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Adaptive Curve Fitting (ACF) is a novel technique that analyzes finite time series data such as 

monthly expenditures for government acquisition contracts. By intelligently fitting known resource 

phasing curve forms to an existing sequence of data, the automated algorithm generates a custom 

model that extrapolates all remaining future values. It performs joint forecasting of cost, schedule, 

and phasing for in-progress programs and can be updated on a monthly basis. In this regard, it 

can provide a cross-check to more traditional earned value methods, independent estimates, 

customer budgets, and contractor-reported plans. Furthermore, the total cost and duration of the 

forecast can optionally be bounded, thereby allowing the rapid exploration of excursions and 

“What if” scenarios. ACF has primarily been developed with Department of Defense satellite 

acquisitions in mind; however, it potentially has wide-reaching applications to other commodities 

and industries. ACF is based in theory and empirical research, shares similarities with existing 

techniques, and introduces several key innovations to the field. The algorithm is explained and 

validation results presented for a sample of completed programs with known actuals. 

 

Introduction 

A considerable amount of research has been done on the topic of the ideal or most likely resource 

phasing shape for large acquisition programs. Early influential works were published by Norden 

(1958, 1970), who first noted that the Rayleigh distribution approximates the staffing buildup and 

phase-out of hardware development, and Putnam (1978), who applied the Rayleigh form to 

software estimation. More recently, researchers also began assessing the more general Weibull 

distribution (of which Rayleigh is a specific case) and Beta distribution (Unger 2001), (Burgess 

2006), (Brown et al. 2015). 

Typically at the start of a large contract, a simple phasing model based on one of these forms 

is used in order to budget the upcoming years. The width of the curve is fixed to the duration 

estimate, and the total area under the curve is fixed to the cost estimate (or some other resource of 

interest, e.g. labor hours, staffing numbers, etc.). This model remains useful as long as the actual 

phasing curve continues to approximately follow it. However, consider the situation in which an 

in-progress program has strayed significantly from its original spending plan. Since the baseline 

has failed to accurately predict the actuals to date, it no longer makes sense to continue using it to 

forecast the future. Additionally, the failure to meet the phasing model calls into question the 

accuracy of the cost and duration estimates used to generate it. 

This situation highlights the need for an objective technique that can optimally re-phase the 

remainder of the program while taking into consideration the performance to date. Proposed in this 

paper is an algorithmic solution to this problem that has applications extending beyond phasing 

alone. An algorithm is a defined set of instructions that takes an input, performs some sequence of 

calculations, manipulations, or decision-making processes, and produces an output. It can be 

thought of as a small computer program, and can often be visualized as a flowchart. An adaptive 

algorithm is one that changes its behavior based on the input information. Note that this is in stark 

contrast to traditional parametric models, which utilize historical training data to develop a static 
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equation that is applied the same way from that point forward. Adaptive algorithms are common 

in certain industries outside the cost/schedule/EVM world, for example radar detection (Finn & 

Johnson 1968), guidance/navigation/tracking (Hu et al. 2003), audio compression (Tsutsui et al. 

1992), and noise-cancelling headphones (Kuo & Morgan 1999), to name just a few. 

Adaptive Curve Fitting (ACF) is an automated procedure that analyzes the burn rate trend of 

an in-progress contract to generate updated forecasts for the phasing profile, total cost, and 

duration. Figure 1 illustrates the concept with simulated expenditure data that closely resembles a 

real acquisition program. The left portion of the plot with the turquoise background represents the 

past, and is therefore known; this is the data that is fed to ACF. The right portion with the white 

background represents the future, and is therefore unknown. The algorithm cannot see this data; it 

is provided here for comparison purposes only. The noisy data are monthly actuals from the time 

series of interest (it represents expenditures in this example but could alternatively represent 

another resource). The solid black points are smoothed monthly actuals that approximate the 

general trend of the burn rate. The dashed magenta lines are phasing curve forms that are fit to the 

smoothed data, and finally the solid magenta line is the resulting forecast. 

 

 

FIGURE 1 Adaptive Curve Fitting Example with Known Past Data and Unknown Future Data 

 

Prior related techniques that take advantage of some of the same fundamental principles as 

Adaptive Curve Fitting include: Multiple Model Adaptive Estimation (Gallagher & Lee 1995), 

The Rayleigh Analyzer® (Dukovich et al. 1999), N-R Curve Generation Tool (Chelson et al. 

2004), Executive Cost and Schedule Assessment tool (Davis 2008), and Weibull Analysis Method 

(Burgess et al. 2014). 

Once ACF generates its monthly forecast, there are several avenues for analysis. Figure 2 

shows a five-year annual phasing forecast created by binning the monthly values into years, which 
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could be useful for planning purposes. Additionally, if a user is interested in a group of programs, 

they could apply ACF to all of them and use the resulting outputs to optimally budget resources 

between programs within the portfolio. 

 

FIGURE 2 Annual Phasing Forecast Output 

 

Figure 3 displays the predicted cumulative curve, which is simply the running total of the monthly 

forecast. The maximum value yields the ACF-derived estimate at completion (EAC). Additionally, 

if a particular milestone date is of interest (e.g. first launch for a satellite program), ACF applies a 

percent spent metric to the cumulative curve to predict the month of occurrence. The value chosen 

for the metric can be based on historical data, subject matter expert input, contractor plan, or some 

other source. 

 

 
FIGURE 3 Cumulative Monthly Forecast Output with Cost and Schedule Predictions 
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One of ACF’s features is that it can be applied continuously throughout a contract’s lifecycle. 

Figure 4 shows how the schedule prediction has trended over time for the example dataset. The 

vertical axis represents the schedule prediction, and the horizontal axis represents the number of 

months of available data. This type of plot can assist the analyst in determining whether the 

forecast is stable or trending upward or downward. 

 

FIGURE 4 Schedule Prediction Time Trend Output 

 

Another important feature of ACF is that it can constrain its forecast to be consistent with an 

existing duration estimate and/or EAC. In Figure 5 the dashed magenta line represents the initial 

model that was fit to the smoothed data, and the solid magenta line is the final model that has been 

expanded until certain conditions were met (e.g. the total area under the model meets some total 

cost, or the width of the model equals some duration). This allows for the generation of a phasing 

forecast that is consistent with the latest cost and schedule estimates. It also enables the exploration 

of “What if” scenarios, for example predicting the cost effect of a schedule delay, or the phasing 

effect of a cost overrun. 

 
FIGURE 5 Constrained Forecast 
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Methodology 

The following flowchart (Figure 6) summarizes the Adaptive Curve Fitting algorithm. 

 

 
 

FIGURE 6 Algorithm Flowchart 

 

The purpose of smoothing the data [A] is to extract the general trend of the burn rate. It is a multi-

step process:  

1) Replace extreme positive outliers (if applicable) 

2) Reallocate negative values (if applicable) 

3) LOESS compression 

4) Iterative moving average filter 

5) Prune initial and final values 

Figure 7 illustrates the positive outlier replacement process with simulated expenditure data. The 

black time series represents raw data as reported by a contractor, and the red time series is the 

corrected data. In this case, the first six months of data is unavailable and all those dollars were 

dumped into month seven. Additionally, there is a significant spike at month 38, which likely 

represents a large one-time purchase of materials or a subcontractor fee payout. Since these months 

are in the upper 90% of data and are greater than three times the value of both of their nearest 

neighbors, they are flagged and replaced by the nearest neighbor. This rule was determined by 

analyzing historical data streams from real acquisition programs. If left in the data, these points 

could potentially exert undue influence on the rest of the smoothing process, thereby yielding an 

artificially perturbed trend. It is important to note that this process only adjusts the most severe 

outliers, and in practice, many datasets have no such extreme values. 
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FIGURE 7 Positive Outlier Replacement: Input (black) and Output (red) 

 

Figure 8 illustrates the negative value reallocation process. In this case, month 16 was reported as 

a negative expenditure. This is most likely the result of an accounting adjustment, e.g. correcting 

previous unallowable costs, or moving expenses from one WBS/CLIN to another. After all, it is 

unlikely that the contractor did no work this month and instead paid money to the customer. The 

algorithm replaces this negative value by the average of its two nearest neighbors in attempt to 

better approximate the true expenditure burn rate over time. Then, the amount of adjustment (in 

this case, y16
new – y16

old) is removed proportionally from the preceding months. 

 

 
FIGURE 8 Negative Value Reallocation: Input (black) and Output (blue) 
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After extreme outliers and negative values have been processed, the data continues to the next step, 

which the author has named “LOESS Compression”. It is conceptually related to dynamic range 

compression in audio signal processing, although the process and result are different. Figure 9 

illustrates the technique. The black data is the input, and the magenta curve represents a quadratic 

locally weighted regression (LOESS) fit. The green time series is the output, which is calculated 

by proportionally compressing the input signal toward the LOESS curve. In this plot, each of the 

green points lies halfway between the input data and the magenta curve. This serves to temper the 

noise in the time series, since more extreme values will have a greater compensation than values 

that lie closer to the local trend. 

 

 
FIGURE 9 LOESS Compression: Input (black), Local Fit (magenta), Output (green) 

 

Next, an iterative moving average filter performs the bulk of the smoothing. Figure 10 shows the 

input data in black, as well as the results of the first and third moving average iterations in red and 

blue, respectively. The final step is to prune the first two and last two data points from the smoothed 

trend. Endpoints are notoriously difficult to smooth (Müller 1991), (Vint & Hinrichs 1996), and 

simply removing them aids some of the subsequent procedures of the algorithm. 

After the smoothing procedure, ACF scans the burn rate trend for any points at which the slope 

transitions from negative (downward) to positive (upward) [B]. This is known as a local minimum. 

A nominally executed program often has none, but the example dataset in Figure 1 displays one 

such point at month 31. This point is used as the dividing line to separate the smoothed trend into 

two discrete segments (the author refers to this as a “multi-modal” program, or more specifically 

in this case a “bi-modal” program). This phenomenon of a burn rate peaking and decreasing only 

to increase again has been observed in real government acquisition programs, and some apparent 

causes have been identified: 

- an engineering change proposal (ECP) adds significant scope to the existing contract 

- a serious technical issue is discovered, thereby requiring redesign of a major component 

- the contractor is behind schedule and tries to catch up by ramping up resources 
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Additionally, annual budgeting constraints affect the phasing of resources, and therefore budget 

changes could conceivably be another cause of multi-modal phasing shapes. 

 

 
FIGURE 10 Iterative Moving Average: Input (black), 1st Iteration (red), 3rd Iteration (blue) 

 

Next, a nonlinear least-squares solver fits the best curve to each smoothed data segment 

independently [D]. The three established phasing forms of Rayleigh, Weibull, and Beta are fit, in 

addition to the Normal distribution. The Normal form is included for two reasons: First, in 

analyzing real data, a need for overall symmetric phasing shapes was identified. Second, even for 

a more typical front-loaded time series, in the multi-modal case the individual segments can exhibit 

a symmetric behavior. Whichever of these four curve forms yields the minimum sum of squared 

errors for the smoothed trend is utilized for that segment [E], and the initial model is formed as the 

maximum value of the overlapping curve segments at each month (if there are more than one) [F]. 

Additionally, the tail of the model is truncated by enforcing a minimum burn rate value. The 

current rule-of-thumb being utilized is 5% of the peak model value, where “model” in this usage 

refers to the concatenation of the smoothed trend and the forecasted curve. 

Note in the algorithm flowchart (Figure 6) in the scenario in which the final mode has not yet 

peaked (i.e. its smoothed trend is on the rise), it is forecasted to its likely peak before any curve 

fitting takes place [C]. This is depicted in Figure 11, and it is accomplished by analyzing the recent 

smoothed values to calculate the latest 1st, 2nd, and 3rd-order derivatives (d(1), d(2), and d(3), 

respectively). d(1) is the slope, d(2) represents the concavity, and d(3) equals the rate of change of 

the concavity. This information is used to treat the forecast like a projectile motion problem in 

which the future path is predicted based on the recent trajectory. In a typical introductory physics 

course, such problems assume a constant d(2), i.e. the acceleration due to gravity. ACF extends this 

principal to allow a varying d(2), which enables a trend that is increasing at an increasing rate (as 

is the case in Figure 11) to transition to curving downward, thus eliminating the possibility of a 

runaway forecast. For the example shown, the combined data of the smoothed trend plus the 

projection to the predicted peak is used for curve fitting. This process acknowledges the inherent 

“momentum” in acquisition programs, as it is difficult to change staff sizes up or down rapidly. 
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FIGURE 11 Curve Projection with Peak Detection for Increasing Curve Segment 

 

ACF has the ability to enforce limits on the duration and/or total area of its forecasts [G]. Area 

constraining involves multiplying the forecast by a tapering function to reduce it, or a growth 

function to increase it. Figure 12 shows an unconstrained forecast on the left (dotted curve) along 

with four different constrained forecasts (thin solid curves). The constraints are applied by 

iteratively multiplying the initial model by the linear tapering function pictured in the right cell. 

 

  
FIGURE 12 Area Constraining (Reduction, left) by Tapering Function (right)  

 

Figure 13 shows how duration constraints are handled. The upper-left cell depicts an unconstrained 

forecast, which is the resource phasing form that best fits the smoothed data. This curve is sampled 

once per month, and the forecast has a 17 month to-go duration. The upper-right cell is the same 

forecasted curve, however it has been oversampled via cubic spline interpolation (there are now 

27 points packed into the same 17-month span). The lower cell displays the result when the 

oversampled curve is evenly spaced out to one point per month, yielding an expanded forecast that 

remains consistent with the smoothed actuals. The amount of oversampling determines the amount 

of expansion, and the inverse process also works: undersampling yields a shortened forecast. 
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FIGURE 13 Duration Constraining (Expansion by Oversampling via Interpolation) 

 

An important point about the Adaptive Curve Fitting algorithm is that it makes no assumptions 

about the units of the input data or the type of commodity from which it came. What it does assume 

is that the data is finite (i.e. it will have an endpoint) and that its shape can be modeled as one or 

more known probability density functions. Therefore, one should be able to apply it with little or 

no modification to any time series data that meets these two requirements. Some examples of other 

potential data streams include: earned value data, labor hours/heads, and number of concurrent 

schedule tasks. Conversely, data sources that are probably not amenable to this technique include 

stock market indices, sustainment contracts and other constant level of effort tasks, and production 

contracts with many units manufactured in an assembly line process. 

 

Results 

All errors presented in this section are “true” errors, i.e. (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 − 𝑡𝑟𝑢𝑡ℎ) 𝑡𝑟𝑢𝑡ℎ⁄ . Negative 

values represent under-predictions and positive values represent over-predictions. Efforts are 

ongoing to improve upon the following results and gather more data to increase the sample size. 

To date, ACF has primarily been developed and tested on expenditure data for satellite 

acquisition programs. A diverse sample of 20 programs with known monthly actuals was assessed 

for accuracy of phasing, schedule, and cost predictions. It includes military and NASA programs, 

development and follow-on contracts, space and ground domains, and sensing and 

communications missions. 

Figure 14 shows annual phasing errors for five years of forecasting. The blue points represent 

the sample mean, the error bars signify the +/– 1σ bounds, and the horizontal axis denotes how far 
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into the future is being forecasted. The unconstrained case depicts phasing forecast accuracy when 

no information is available about the final cost or duration; real-world performance improves when 

reasonable bounds are enforced on one or both of these variables. The constrained case shows the 

accuracy when the true cost and duration are known, which provides a theoretical upper limit for 

the accuracy of ACF’s phasing forecasts. Furthermore, the approximate zero bias and reasonable 

uncertainty bounds indicate that constrained ACF is an appropriate technique for generating an 

updated annual phasing forecast that is consistent with the existing cost and duration estimates. 

 

 

FIGURE 14 Annual Phasing Errors (mean +/– 1σ) 

 

Figure 15 shows schedule prediction errors over time for first launch availability. The dashed blue 

line is the sample mean, and the shaded area is the +/– 1σ bounds. The horizontal axis denotes how 

far along the program is (e.g. 0.4 could represent 40 months into a 100-month program, or 24 

months into a 60-month program). The upper cell depicts unconstrained results, meaning no 

information is available about total cost. Performance becomes good beginning around 40% 

schedule completion, as denoted by the low bias and variance. For reference, this tends to align 

with some time shortly after critical design review (CDR) for a typical space vehicle program. The 

middle cell illustrates reduction in bias and variance when relatively loose constraints are applied 
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(+/– 20%) to the total cost of the ACF model (i.e. the area under the curves). The lower cell is a 

theoretical upper limit, as the model is constrained to true final cost. 

 

 

FIGURE 15 Percent Errors over Time for Predicting Month of First Launch 
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Figure 16 shows similar plots to Figure 15 except total cost at final launch is being predicted, and 

the effects of duration constraints are illustrated. One can draw similar conclusions from them. 

 

 

FIGURE 16 Percent Errors over Time for Predicting Cumulative Cost at Final Launch 
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What are not shown on the preceding error plots are comparisons with predictions from other 

contemporaneous sources such as contractor-submitted integrated master schedules (IMS) or latest 

revised cost estimates. When these comparisons are made, in many cases ACF has shown the 

ability to detect cost overruns and schedule slips earlier. Individual program-specific data is not 

included in this publication to avoid any potential data rights concerns. 

 

Conclusions 

The Adaptive Curve Fitting algorithm intelligently fits known resource phasing curve forms to 

monthly time series data in order to forecast the future while adjusting to current program 

performance. It extracts the burn rate trend through a multi-step smoothing procedure that is robust 

to the variations commonly found in data from monthly contractor submittals. Additionally, the 

method automatically detects compound phasing shapes, also known as multi-modal curves. Since 

it makes limited assumptions about the source of the input data, ACF is potentially applicable to a 

wide variety of data across commodities. It can be applied consistently across programs by 

different individuals: For the analyst, it offers the ease of generating independent crosschecks for 

existing cost and schedule estimates, while enabling rapid exploration of “What-if” scenarios. 

Program managers can use ACF on a monthly basis to monitor for potential schedule slips and 

cost overruns. Lastly, organizations responsible for a number of contracts can apply the technique 

during the budgeting process to assist in optimally distributing resources across the portfolio. 

ACF provides objective analyses based in theory and empirical research, and validation efforts 

have shown that the algorithm works well on historical programs when utilized as intended. Space 

vehicle expenditure data has been most thoroughly assessed: unconstrained prediction of both 

schedule and total cost reaches low bias and variance after approximately 40% completion of 

program duration, and constraining the forecasts yields improved accuracy. As a rule of thumb, 

one should not perform analysis prior to CDR unless constraints are enforced or a bias 

compensation factor is applied to correct for the known tendency toward under-prediction during 

this early time period. For annual phasing forecasts, constraining is recommended to ensure 

consistency with existing cost and duration estimates. 
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ACF  Adaptive Curve Fitting 

CDR  Critical Design Review 

CLIN  Contract Line Item Number 

EAC  Estimate at Completion 

ECP  Engineering Change Proposal 

EVM  Earned Value Management 

IMS  Integrated Master Schedule 

LOESS Locally Weighted Regression 

NASA  National Aeronautics and Space Administration 

WBS  Work Breakdown Structure 
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