A Second Generation Upgrade to Anderlohr's Retrograde Method for Broken Learning

Troy Miller

May 2017

Outline

- About the Author
- Background
- Review of Retrograde Method for Broken Learning
- Review of the most Common Solution
- Introduction of the 2nd Generation Upgrade
- Peripheral Topics
 - Potential issues with the technique
 - Potential Application of the technique

About the Author

Tommie (Troy) Miller

Education

- SAS/Analytics Certificate, Texas A&M
- M.Stat, Econometrics, University of Utah
- B.S. Applied Mathematics with Econ Emphasis, Weber State University

Certifications

- PMP
- CCEA

Experience:

- Cost Estimation (Operations Research): 17 years
- Tecolote Research Inc.
 - Air Force ICBM Directorate
 - NASA Constellation Program
 - Navy SSP

Background

- Task: Develop LCCE for a component upgrade
- RDT&E to be performed by the acquisition team

Production

- LRIP performed by acquisition team (2 buys)
- FRP performed by sustainment team (multiple buys)

Important Assumptions

- Bona fide need
 - Production Rate X unit per year
 - Production Requirement X/10 units per year (i.e. limited deployment capacity)
- The contractor used for LRIP may be distinct from that of FRP (i.e. cannot be assumed to be the contractor)
- Corollary Assumptions
 - There will be production gaps
 - The cost improvement rates experienced in LRIP may not manifest in FRP

Background (cont'd)

Initial Methodology

- Estimated the learning rate based on historical programs
- Employed retrograde method to model the lost learning
- Anderlohr's method to estimate the level of lost learning
 - Personnel Learning
 - Supervisory Learning
 - Continuity of Productivity
 - Methods
 - Special Tooling
 - Example:

Category	Weight	Percent Lost	Weighted Loss
Personnel	25%	75%	18.8%
Supervisory	20%	20%	4.0%
Continuity of Production	20%	50%	10.0%
Tooling	15%	25%	3.8%
Methods	20%	50%	10.0%
Total Loss of Learning Factor	100%		46.5%

Review of Retrograde Technique

Learning Curve Equation

- UC = AX^b
- Where
 - A = Theoretical First Unit (TFU)
 - X = The number of the production unit in question
 - b = Ln(slope)/Ln(2)

Problem Illustration

- TFU = 100 hours
- Learning Slope = 80%
- Production Break at the 10th unit

Review of Retrograde Technique (cont'd)

Illustration: Retrograde Solution

 Incorporating 45% loss of gained efficiencies yields an equivalent of 7 units of retrograde

Review of Retrograde Technique (cont'd)

Illustration: The math

- Efficiencies gained: $UC_1 UC_{10} = 100 47.7 \approx 52.4$
- Lost Efficiency (from Anderlohr's technique): 0.465 * 52.4 ≈ 24
- Hours for the 11th unit would have been 46, but now they equal: 46 + 24 = 70 \approx UC₃
- The number of retrograde units = 7

Equation of Curve after the break

- $UC_{1,X} = UC_{0,(X-K)}; X \ge F$
 - UC = Unit Cost
 - X = Xth production Unit
 - K = Units of Retrograde + 1
 - F = First Unit after Break

•
$$UC_{1,11} = UC_{0,(11-8)} = UC_{0,3}$$

Problem Illustration

- When the post-break slope (b₁) does not equal the pre-break slope (b₀)
 - UC_{1,11} = A₀(X − K)^{b0}
 - $A_0(X-K)^{b0} = 100 * 3^{(ln(.80)/ln(2))} = 70.2$, given original slope
 - $A_0 (X-K)^{b1} = 100 * 3^{(ln(.90)/ln(2))} = 84.6$, given the new slope

Common Solution

- By changing the learning slope after the break, we must necessarily relax the condition UC_{1,X} = UC_{0,(X − K)} for X ≥ F
- We recognize that the important condition is that the proper level of learning is lost. So we treat the pre and post-break curves as distinct equations and set the initial condition
 - UC_{1, F} = UC_{0, F K}
- With only one unknown (A_1) we can solve the equation
 - $A_1 F^{b1} = A_0 (F K)^{b0}$
 - $A_1 = A_0 (F K)^{b0} / F^{b1}$
- The Post-Break equation becomes
 - $UC_{1, X} = [A_0 (F K)^{b0} / F^{b1}]X^{b1}; X \ge F$

Common Solution (cont'd)

As expected the amount of lost learning is calculated correctly and the post-break slope follows the new learning slope

A Problem with the Solution

■ $UC_{1,X} \neq UC_{0,(X-K)}$ for X > F when the slope remains unchanged

Second Generation Upgrade: Problem Statement

- Using the common solution, <u>the rate of change</u> at the first unit after the production break, does not equal <u>the rate of change</u> at the equivalent unit prior to the production break when the learning slope remains unchanged
 - $UC'_{0, F-K} \neq UC'_{1, F}$

Second Generation Upgrade

- Conditions for the Second Generation Upgrade
 - UC_{0, F K} = UC_{1, F}
 - UC'_{0, F-K} = UC'_{1, F}
- Finding the derivatives of UC₀ and UC₁ are straight forward
 - $UC'_{0, F-K} = A_0 b_0 (F-K)^{(b0-1)}$
 - $UC'_{1, F} = A_1 b_1 F^{(b1-1)}$
- Expanding the equations for the first condition yields
 - $A_1 F^{b1} = A_0 (F K)^{b0}$
- Expanding the equations for the second condition yields
 - $A_1 b_1 F^{(b1-1)} = A_0 b_0 (F K)^{(b0-1)}$

This gives us 2 equations and 2 unknowns. Solving them yields

- $A_1 = A_0 (F K) \frac{b0}{F} (F K)$
- $b_1 = b_0 F / (F K)$

Second Generation Upgrade (cont'd)

This upgrade offers a more aggressive learning slope relative to the retrograde solution

Peripheral Topics

Challenges to the Technique

- From the solution we calculate
 - $b_1 = b_0 F / (F K)$
- Since F > 0 and K > 0 it necessarily follows that $F/(F K) \ge 1$
- Since $b_0 \le 0$, $b_1 \le b_0$ (i.e. b_1 is more negative than b_0)
- This means that the slope of the post-break curve is at least as aggressive than the slope of the pre-break curve

Challenges to the Technique (cont'd)

The chart illustrates that the steepness of the slope changes mildly for small K, but increases dramatically as K approaches F.

Possible Application

New plant, or additional production line, the loss of learning is inevitable, but some have argued that the new production line should "catch up" to the original line.

