or Price by varying Input decisions
 - Can move up or down the curve by varying choice of inputs
- Design to Cost (DTC) possibilities

- Communicating choices to executives is challenging
- A solution is to use graphical depictions of choice
- Many executives understand S-curves

- Develop a cost model with parameters that drive variations
 - Inflation rate
 - CERs
 - Labor rates
 - Scaling factors
 - Technical parameters
- Using a Monte Carlo (MC) tool put uniform distributions on:
 - Driving parameters
 - Key elements of cost
- Run the MC tool to get S-curve and cost drivers

- The US Department of Defense (DoD) wants to procure a Hypersonic Widget
- DoD cost estimators have developed an initial baseline model on 4 key drivers:

WBS	Cost Element	Unit Cost (\$M)	Cost per 1% Performance Increase (\$M)
1.0	Propulsion	100	6
2.0	Structure	50	2
3.0	Sensor	75	1.5
4.0	Software	100	7
5.0	SEPM (15% of WBS 1.0-4.0)	48.8	
	Total Cost	373.8	

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Example: From Government perspective Key Performance Characteristics

- Mission Length 8 hours
 - Increases with additional Structure, Sensor, and Software
 - Decreases with additional Propulsion
- Availability 90%
 - Increases with additional Structure and Software
- Lethality 90%
 - Increases with additional Propulsion, Sensor, and Software

- Questions for Decision Makers:
 - What are the cost tradeoffs for increasing or decreasing performance?
 - Where should DoD set the Requirements for the Hypersonic Widget?

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Example: From Government perspective

Develop Performance Cost Model

Cost per 1% **Unit Cost** Performance **WBS Cost Driver Elements** (\$M) Increase (\$M) **Baseline** Min Max Propulsion 6 1.0 100 0% -10.0% 10.0% 2.0 Structure 50 2 0% -10.0% 10.0% 3.0 Sensor 75 1.5 0% -10.0% 10.0% Software 100 7 4.0 0% -20.0% 20.0% 5.0 SEPM (15% of WBS 1.0-4.0) 48.8 Total Cost 373.8

- Run a MC on the 4 Cost Driver Elements
 - Uniform Distribution between Min and Max
- Each Key Performance Characteristic has an unique formula
 - Formula helps determine the Key Performance Parameters (KPPs) that drive the requirements baseline

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Example: From Government perspective Potential Hypersonic Widget Costs (Design to Cost)

- DoD can spend between \$200M and \$550 per unit depending upon requirements
- How does it compare to the budget?

9

Sets Government expectations for solicitation responses from contractors

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Example: From Government perspective

Distribution Statement A: Approved for Public Release; Distribution is Unlimited; #19-0368; Variable Variable Reduction

 Arranging the Key attributes by their sensitivities helps decide the key requirements needed for the system

9.5

9.0 8.5 8.0 7.5 7.0 6.5 6.0 \$0

- DoD has issued a solicitation for a Hypersonic Widget
- Three USA prime contractors are bidding for this work
- One prime contractor has developed the following initial estimate

	Cost		Material	Cost Element	Hours	Cost (\$M)
WBS	Element	Hours	(\$M)	SEPM Hours	262,500	\$45.9
1.0	Propulsion	500,000	\$20.0	Technical Hours	1,750,000	
2.0	Structure	300,000	\$10.0	Prime Contactor Hours	1,250,000	\$218.8
3.0	Sensor	400,000	\$10.0	IWO Hours	200,000	\$32.4
4.0	Software	550,000		SubK Hours	300,000	\$45.0
5.0	SEPM	262,500		Material Cost		\$40.0
	Total	2,012,500		Total	2,012,500	\$382.1

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Example: From Contractor perspective Key "Knobs" Management

• Management would like to know what can be done to lower costs

Cost Knobs	Baseline Values	Min Value	Max Value	Min % Change	Max % Change
SEPM Hours	15%	12.0%	18.0%	80%	120%
Technical Hours	1,750,000	1,487,500	1,925,000	85%	110%
Prime Labor Rate	\$175.00	\$148.75	\$192.50	85%	110%
IWO Workshare	11%	9.1%	13.7%	80%	120%
SubK Workshare	17%	13.7%	20.6%	80%	120%
SubK Labor Rate	\$150.00	\$127.50	\$165.00	85%	110%
SubK Fee	8%	6.4%	9.6%	80%	120%
Material Cost	\$40.0	\$38.0	\$42.0	95%	105%

Note: An enhanced model could breakdown the Technical Hours into design/performance parameters.

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Example: From Contractor perspective

• Build a MC model that incorporates the "Knobs"

	Hours	Burdened	Sharo	Total Cost (¢M)
	TIOUIS	Rale	Share	
SEPM Hours	262,500	\$175.00	15%	\$45.9
Technical Hours	1,750,000			
Prime Hours	1,250,000	\$175.00	71%	\$218.8
IWO Hours	200,000	\$162.00	11%	\$32.4
Subk Hours	300,000	\$150.00	17%	\$45.0
Material Cost				\$40.0
Total				\$382.1

Monte Carlo Parameter

Calculated value

Cost Knobs	Baseline Values
SEPM Hours	15%
Technical Hours	1,750,000
Prime Labor Rate	\$175.00
IWO Workshare	11%
SubK Workshare	17%
SubK Labor Rate	\$150.00
SubK Fee	8%
Material Cost	\$40.0

More Fun!

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Example: From Contractor perspective The Design to Cost (DTC) S-curve

What does the DTC S-curve mean?

Needs Context; comparison to competitor

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Example: From Contractor perspective

Cost Driver Sensitivities

Total Contractor Cost \$300.0 \$400.0 \$350.0 Technical Hours 85%, -\$51.3M 1,487,500 1,925,000 110%, \$34.2M \$192.50 Prime Labor Rate 85%, -\$39.7M \$148.75 110%, \$26.5M SEPM Hours 12% 18% 80%, -\$9.2M 120%, \$9.2M \$165.00 110%, \$4.5M SubK Labor Rate \$127.50 85%, -\$6.8M \$38.0 Material Cost \$42.0 95%, -\$2.0M 105%, \$2.0M SubK Workshare 21% 14% 80%, \$1.5M 120%, -\$1.5M SubK Fee 6% 10% 80%, -\$0.7M 120%, \$0.7M IWO Workshare 80%, \$0.5M 120%, -\$0.5M 14% 9% Variable Increase Variable Reduction

Sometimes what is not a driver is surprising

- Design to cost S-curve analysis helps in communicating:
 - Where costs can go
 - What are the key drivers
- This is a tool for both Government and Contractors

Questions?

THE VALUE OF PERFORMANCE.

Distribution Statement A: Approved for Public Release; Distribution is Unlimited; #19-0368; Dated 03/27/19