Clearly Communicating Your IGCE To Decision Makers

THE ART OF THE OUTBRIEF

Chris Svehlak, CCEA Aviation Division Manager, DigiFlight Inc. Huntsville, Alabama

So, What's The Status of Your IGCE?

This Is How We IGCE Roll

Slog long, tedious hours as professional cost estimators
Research, gather info, pluck data, pour over SOWs
Determine the cost drivers, factors and inflation
Create the cost model, run the numbers, arrive at budget point estimates, test sensitivity limits

Ta-da! The IGCE is now hot'n ready!

Just prepare the document. Call it a day, right?

Nope. It's Time for the **OUTBRIEF**

"Hi, this is Senior Management. We'd like to see your results!

Don't focus so much on the itty-bitty cost intricacies.

Just the biggie hard-hitting facts and data, please.

And we have short attention spans, so... 10 slides or less.

Can you do tomorrow?"

The **Wrong** Reaction Is...

Why is

The **OUTBRIEF**

So Darn Important?

NASA says...

"Because cost estimation is an inexact science based on historical experiences and subjective judgments, it is vital that the cost estimator prepare a solid presentation package that provides the context and rationale for the estimate in a way that is clearly understood and accepted by the customer and other stakeholders." (NASA Cost Estimating Handbook v4.0 Appendix H, pp. H2-H3)

The Navy says...

"Use of meaningful, thoughtfully-prepared visual displays is important in communicating the results of detailed cost analyses to stakeholders. Briefing slides should reveal the basis and results of analysis, induce the viewer to focus on substance and decision space, and should avoid any distortions in either data or analysis." (Navy's October 2010 Cost Estimating Guide, p.51)

Other Sources to Find Prep Tips

- DoD 5000.4-M Cost Analysis Guidance and Procedures dating to Dec 1992
- DoD Independent Government Cost Estimate Handbook for Services Acquisition (Feb 2018 update)
- Army Cost Analysis Manual (May 2002)
- Navy's Cost Estimating Documentation Policy (Sep 2012) and Cost Estimating Guide (Oct 2010)
- Marine Corps Cost Analysis Guidebook (Mar 2016)

Yeah, great, but I hate reg reading.

How about a real-life example?

- Yes, that's a good idea.
- How about a sanifized one? No worries, I used lots of Lysol.
- ... and I changed names, numbers, data, all kinds of stuff...
- in an effort to protect, well, uh, protect the innocent, guilty, whomever & whatever it is that might need protecting.
- But you'll get the idea, I promise!

The following OUTBRIEF flow/presentation style works nicely for <u>my</u> program office leadership; But it may need *tweaking* for yours

Today's Date

on the Radar & Fire Control System X1

Independent Government Cost Estimate

Mr. Crunchin Numeros

Cost Estimator, Whirlybird Program Office

Background

CHALLENGE:

- Current Radar & Fire Control System (RFCS) is facing obsolescence compounded by ongoing hardware and software quality issues.
- OEM is dissolving; advance buys & spares will be exhausted by 2024; no alternate supplier/manufacturer available.
- Future fleet readiness is at risk, and Whirlybirds are vulnerable.

PROPOSED OPTION:

- Radar/Fire Control System X1
 - Pursue a Modified Non-Developmental Item (NDI) with New Software & Open System Architecture

Bottomine Up Front Sional Development & Training Workshop - www.iceaaonline.com

Cost Estimate: RFCS-X1 48-mo Mod, Write S/W, Test, 100 Prototypes (w/out TDY & Gov't Costs)

RFCS-X1 48-mo IGCE		FY19	FY20	FY21	FY22	FY23	Subtotal TY\$
S/W SLOC		\$ 8.840	\$ 21.253	\$ 0.697	\$ 0.641	\$ 0.286	\$31.717
Test Scripts		\$ 2.232	\$ 16.331	\$ 2.382	\$ 1.271	\$ 0.046	\$22.262
Eng drawings		\$ -	\$ 0.456	\$ -	\$ 0.846	\$ -	\$1.302
Tech Data		\$ 1.521	\$ 4.716	\$ 0.847	\$ 0.780	\$ 1.070	\$8.933
S/W licenses		\$ 3.694	\$ 0.273	\$ 0.278	\$ 0.284	\$ 0.289	\$4.817
CDRLs		\$ 0.745	\$ 0.910	\$ 0.771	\$ 0.882	\$ 0.670	\$3.977
TDY							\$0.000
Prototypes, Mat'ls, Rpr		\$ -	\$ -	\$ 10.809	\$ 19.574	\$ 8.038	\$38.421
Mat'l Mgmt	10%	\$ -	\$ -	\$ 1.081	\$ 1.957	\$ 0.804	\$3.842
SEPM	42.3%	\$ 4.367	\$ 15.096	\$ 1.514	\$ 0.974	\$ 0.130	\$22.081
G&A	15%	\$ 3.210	\$ 8.855	\$ 2.757	\$ 4.081	\$ 1.700	\$20.603
Profit	10%	\$ 2.461	\$ 6.789	\$ 2.114	\$ 3.129	\$ 1.303	\$15.795
GRAND TOTAL (BudgetYr\$'s)		\$ 27.068	\$ 74.678	\$ 23.250	\$ 34.419	\$ 14.335	\$ 173.750

Approx \$175M necessary to get the RFCS-X1 ready for LRIP and Full Rate Production

Roughly \$225K per RFCS-X1 (A+B kit) during Dev/Mod/Test/Prototype phase

Life-Cycle Cost Estimate RFCS-X1 vs. Current RFCS

Cost Estimates (w/Gov't costs, but w/o TDY costs)		Buc	lget Yr \$M	
4-yr Phase of Mod, Test, Prototype		\$	173.8	
Testing (Govt & Ktr costs)		\$	46.8	
RadarFireCntrlSys-X1 Production		\$	463.9	
O&M (RadarFireCntrlSys-X1)		\$	380.8	
O&M (S/W Refreshes both sys, Trng, Legacy Proc/Repai	rs/Cut-In)	\$	313.6	Current RFCS projected
Other Costs: Material Mgt, SEPM, G&A, Profit	\$	650.6	Life Cycle Cost Est to FY40	
Total RadarFireCntrlSys-X1 Life Cycle Cost (w/out TDY)	To FY40	\$	2,029.4	\$2,200.0M

Some savings advantage exists for RFCS-X1 across life-cycle

Estimate \$150K per RFCS-X1 (A+B kit) during production phase (current RFCS cost = \$175K/ea)

Facts from the SME's

Currently ~\$195M identified & available in the Program Office's budget

Potential Funds	FY19	FY20	FY21	FY22	FY23	Total	
Approp: APA	\$30.0	\$75.0	\$30.0	\$40.0	\$20.0	\$195.0	

- Current Radar & Fire Control System hardware obsolescence projections:
 - Worst Case FY2022 // Most Likely FY2024 // Best Case FY2026
- HW Quality: ~ 20% of current RFCS's received have had failures.
- SW Quality: Delayed upgrades are a direct result of software quality issues.
- SW Maintx: Limited options for fixes/updates; legacy Ada language is burdensome.
- SW Architecture: Closed architecture is not portable and significantly limits agility in introducing/updating capabilities; limits use of 3rd party applications.
- Systems Engineering: Lack of modern System Engineering (i.e. MBSE) processes increase time to field new capabilities.
- SW Update implications: Cost increases.

Hardware Comparo -- Pros and Cons

		RFCS-X1	Current RFCS		
Aspect	Н₩	New RFCS model X1	Current RFCS		
Hybrid HW/SW	DO-254 compli?	YES	NO		
Current HW/SW	New A-kit req'd?	YES	NO		
	Pro's	 Addresses obsolescence, current standards to include safety & quality Facilitates transition to Open Architecture (COTS) Promotes competition H/W portability (at LRU, SRU) Potential H/W upgrade (processor, memory) US Gov't controls interfaces 	- Familiarity, simplest		
Π/ ¥¥	Con's	 Retrofit costs Logistics impacts Req'ts for Full Rate Production contract (impacts to production line) PM required to handle some Config Mgmt & LSI roles 	 Past performance Expensive O&M tail Obsolescence issues Retains proprietary interfaces Only defers new H/W until Yr24 (best case) Still have old RFCS w/bit, flip, leakage issues; no Gov't influence on design 		

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Software Compare -- Pros and Cons

		RFCS-X1	Current RFCS
	SW	New SW	Keep HW/SW with OEM
Obsolescence	DO-178 compli?	YES	NO
Worst – 2022	Model Based Sys Engrg?	YES	NO
Most Likely - 2024	FACE compli?	YES	NO
Best - 2026	Cost Share ?	YES	NO
S/W	Pro's	 Minimizes H/W obsolescence impacts S/W updates (shorter release cycles), addresses current S/W quality concerns SW architecture flexibility to meet DO-178, MBSE/FACE & safety standards Permits full DO-178C, ARINC 653 and FACE conformance Reduced SW lifecycle costs Aligns with Army's Open Architecture vision Enables unlimited SW data rights Meets DOD Better Buying Power initiative via competitive bid Retain US Govt data rights on newly developed SW Promotes, allows future competition 	- Familiarity, simplest
	Con's	 Risk associated with introduction of MBSE and FCE Developing SW for 10% of code for which there are no data rights 	 Past performance Expensive Does not match Future Modernization Roadmap Vendor dependency

7

48-mo CPIF contract - HW/SW Build & Mod, Produce & Test Prototypes Primary cost drivers:

- Approximately 550,000 S/W lines of code, 90% auto-generated via model-based engineering
- Running over 3,000 test scripts (a Safety of Flight issue)
- Prototype quantities (test articles) = 100 A- & 100 B-kits

Full-Rate Production, Retrofit and O&M phases

- Costs driven by production quantities (fleet plus spares), anticipated unit failure and repair rates, and refresh cycle frequency
 - Assumes spares required at 20% of fleet
 - Assumes Mean Time Between Repair of 1,500 hours for both RFCS-X1 and current RFCS
 - Assumes average Retrofit pace of 125 a/c per year, requiring 10hrs labor ea + TDY (approx. \$5,000 total retrofit cost per a/c, not including actual RFCS-X1 unit cost)
 - Continue procuring/maintaining/refreshing current RFCS during 3-yr cut-in to RFCS-X1

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com FORECOSTEO RECS-X1 TIMEINE

Recommendation: Pursue RFCS-X1

RFCS-X1 48-mo IGCE	Subtotal TY\$
S/W SLOC	\$31.717
Test Scripts	\$22.262
Eng drawings	\$1.302
Tech Data	\$8.933
S/W licenses	\$4.817
CDRLs	\$3.977
TDY Note: No TDY costs included	\$0.000
Prototypes, Mat'ls, Rpr	\$38.421
Mat'l Mgmt 10%	\$3.842
SEPM 42.3%	\$22.081
G&A 15%	\$20.603
Profit 10%	\$15.795
GRAND TOTAL (BudgetYr\$'s)	\$ 173.750

- Solves current Radar & Fire Control System obsolescence issues
- Addresses HW/SW quality
- Transitions to an Open System Architecture
- Provides portability and agility
- Gives greater ability to compete future capability enhancements and updates
- Gov't owns Tech Data Pkg and SW data rights and controls interfaces
- Program Office has identified sufficient funding
- Sensitivity analyses = +/- \$20M potential deviation

OUTBRIEF <u>Backup</u>

Need to have the details back here.

One or more of the senior leaders WILL want to see it and flip through it.

Key Cost Estimate Inputs & Drivers

Software Lines of Code

	Initial Build	S/W Refreshes (ea)		
New SLOC	400,000	22,000		
Manual New	50,000	2,000		
Autocode	350,000	20,000		
Ported SLOC	100,000	3,000		
Reused SLOC	50,000	0		
TOTAL SLOC	550,000	25,000		

Test Scripts Initial Build S/W Refreshes (ea) New Manual 200 20 New Autocode 2,000 100 Modified 600 50 Ported <u>20</u> 200 3000 Total Test Scripts 190

Technical Data

	# of new	# of revised
Func'l Description Documents (FDDs)	1	40
Maint Operational Checks (MOCs)	1	40
Fault Isolation Procedures (FIPs)	40	300

Engineering Drawings

	FY19	FY20	FY21	FY22	FY23	FY24	TOTALS
Mech/Structural Dwgs	0	7	0	12	0	8	27
Electrical Drawings	0	3	0	6	0	8	17

Prototype Qty/Schedule

	FY19	FY20	FY21	FY22	FY23	TOTAL
A-kit delivery quantity	0	10	30	30	30	100
B-kit delivery quantity	0	10	30	30	30	100

Contract type: 48-month Cost-Plus Incentive Fee

Key Software Cost Est Relationships

Plus:

- SW Engineering Environment Support
- General SW Engineering/Support
- SW Baseline Verification Tests & Full Qualification Tests
- SW Regression Tests in Avionics & System Integration Labs
- Weapons/Inhibits/Limits/Interruptions Tests

Key Test Scripts Cost Est Relationships

Avionic/System Integration Lab Test Scripts												
		# new manual	# new autocode	# modified	d # ported			Per CER Tes	stSpt			
test	Test Scripts	s <u>200</u>	2,000	600	200		Spt hrs 9	% 1.00%				
scripts	Hrs / scrip	t <u>40.0</u>	<u>40.0</u>	<u>40.0</u>	<u>40.0</u>	Total SWEngr hr	<u>S</u>	1,200.0	E	EEngr hrs		
3000		8,000	80,000	24,000	8,000	120,000						
SME input	from Mr Suftwe	ar										
Analogoi	us Pgm XT data	<u>Calculation for Test</u> 39,000 <u>975</u> 40.0	<u>Script Hours:</u> hours spent doi test scripts in P hrs /test script	ng test scripts (p roject XT SVCP	per CDRL data)							
			SW Refresh R	adarFireCntrlSys	-X1							
			CER	# new manual	# new autocode	e # modified	# ported					
			Test Scripts	20	100	50	20			Spt hrs %	1.00%	
$\langle \mathbf{N} \rangle$			Hrs / script	<u>40.0</u>	<u>40.0</u>	<u>40.0</u>	40.0	Total SWEng	r hrs		76.0	EEEngr hrs
				800	4,000	2,000	800	7,600				
	Plu	JS:										
		General S	SW/Scri	pt Engir	neering	Suppor	†					

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com **Drawings** COST EST REIGTIONSNIPS

				1	1		1				
			FY20	FY22	FY24						
Mech / Structural Drawings:	Air Vehicle/Airframe	e Design and Supp	port to Design F	Release		-					
- Development Complexity De	esign		7	12	8						
Development Airframe	hrs/dwg	200	1,400.0	2,400.0	1,600.0	MeStruxEngr					
	Hrs1	Hrs2	2								
Support hrs/dwg	25	30	spread a % to c	drawings							
Production Complexity Drwgs											
Development Configuration	hrs/dwg	100	700.0	1,200.0	800.0	MeStruxEngr					
	Hrs1	Hrs2	2			-					
Support hrs/dwg	10	20	spread a % to c	drawings							
	Summary of	of Hrs by LaborCa	t			_					
		MeStruxEngr	2,100.0	3,600.0	2,400.0	MeStruxEngr					
		PrDataMgt	21.0	36.0	24.0	PrDataMgt					
		FltEngr	21.0	36.0	24.0	FltEngr					
		MfgEngr	21.0	36.0	24.0	MfgEngr					
		SysEngr	14.0	24.0	16.0	SysEngr		1	T		
								FY20	FY22	FY24	
			Electrical Draw	ings: Elec Des	sign and Supp	ort to Design F	Release				-
			- Development Complexity Design					3	6	8	
			Development Co	mplexity Drwgs							
			Development Ele	ectrical	hrs/dwg	10	0	300.0	600.0	800.0	EEEngr
			-		ŀ	Hrs1	Hrs2			••••••	., -
			Support hrs/dwg	[30	20)	spread a % to o	drawings		
					Summ	ary of Hrs by L	.aborCat				_
						EEEngi	r	300.0	600.0	800.0	EEEngr
						PrDatal	Mgt	3.0	6.0	8.0	PrDataMgt
						MeStru	xEngr	3.0	6.0	8.0	MeStruxEngr
Duc						FltEngr		3.0	6.0	8.0	FltEngr
FIUS.						MfgEng	gr	3.0	6.0	8.0	MfgEngr
						SysEng	jr	3.0	6.0	8.0	SysEngr
		• •		· · · ·							

General Engineering/Design Support

Key Sys Eng/Pgm Mgmt Cost Est Relationships

Systems Engineering and Program Management

Sys Engrg involves Test Mgt, Airworthiness, HW Qual, Sys Integ/Modif/Upgrd, V&V, Test/Eval Support, Test Facilities Pgm Mgmt involves Data Mgmt, Integrated Product Spt, Change Mgmt, Security, Cost Reporting, Risk Mgt, Integrated Master Planning/Schedule

Used several pro	grams as data points	for prime mission pr	oduct, sys engi	rg and pgm mg	mt and take average:			
<u>Program</u>		PMP	Sys Engrg	Pgm Mgmt				
Drogrom A1	EAC	\$47,000,000	\$16,000,000	\$8,000,000	Per Final 1921 Report		AVERAGE	
Program AT	percentage of PMP		34.0%	17.0%		Sys Eng	19.3%	
Drogrom P2	EAC \$M	\$1,500,000.0	\$172,000.0	\$200,000.0	Per Final 1921 Report	Pgm Mgmt	23.0%	42.3%
	percentage of PMP		11.5%	13.3%				
Program C3	EAC hours	661,000.0	107,000.0	286,000.0	Per Final 1921 Report			
	percentage of PMP		16.2%	43.3%				
Program D4	EAC \$M	\$292,000.0	\$61,000.0	\$74,000.0	Final Report 1921			
	percentage of PMP		20.9%	25.3%				
Drogrom C5	EAC \$M	\$234,000.0	\$73,000.0	\$60,000.0	Milestone C Report 1921			
FIOgrafii LJ	percentage of PMP		31.2%	25.6%				
Program E6	EAC \$M	\$83,000.0	\$13,000.0	\$17,000.0	Lot 1 Final 1921			
Tiogram to	percentage of PMP		15.7%	20.5%				
Program G7	EAC \$M	\$47,000.0	\$9,000.0	\$11,000.0	Country X 1921 Final Report			
	percentage of PMP		19.1%	23.4%				
Program H8	EAC \$M	\$8,400.0	\$1,000.0	\$2,000.0	Final 1921 accepted			
Подгантно	percentage of PMP		11.9%	23.8%				
Program 10	EAC \$M	\$40,000.0	\$5,200.0	\$6,000.0	Lot 1 Production CYXX, Form 1921			
	percentage of PMP		13.0%	15.0%				
1								

SEPM % is applied against sum of Prime Mission Product hours

Key **CDRL** Cost Est Relationships

		FY19	FY20	FY21	FY22	FY23
	Total CDRL Submits	452	538	442	492	364
	Submits less 1-time Submits	424	505	415	461	341
Х	recurring hrs/submittal (CER CDRL), Labor code PrDataMgt	4	4	4	4	4
	Recurring Hrs	1696.0	2020.0	1660.0	1844.0	1364.0
	Spread of 1-time CDRL initial prep hrs (analyst est)	19.8%	23.5%	19.3%	21.5%	15.9%
	NRE hrs after spread	2,678.8	3,188.5	2,619.5	2,915.9	2,157.3
	RE + NRE CDRL Hrs (PrDataMgt)	4,374.8	5,208.5	4,279.5	4,759.9	3,521.3

Over 100 CDRLs identified in RFCS-X1 Statement of Work

Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com TOTA MANDOURS (by Cost Item & Labor Cat)

		FY 19				
RadarFireCntrlSys-X1	EST MANHOURS	Jun19-Sep19	FY20	FY21	FY22	FY23
S/W SLOC		52,348.0	122,565.2	3,892.8	3,472.8	1,516.7
Test Scripts		13,218.0	94,189.2	13,332.0	6,908.4	242.4
Eng drawings		0.0	2,613.0	0.0	4,573.8	0.0
Tech Data		8,987.3	27,148.1	4,724.2	4,228.2	5,664.8
CDRLs		4,374.8	5,208.5	4,279.5	4,759.9	3,521.3
Prototypes, Mat'ls, Repair		0.0	0.0	9,180.0	3,060.0	1,026.4
SEPM		27,181.1	91,500.4	8,908.4	5,562.5	725.6
	Grand Total Hrs	106,109.1	343,224.4	44,317.0	32,565.6	12,697.2
						538,913.3

	FY19				
	Jun19-Sep19	FY20	FY21	FY22	FY23
TOTAL Manhrs by Labo	or Category				
SWEngr	64,410.0	213,461.2	16,579.1	9,742.3	1,834.0
PrDataMgt	5,070.2	6,897.4	6,420.5	5,655.4	3,599.4
QEngrPlan	0.0	20.0	1,118.0	486.0	89.3
EEEngr	6,725.3	22,265.1	6,036.1	4,785.3	4,920.4
MeStruxEngr	0.0	2,208.2	0.0	3,786.3	0.0
FltEngr	0.0	24.0	0.0	42.0	44.6
MfgEngr	0.0	24.0	0.0	42.0	44.6
SysEngr	12,864.5	42,907.9	7,632.1	3,877.0	450.7
TestVerEngr	2,242.3	5,605.7	1,681.7	1,121.1	605.2
ProdnSpt	0.0	0.0	0.0	0.0	116.0
PgmSpt	14,796.9	49,811.2	4,849.6	3,028.1	395.0
Assmbly	0.0	0.0	0.0	0.0	270.0
EwireFabr	0.0	0.0	0.0	0.0	270.0
QualAssr	0.0	0.0	0.0	0.0	58.0
TOTAL HRS	106,109.1	343,224.4	44,317.0	32,565.6	12,697.2
					538,913.3

Forecasted RFCS-X1 Delivery Schedule

RFCS-X1 Expected Delivery Schedule		CY 24																									
			FY 24																								
	Customer	0	Ν	D	J	F	М	Α	М	J	J	А	S	FY25	FY26	FY27	FY28	FY29	FY30	FY31	FY32	FY33	FY34	FY35	FY36	FY37	TOTALs
RFCS-X1 Prototype A-KIT	USG		25	25	25	25																					100
RFCS-X1 Prototype B-KIT	USG		25	25	25	25																					100
FRP RFCS-X1 A-kits	USG													200	200	200	200	200	200	200	200	200	200	200	200	200	2600
FRP RFCS-X1 B-kits	USG													200	200	200	200	200	200	200	200	200	200	200	200	200	2600
A-Kit Total Deliveries		0	25	25	25	25	0	0	0	0	0	0	0	200	200	200	200	200	200	200	200	200	200	200	200	200	2700
B-Kit Total Deliveries		0	25	25	25	25	0	0	0	0	0	0	0	200	200	200	200	200	200	200	200	200	200	200	200	200	2700

2,600 units necessary to retrofit fleet, cut into the production line, and meet spares/benchstock requirements

Sensitivity Analysis

- Varied the following cost drivers plus or minus 15%, alone and in combinations:
 - SLOC
 - Test Scripts
 - Engineering drawings
 - Quantity of prototypes

Net effect: risk of +/- \$20M variation on 48-mo IGCE

Other Relevant Backup Material

- Try to anticipate what leadership might ask about, and put it in backup
- Maybe historical data for the current system
- Maybe the next level detail on performance parameters for both current and new systems

But the Outbrief is <u>NOT</u> where you fully/completely document the IGCE.

So don't pack it full of boring inflation tables, labor rates, etc.

Parting Words

Tailor the OUTBRIEF to what your leadership wants

Simple and straightforward, tell the story

Don't confuse audience & obfuscate results with data overload

You can do this!

Don't everyone shout at once...

CHRIS SVEHLAK, CCEA Aviation Div Mgr/Sr Cost Estimator/SME DigiFlight Inc., supporting the Apache Pgm Ofc Redstone Arsenal, AL chris.svehlak@digiflight.com 256-955-6370 (office)