Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

Kalman & Company, Inc

Application of Conjoint Analysis to Cost Estimation

Mr. Jacob J. Walzer, Kalman & Co., Inc.

2019 Professional Development & Training Workshop

Background

• A key part of market research is understanding how potential consumers place value on product attributes

Presented

- From a marketing standpoint, the goal is to determine the product the consumers value the most, but costs the least
- However, the same analysis technique that allows for this objective item to be created can be applied to cost estimation as well
- Using legacy cost information, conjoint analysis allows for the estimation of costs of new items that may have differing capabilities from previously procured products

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Capability Estimation Methods

- Analogy
 - Comparative analysis of similar systems
 - Potentially unreliable when there are many attributes
- SME Input
 - Good to use as a cross-check
 - Subjective when applied as a standalone
- Engineering Build-Up
 - Product cost rolls up from lowest-level components
 - Very reliable but all components may not be known
- Parametric
 - Regression
 - Conjoint Analysis

Conjoint Analysis

- Conjoint analysis is a specific regression technique designed to analyze how various factors (cost, capability, brand) effect consumer perception
- Utilizing the regression outcome, additional steps can be taken that measure how the market value increases (or decreases) in capability
- Effective application of this analysis can help determine which attributes have the most impact on cost
- Goal: Anticipate the cost of products prior to their official release
- AKA: Tradeoff Analysis

Presented at

Why Conjoint Analysis?

Present

- Conjoint analysis (after data is collected) is a flexible and inexpensive (quick) to method to implement
- As a form of applied regression, it can be conducted on a variety of common software (ex: Excel)
- While it was designed to determine market preferences, the same process allows for the identification of pricing trends
- Provides the ability to compare potential costs for various items that have not yet been manufactured

Process

Summarize Weighting Data

Presented at the 2019 ICE

- Collect all data and review for outliers, omissions, and other abnormalities
- In some cases, normalizing data may be necessary

Vendor	Preference	Cost	EIRP	G/T
Vendor 1	1	\$178,560	High	High
Vendor 2	2	\$188,040	High	High
Vendor 3	4	\$290,200	Medium	Medium
Vendor 4	7	\$401,728	High	Medium
Vendor 5	6	\$278,136	Medium	High
Vendor 6	9	\$180,200	Low	Low
Vendor 7	8	\$285,000	Medium	Low
Vendor 8	5	\$220,500	Medium	Medium
Vendor 9	3	\$390,200	High	Medium

Identify Correlated Data

- As in most regression techniques, correlated independent variables can negatively effect the outcome of the analysis
- Create a correlation matrix to identify which variables are highly related, and run several iterations of the regression to determine if it is improved by removing/combining variables

Create Dummy Variables

g Workshop - www.iceaaonline.com

- Most variables involved in conjoint analysis are categorical, ordinal, or interval, and require the creation of dummy (also known as binary) variables
- Remember that if a variable has X possible values, X - 1 dummy variables are required (Ex: 10 = Option 1, 01 = Option 2, 00 = Option 3)

Process

Run Initial Regression

Presented at the 2019 IC

- Standard regression is run to identify variable weights
- Regression may be run multiple times with different variables (usually those with a significance level of .05 are used)
- More variables does not necessarily make the model better – be careful to avoid over specificity

Determine Attribute Ranking

- For each independent variable, identify the slopes that were associated with the corresponding dummy variable(s)
- The attribute ranking is the highest slope minus the lower slope
- Keep in mind that a because there are less dummy variables than levels of that variable, there is always an item with a slope of 0
- Attributes with a larger spread have more impact on price

Conduct Value Based Pricing

Workshop - www.iceaaonline.com

- Utilizing attribute rankings, it's possible to predict the prices of new products
- Tradeoff analysis can be conducted to determine which capabilities are achievable while remaining below a certain budget

Common Pitfalls

- Choosing the appropriate regression model
 - Usage of dummy variables increases the amount of independent variables
 - Choosing the model that "best fits" the existing data can lead to over-specificity
- Extrapolation

Presented at the 2019

- Introducing a completely new capability to a pre-existing market may be outside the scope of the analysis
- If too many choices are offered, survey results may be inconsistent and difficult to analyze
- Assumption of Value-Based Pricing
 - Vendors could rely on either cost-based pricing or competitionbased pricing

op - www.iceaaonline.cor

Best Practices

- Conjoint analysis is often best served as a cross-check
 - Generally, the data required to conduct conjoint analysis will also support various other regression techniques with cost as the dependent variable
 - It allows the procurer to think similarly to the manufacturer, but it may take into account information that the producer does not have access to
- Run multiple regressions

Presented at the 20

- Optimal regression outcomes cannot be identified by creating just one model. Several must be calculated in order to identify the most meaningful weights.
- An significance level of .05 is usually used to determine which variables to include in a model. However, the goal is to maximize the model's goodness of fit, which may result in variables initially deemed significant being included in the final analysis.

Pros and Cons

• Pros

Presented at the 20

- Calculation algorithm is simple and efficient (simple regression)
- Useful in predicting cost of configurations that have not previously been produced/procured
- Provides an easy method to calculate price sensitivity
- Cons
 - Only useful in specific circumstances
 - Cannot estimate value of completely new capabilities
 - Potentially challenging to collect/obtain weighting data
 - Only accounts for Value-Based Pricing

www.iceaaonline.con

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

Cost Estimation Example

Kalman & Company, Inc.

Application - Setup

- Challenge: Determine the cost of a required radio configuration not currently manufactured
- Proposed Solution: Using conjoint analysis, conduct valuebased pricing to estimate how vendors might cost the new configuration

Vendor	Preference	Cost	EIRP	G/T
Vendor 1	1	\$178,560	High	High
Vendor 2	2	\$290,200	Medium	High
Vendor 3	4	\$188,040	Medium	Medium
Vendor 4	7	\$401,728	High	Medium
Vendor 5	6	\$390,200	Low	High
Vendor 6	9	\$280,200	Medium	Low
Vendor 7	8	\$285,000	Low	Low
Vendor 8	5	\$378,136	High	Medium
Vendor 9	3	\$180,200	Medium	Medium

Initial Data

Presented at the 20

Vendor	Preference	Cost - High	Cost - Medium	EIRP - High	EIRP - Medium	G/T - High	G/T - Medium
Vendor 1	9	0	0	1	0	1	0
Vendor 2	8	0	1	0	1	1	0
Vendor 3	6	0	0	0	1	0	1
Vendor 4	3	1	0	1	0	0	1
Vendor 5	4	1	0	0	0	1	0
Vendor 6	1	0	1	0	1	0	0
Vendor 7	2	0	1	0	0	0	0
Vendor 8	5	1	0	1	0	0	1
Vendor 9	7	0	0	0	1	0	1

Initial Data

*Cost has been clustered into three specific tiers to allow for the creation of dummy variables

www.iceaaonline.con

Application – Calculation & Results

Intercept	6.2
Cost High	-3.3
Cost Medium	-3.1
EIRP High	1.7
EIRP Medium	0.8

*Note that G/T was not included in the regression model. It was not closely correlated with preference, and was thus removed from the analysis

Attribute	Value	
Cost	3.3	
EIRP	1.7	

*Attribute value obtained by subtracting the smallest coefficient from the largest coefficient. Remember – the coefficient for the options not represented by a dummy variable (Cost Low, EIRP Low) are always 0.

Cost Tiers	Value		
High	\$390,021		
Medium	\$285,133		
Low	\$182,267		

*Data naturally aligned into 3 cost tiers (cluster analysis can be performed when the alignment is not immediately apparent). The value displayed is the average cost of each item in the group

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Application – Interpretation

- Based on the attribute values, a high EIRP is worth 7.5 points, while a medium cost decreases the ranking by 1.5 points and a high cost decreases it by 3.5 points
- Goal: Determine the cost associated with increased capability

 $\frac{Medium \, Cost \, -Low \, Cost}{Medium \, Cost \, Rating \, -Low \, Cost \, Rating} = \frac{\$284,445 - \$191,825}{-3.1 - 0} = -\$33,064$

When starting from a low cost, increasing the cost by \$33,064 lowers the perceived rating by 1 rank.

A vendor moving from low to medium EIRP starting from a low cost could be expected to raise costs by .8 * \$33,064 = \$27,554

Similar calculation can be completed in order to estimate how additional capability changes would impact cost

Considerations

- Simpler is often better more variables allow the model to more accurately describe known data, but can over specify and be a poor predictor of future results
- Whenever possible, randomly separate data into training (~75% of the data) and test sets (~25%)
 - The training set is used to build the initial model(s)

Presented at the

- The model(s) are then applied to the test set to conduct a "sanity check"
- There are many types of predictive modeling techniques, and the most applicable one varies depending on the type of data requiring analysis

Presented at the 2019 ICEAA Professional Development & Training Questions?

ng Workshop - www.iceaaonline.com

