

DON'T BE SCARED, MACHINE LEARNING IS EASY!

Mary Johnson Dakota Shafer

ICEAA CONFERENCE - MAY 2019

AGENDA

- PYTHON & DATA ENGINEERING
 - Data Engineering
 - Feature Engineering
 - Data Engineering Case Studies
- MACHINE LEARNING
 - What is it?
 - How is it different from Statistical Modeling?
 - Applications and Examples
- CASE STUDY
 - Data Engineering: Compiling Messy Data
 - Model Selection
 - Model Tuning
 - Performance
- WHAT'S NEXT?

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

PYTHON & DATA ENGINEERING

Booz | Allen | Hamilton[®]

PYTHON? LIKE MONTY PYTHON?

- Actually– Yes.
 - Named after Monty Python's Flying Circus
- Python is a programming language which has grown exponentially because it is:
 - Easily Digestible
 - Python is a very 'readable' language
 - Less Typing 3 to 5 times shorter than equivalent Java programs, and 5-10 times shorter than equivalents C++ programs!

Source: Raygun, Java vs. Python Example

Both programs will output the elements of the array on separate lines, with Python executing the function with much less code

DATA ENGINEERING

- What is Data Engineering?
 - Data engineering is the field of transforming data into a useful format for analysis.
 - Data engineers enable data scientists to do their jobs more effectively.
- Steps in Data Engineering:
 - Gathering the data
 - Storing data
 - Cleaning and wrangling data into a usable state

FEATURE ENGINEERING

- What is Feature Engineering?
 - Feature engineering is the process of using domain knowledge to create features that enable machine learning algorithms work
 - A feature is an attribute or property shared by all of the independent units on which analysis or prediction is to be done
 - Feature engineering is about creating new input features from your existing ones
- Creating Dummy Variables
 - Dummy variables are a great way to quantify categorical data
 - Create a column for each unique value in a series of data and correspond 1's or 0's (yes's or no's) to that label's attributes

Original Data

Data With Dummy Variables

UID	<u>Color</u>	UID	<u>Color_red</u>	<u>Color_blue</u>	<u>Color_orange</u>	<u>Color_yellow</u>
1.0	red	1.0	1	0	0	0
1.1	blue	1.1	0	1	0	0
1.2	red	 1.2	1	0	0	0
1.3	orange	1.3	0	0	1	0
1.4	yellow	1.4	0	0	0	1
1.5	blue	1.5	0	1	0	0

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com DATA AND FEATURE ENGINEERING IN EXCEL VS PYTHON

Task	Excel	Python
 Data Cleaning (Data Engineering) Quantitative Values: Ensure everything is on the same scale Qualitative Values: Correcting different spellings, and inconsistent data entries 	 Correct inconsistent entries by hand Difficult to trace previous steps 	 Apply Dictionaries to automate fixing inconsistent data across large amounts of data Maintain visibility into previous steps
 Manipulating Data (Data Engineering) Transforming data into a 'Label -> Attribute' format 'Un-pivoting' data tables 	 Manually copy and paste transformed data for each attribute 	 Utilize open source libraries such as Pandas to employ built-in functions like 'melt'
 Creating Dummy Variables (Feature Engineering) Machine Learning models require categorical features be converted to 'dummy variables' 	 Create formulas for each separate dummy variable column 	 Employ 'get dummies' function in Python

Booz | Allen | Hamilton®

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

DATA ENGINEERING CASE STUDIES

Booz | Allen | Hamilton[®]

DOD COST FORM EXCEL EXAMPLE

- **Problem:** Cost Data is received in an Excel Workbook (as seen below), with a new Worksheet/Tab for each WBS element, unconducive to quick analysis.
- Solution: Wrote a Python script to read the excel file, loop through all worksheets in the workbook and pull the data into a label-attribute formatted flat file.
 - Originally coded in VBA, which regularly took over 5 minutes to run and would often cause Excel to crash
 - Python script takes roughly 15 seconds to run on average (10 trials)
- Advantages:
 - Data is formatted in a way that can easily be analyzed in any software
 - Only needs to be coded once; every time the data is delivered, new WBS elements are added automatically

TASKBOOK (PDF) EXAMPLE

- Problem: Needed to identify travel amounts by WBS number, stored within a 200+ page PDF file.
 Previous solution would have required a manual inspection of the PDF in order to visually identify the travel numbers to transfer to an Excel workbook.
- Solution: Created a Python script to read in the PDF, identify when a travel number was indicated, and place that number and it's accompanying WBS number into an organized format
- Advantages: Investing time writing a Python script allows you to create a program that can reused on future taskbooks, or on the same taskbook, should it be updated

Funding Document												
WBS No:	XXX	×				-			Bandl		\$	50,000.00
TITLE:	XX->	KX Hardware							Bandl	I	\$	100,000.00
PI/Code:	M. Jo	hnson		1111					Bandl		\$	150,000.00
Func Lead/Code:	M. Jo	hnson		1111					Bandl	v	\$	200,000.00
Duration	XXIX	IXXXX	XXI	XIXXXX								
LABOR			(Se	e Box Above)								
Employee Name	WY's		Lab	or\$Band	Lab	or Total	NMC	I	NEBO		Tota	d
TBD		0.2	Bar	nd I	\$	10,000.00	\$	1,000.00	\$	1,000.00	\$	12,000.00
тво		0.2	Bar	hdl	\$	10,000.00	\$	1,000.00	\$	1,000.00	\$	12,000.00
тво		0.2	Bar	nd II	\$	20,000.00	\$	1,000.00	\$	1,000.00	\$	22,000.00
тво		0.1	Bar	nd III	\$	30,000.00	\$	1,000.00	\$	1,000.00	\$	32,000.00
тво		0.1	Bar	Nb	\$	20,000.00	\$	1,000.00	\$	1,000.00	\$	22,000.00
TOTAL LABOR		0.8			\$	90,000.00	\$	5,000.00	\$	5,000.00	\$	100,000.00
NON-LABOR												
Description	Non-	Labor\$	Sur	charge	Tota	al						
Material	\$	100,000.00	\$	1,000.00	\$	101,000.00						
Shipping	\$	1,000.00	\$	1,000.00	\$	2,000.00	_					
NON-LABOR TO	` \$	101,000.00	\$	2,000.00	\$	103,000.00						
TRAVEL												
Type of travel	Trave	4\$										
Regular	\$	100,000.00										
TRAVEL TOTAL	*	100,000.00										
CONT SUPPORT												
Vendor	Cont	\$	Sur	charge	Tota	al						
Tech Services	\$	100,000.00	\$	1,000.00	\$	101,000.00						
Admin	\$	100,000.00	\$	1,000.00	\$	101,000.00	-					
NON-LABOR TO	` \$	200,000.00	\$	2,000.00	\$	202,000.00						
Deliverables	Occu	irrence	PO	D	Sta	rt Date	End	Date	Due D	ate		
Hardware	As Required		M. Johnson									
Software	As R	equired	_M	Johnson								
Impact If Not Fur	nded											
Failure												
Task Description	1											
Deliver Hardware												

The above funding document is a generalized example

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

MACHINE LEARNING

Booz | Allen | Hamilton®

GENERAL INTRODUCTION TO MACHINE LEARNING

- What is Machine Learning?
 - Machine Learning is a subset of Artificial intelligence that allows software applications to predict outcomes without being explicitly programmed.
- What Does That Mean?
 - Machine learning differs from traditional computer programing by teaching the machine through examples instead of coding instructions
- Types of Machine Learning
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning
 - Deep Learning
 - And many many more!

TYPES OF MACHINE LEARNING

Supervised Learning

- Finds patterns using both input data and output data
- Allows analysts to make predictions for unavailable, future, or unseen data based on the training data
- Examples: Price prediction in sales, trend forecasting in stock trading
- Unsupervised Learning
 - Finds patterns based exclusively on input data
 - Useful when you do not know for what to look helps to describe existing data
 - Examples: Exploring customer information in digital marketing
- Reinforcement Learning
 - Commonly understood as machine learning artificial intelligence
 - Relies on creating a self-sustained system that improves itself based on labeled data and incoming data
 - Examples: Self-Driving cars, video Games
- Deep Learning
 - Inspired by the structure and function of the human brain, namely the interconnection of many neurons
 - Neural Networks: algorithms that mimic the biological structure of the brain
 - Examples: Image identification

STATISTICAL MODELING VS MACHINE LEARNING

Statistical Modeling

- *Definition:* A mathematical model that embodies a set of statistical assumptions concerning specific sample data
- Mathematical school of though
- Many Assumptions
- Formulation
 - $y = B_0 + B_1 x_1 + e$
- Purpose: To derive inferences about the relationships between variables
- Cannot handle large amounts of variables

Machine Learning

- *Definition*: Method of data analysis that automates analytics model building
- Computer science school of thought
- Few Assumptions
- Formulation
 - Input \rightarrow output
- Purpose: To make the most accurate predictions possible
- Needs More Data
- Error Focused

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com SUPERVISED LEARNING: RANDOM FOREST REGRESSION

- Problem: You want to know how much buying a used Honda Civic will cost, so you gather a group of car owners to get their opinions.
- Solution:
 - You create a list of questions (features) that will explain the cost of the car a little better such as:
 - o Mileage
 - \circ Color
 - Navigation
 - Custom Wheels
 - The car owners will have differing opinions on how the features impact cost
 - Each owner creates a decision tree based on their opinion.
 - The combination of all the decision trees results in a forest. The prediction is the average of all trees.

Ensemble Model: example for regression

For a <u>black</u> civic with <u>30k miles</u> with <u>Navigation Included</u> and <u>no custom</u> <u>wheels</u>:

Person 1: \$13,000 Person 2: \$17,000 Person 3: \$14,000

Random Forest Prediction: \$14,667

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

CASE STUDY EXAMPLE

Booz | Allen | Hamilton[®]

CASE STUDY INTRODUCTION

- **Problem:** Government struggles to forecast installation costs for systems
 - Limited Data
 - Difficult to Understand the Data
- Solution: Implement cost analysis using Machine Learning techniques:
 - 1. Data engineering
 - Identify 'Unit Cost'
 - Merge Multiple Datasets
 - 2. Feature Engineering
 - 3. Modeling
 - Train-Test-Split
 - Model Selection
 - Model Tuning

DATA ENGINEERING STEP 1

• Original Data:

- Cost Data: Contains Vehicle, Date, System, Cost, and Hours
- Installation Data: Contains 16 separate attributes including vehicle, maintenance location, Install Type, Install System, etc.
- **Problem**: Cost data does not identify the specific installation, so the cost data can not initially be merged with installation data
 - Only way to possibly determine an installation unit cost is to compare vehicle maintenance availability dates with cost data dates
 - Difficulties: Not all costs for one installation are within the defined maintenance availability period, costs could be ± a year from the maintenance availability , maintenance availabilities are too close together to determine which costs are for which maintenance availabilities, etc.
- Solution: Cost data were grouped by Vehicle and shown on a timeline to visually determine each Installation's 'apparent' start and end date, to then group cost data into Installation 'Unit Costs' Grouping by Vehicle includes 3 clearly defined Maintenance Availabilities

Booz | Allen | Hamilton®

DATA ENGINEERING STEP 2

After completing Data Engineering Step 1, a 'join key' can be used to combine the multiple data sources.

Booz | Allen | Hamilton[®]

FEATURE ENGINEERING

- Installation Data contained 16 Columns •
 - 2 Continuous (Duration, LOE)
 - 14 Categorical (Location, Maintenance Availability Type, etc.) -
- Categorical features were converted to dummy variables ٠
 - Resulted in 43 total features -

					Maintenance Availability	Maintenance Availability			
	Vehicle	Start Date	End Date	Cost	Location	Туре	Issues?		
	Vehicle1	1/1/2014	5/1/2015	\$423	Location1	Type1	Yes		
	Vehicle2	10/1/2014	2/1/2016	\$204	Location2	Type2	No		
				J					
Vehicle	Start Date	End Date	Cost	Maintenar Availabili Location	nce Mainter ty Availat _1 Locatio	nance Mainte pility Availa pn_2 Type	nance Mair bility Ava 2_1 Ty	ntenance ilability /pe_2	Issues?
Vehicle1	1/1/2014	5/1/2015	\$423	1	0	1		0	1
Vehicle2	10/1/2014	2/1/2016	\$204	0	1	0		1	0

Booz | Allen | Hamilton[®]

PREVENTING OVERFITTING: TRAIN-TEST SPLIT

- Overfitting: Refers to when a model fits the data *too* well, and thus the model cannot be generalized to the larger population (in our case, other installations for which we did not have input data)
- Train-Test split is a way to prevent a model from being overfit to a dataset
- Since we have a relatively small amount of data (We had slightly more than 100, note: some ML/AI models are fit to *millions* of observations...), we chose to do a 50/50 train-test split
 - This means that the model is fit to ½ of the data, and then 'scored' on the other half
- Important to note that it is not taking the first half and the second half, samples are chosen at random.

Booz | Allen | Hamilton®

MODEL SELECTION

- 8 Models were hand-selected
 - Linear Models:
 - Least Squared Regression

 Bidge 	Model	Test Score	Test RMSE	
 Bayesian Ridge Regression 	RandomForestRegressor	0.893	79,098.005	
◦ Lasso	GradientBoostingRegressor	0.994	86,518.473	
 Elastic Net BANSAC Regressor 	Ridge	0.841	87,552.634	
- Decision Trees:	RANSACRegressor	0.755	100,766.557	
 Gradient Boosting Regressor 	ElasticNet	0.438	109,703.362	
 Random Forest Regressor 	BayesianRidge	0.000	151,930.969	
Created a Python script to loop through the	LinearRegression	0.997	170,193.503	
following steps:	Lasso	0.997	179,630.348	

- Fit the model to the 'train' data
- Score the model (think: R^2)
 - \circ $\;$ Shown as the 'Test Scores' in the table to the right
 - A higher test score is better
- Find the Root Mean Squared Error
 - \circ $\;$ RMSE is our measure of performance for this model
 - \circ A lower RMSE is good

The Random Forest Regressor was chosen because it had the lowest RMSE

Booz | Allen | Hamilton®

MODEL TUNING

- What is Model Tuning?
 - All machine learning algorithms have a "default" set of internal variables (coefficient penalties, number of branches, number of layers, etc.)
 - Model tuning is the process by which you change the internal variables to create the most accurate model
- Tuning a Random Forest Regression Model
 - Optimal Depth:
 - A general machine learning tuning variable by which you determine how many features the model needs to most accurately predict the target variable
 - o i.e. how many car features are needed to be the most accurate
 - Of the 43 features, only 15 are needed to be the most accurate
 - o The top 15 features as determined by the model tuning are all categorical

Booz | Allen | Hamilton[®]

PERFORMANCE

- Assuming the error is normally distributed, 75% of the error falls between -\$14,737 and \$15,731
 - i.e. the model can predict the cost within ± \$15,000
- There are some major outliers that are being investigated
 - Multiple instances of error exceeding \$100,000
 - $_{\odot}$ $\,$ 7% of all predictions exceed this threshold
 - \circ $\;$ Most are over-estimates that need to be investigated on a case-by-case basis

DON'T BE SCARED

The below Python script illustrates speed at which a Random Forest Regression model can be created

```
1 from sklearn.ensemble import RandomForestRegressor
2
3 rf = RandomForestRegressor(max_depth = 15, random_state = 42)
4
5 rf.fit(X,y)
6
7 rf.predict(X)
```

array([14.9, 15.5, 18.7, 21.7, 25.2, 28.8, 32.8, 37.4, 42.8, 50.])

FUTURE STEPS

- Continue gathering data from external documents
- Quantify Risk
- Test the model on different systems to gauge overall performance
- Consider introducing natural language processing as a means of estimating
 - Some documents provide reasoning as to why a task went over budget value may be able to be derived from these documents

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

QUESTIONS?

Booz | Allen | Hamilton®