What's the Big Deal?

Is Agile Software Development Really Different in the DoD Acquisition Environment?

Katelyn Barbre

Scientist / Cost Analyst Naval Surface Warfare Center, Dahlgren Division

Contributing Members

Dr. Jonathan Brown

Katiana Lemmons

Markie Harris

DAHLGREN

The Leader in Warfare Systems Development and Integration

ented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonlir

14 May, 2019

Date

➢Introduction

➢Purpose

≻Agile vs. Non-Agile Definition

Data Selection

Data Sources

➢Agile Project Descriptions

➢Non-Agile Project Descriptions

Project Data Summary

➤Analysis Details

≻Summary

- Explore cost, schedule, and performance metric differences between Department of Defense software acquisition programs using Agile development and those not using Agile development
- Determine if the two sample populations of data are different using nonparametric analysis
- Highlight takeaways and path forward

Agile

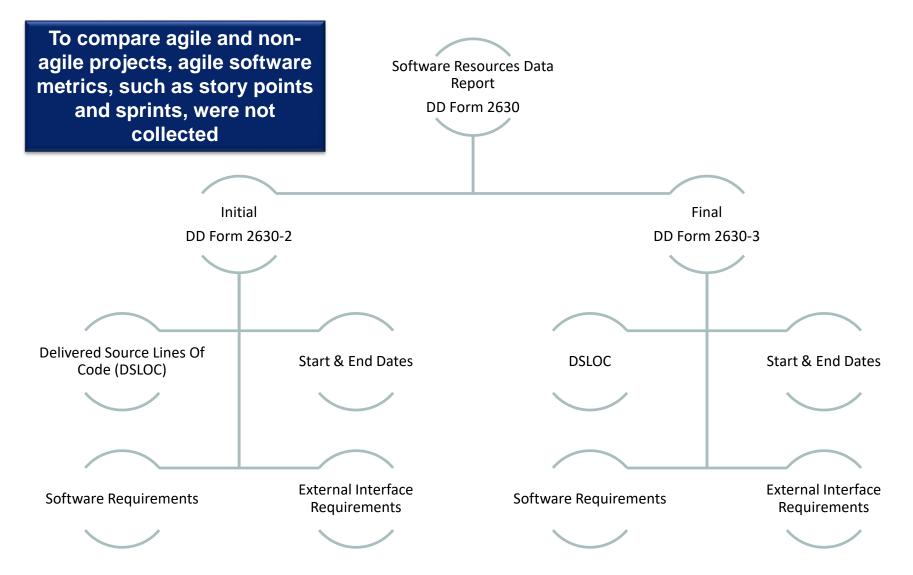
Projects using any form of Agile development

Non-Agile

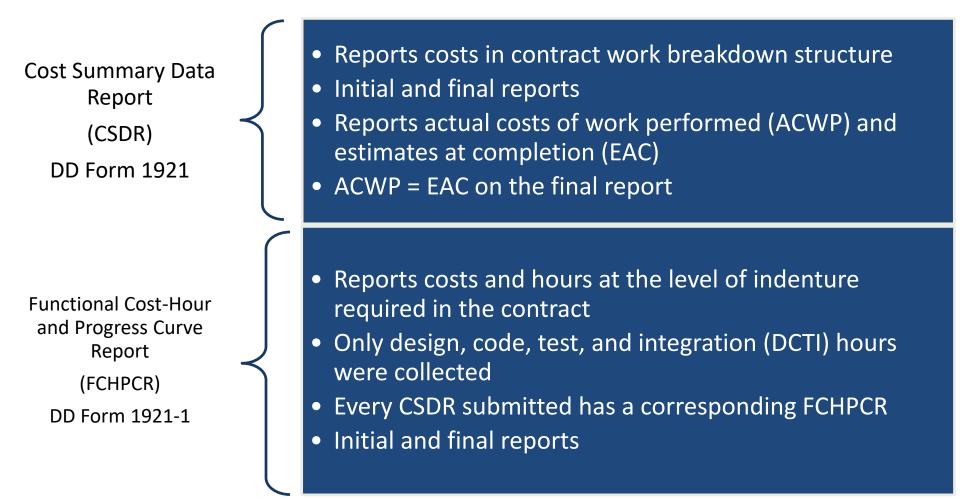
Project using any form of development other than Agile

Examples: Modified Agile, Scrum Agile

Development type collected from Software Resources Data Report (SRDR) Examples:


Waterfall, Spiral

Development type collected from SRDR



- Agile data points were chosen using the SRDR Database maintained on the DACIMS site by NAVAIR 4.2¹
 - Only data points with "Good" or "Good Allocation" Verification and Validation (V&V) Quality Tags were used from the database
- Non-agile data points were selected using two methods:
 - 1. By finding analogous systems of the Agile data points and then verifying quality tags
 - Some data points were randomly selected from the pool of "Good" data points
- An agile data point is not defined by a sprint timeframe but by the overarching initial and final reports

8

Project/	Project/Marker		ESLOC	Cost BY19\$K	Duration (Months)
1	1	I	588,951	\$40,100.4	49.7
2	2	I	321,999	\$6,819.0	4.0
3	3	I	474,410	\$7,773.2	21.1
4	4	I	841,098	\$6 <i>,</i> 028.5	13
5	5	I	938,931	\$136,666.7	1.6
6	6	I	186,690	\$38,764.9	1.4
7	7	I	90,384	\$9,581.2	28.3
8	8	I	87,866	\$3,262.0	24.3

Standard effort adjustment factors (EAFs) used to calculate equivalent source lines of code (ESLOC) from DSLOC for comparison

Non-Agile Project Descriptions

Project/Marker	ACAT	ESLOC	Cost BY19\$K	Duration (Months)
A A	I	4,477	\$1,074.3	45.0
ВВ	I	645,156	\$78,060.6	117.1
C C	I	661,231	\$40,621.7	41.1
D D	I	137,861	\$4,304.9	1.3
E E	I	1,076,792	\$140,971.6	1.6
F F	I	353,195	\$63,768.9	71.5
G G	I	366,949	\$32,718.2	62.1
н н	I	735,799	\$106,017.0	71.5
I 🚺	I	119,369	\$13,108.9	62.1
J 🚺	I	188,560	\$68,111.8	71.5
к 🔍	I	92,175	\$11,735.0	59.0

Standard EAFs used to calculate ESLOC from DSLOC for comparison

Metric	AGILE					NON-AGILE													
	1	2	3	4	5	6	7	8	A	В	С	D	E	F	G	Н		J	К
ESLOC Per Hour (Initial)	**	х	х	х	**	х	х	х	х	**	х	х	**	**	х	**	х	х	x
ESLOC Per Hour (Final)	**	х	х	х	**	х	х	х	х	**	х	х	**	**	х	**	х	х	x
Hours Per Requirement (Initial)	**	x	x	х	**	х	х	х	x	**	х	х	**	**	х	**	х	х	x
Hours Per Requirement (Final)	**	x	x	х	**	х	х	х	x	**	х	х	**	**	х	**	х	х	x
Cost Growth	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	x
Hours Growth	х	х	х	х	х	х	х	x	x	х	x	х	х	x	х	х	х	х	x
SW Growth	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	х	x
Requirements Growth	х	х	х	х	х	х	х	х	x	х	х	х	x	х	х	х	х	х	x

**Hours were not provided for subcontractor on 1921-1; generic labor rate used to calculate subcontractor hours

Introduction

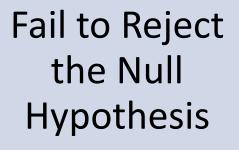
➤Analysis Details

- Statistics Definition
- ≻Hypothesis
- ➢Initial Predictions
- ➤Mann-Whitney U Test
- ≻Hypothesis Testing
- ➢ Final Results Table

≻Summary

Statistics Definitions

Critical Value	 Any value that separates the critical region, where we reject the null hypothesis, from the values of the test statistic that do not lead to rejection of the null hypothesis In the figure, -tα_{/2} and tα_{/2} are the critical values 	
Test Statist		
	• The probability that the test statistic will fall in the critical release α the null hypothesis is actually true	gion when
Fail	to Reject the Null Hypothesis • When we fail to reject the null hypothesis alternate hypothesis, or H_A	


Null Hypothesis (H₀)

 There is no difference in the distribution of agile and nonagile cost, schedule, and performance metrics

- Alternate Hypothesis (H_A) :
 - There is a difference in the distribution of agile and nonagile cost, schedule, and performance metrics

Initial Prediction

Initial and Final ESLOC Per Hour

Initial and Final Hours Per Requirement

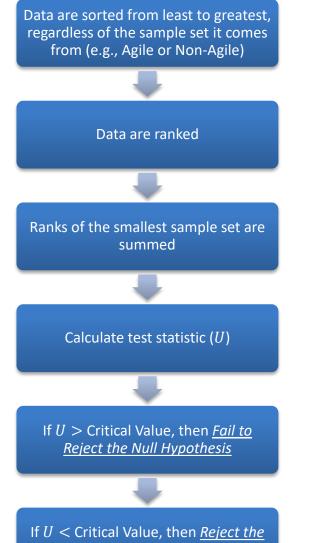
Cost Growth

Reject the Null Hypothesis

Schedule Slip

Hours Growth

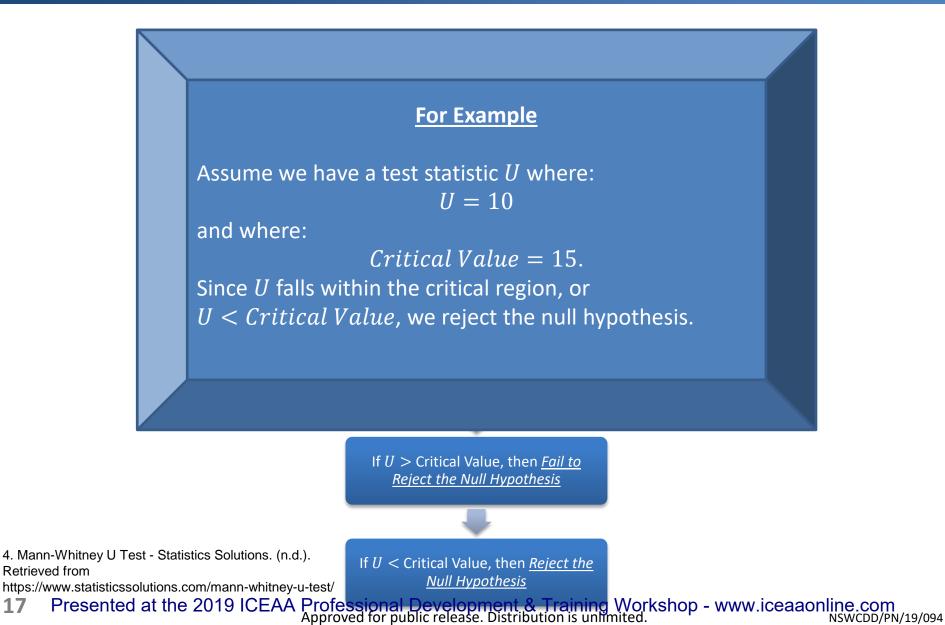
Unsure


Requirements Growth

	<u>Mann-Whitney U Test</u> ³											
	Compares the distributions of two sample sets (center, shape, spread); does not compare a measure of central tendency (mean, median, mode)											
	Nonparametric Analysis Technique	Data does not need to be normally distributed 	$\begin{array}{c} \text{need to be} \\ \text{normally} \\ \text{distributed} \end{array} \qquad \begin{array}{c} \text{Signiful} \\ \text{U-Test} \\ \text{Statistic} \\ \alpha = \end{array}$									
		but data can be normally distributed	Data are randomly selected	Data are independent	Ordinal measure scale							
15 ^{3. 7}	3 Decision Making Presented at 1	n in Hypothesis Testin The 2019 ICEAA	g [PNG]. (n.d.). Onlii Professional Approved for put	necourses.science.ps Development & olic release. Distribu	u.edu. Training Worl ution is unlimited.	(shop - www.ice	eaaonline.com NSWCDD/PN/19/09					

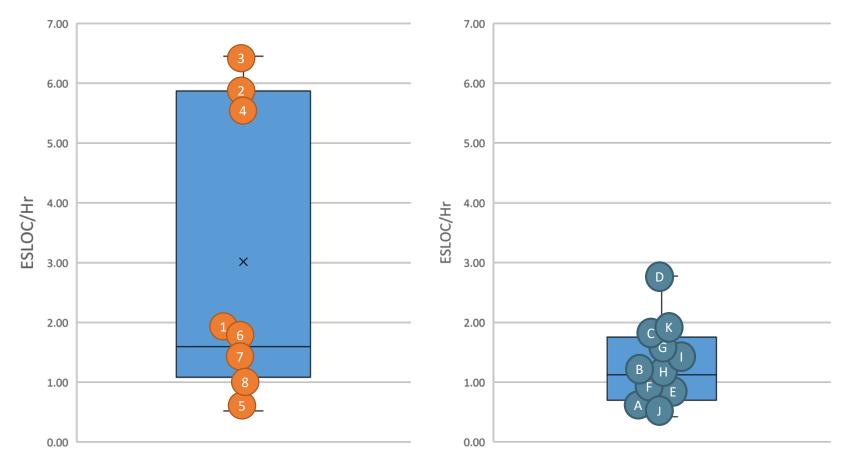
Mann-Whitney U Test Steps⁴

4. Mann-Whitney U Test - Statistics Solutions. (n.d.). Retrieved from


https://www.statisticssolutions.com/mann-whitney-u-test/

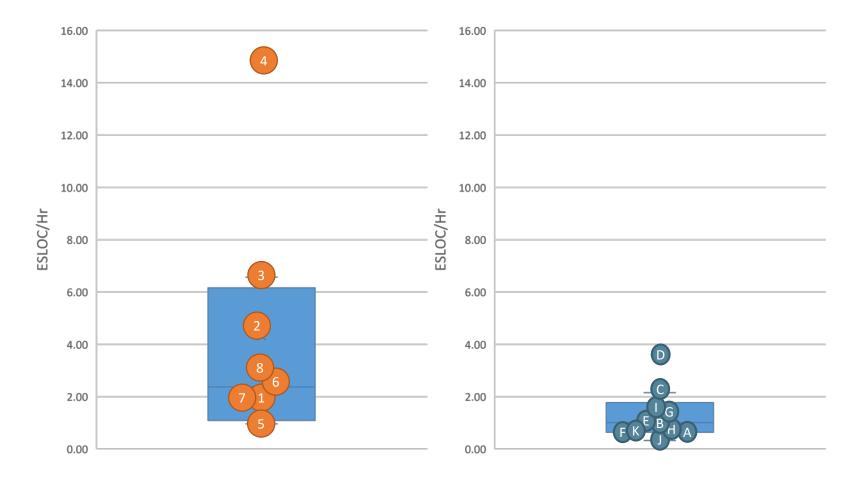
Null Hypothesis

17

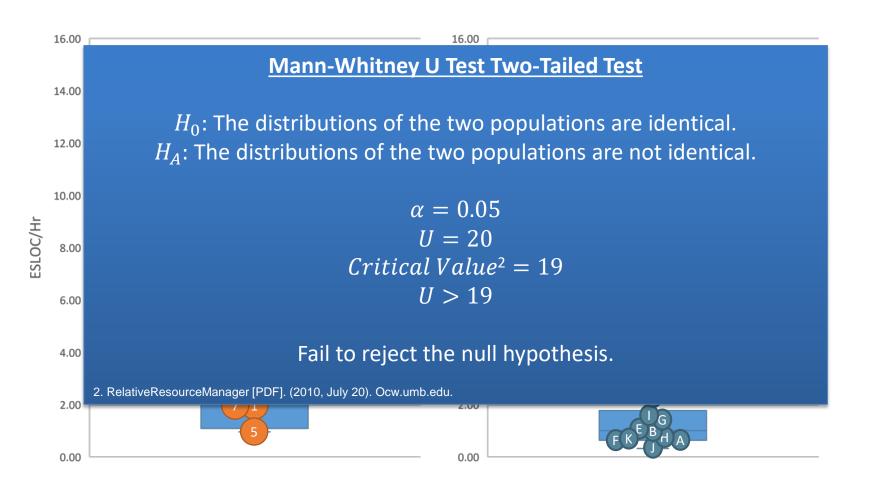

Mann-Whitney U Test Steps⁴

Agile Projects $n_1 = 8$

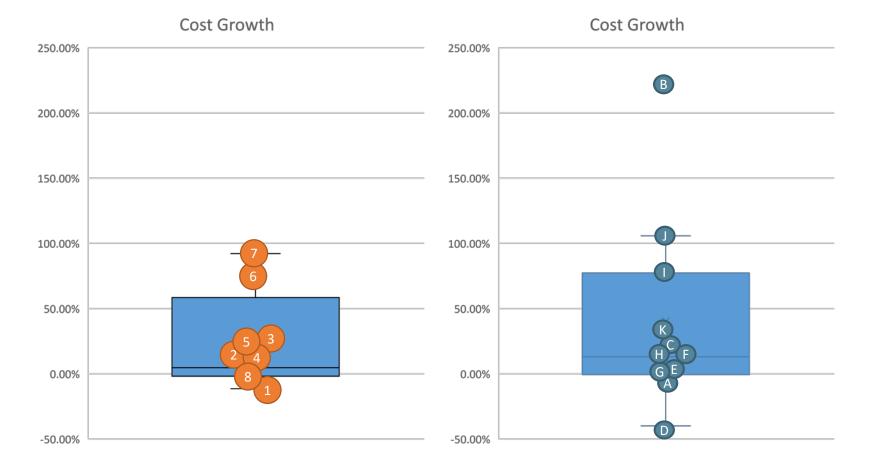
Non-Agile Projects $n_2 = 11$

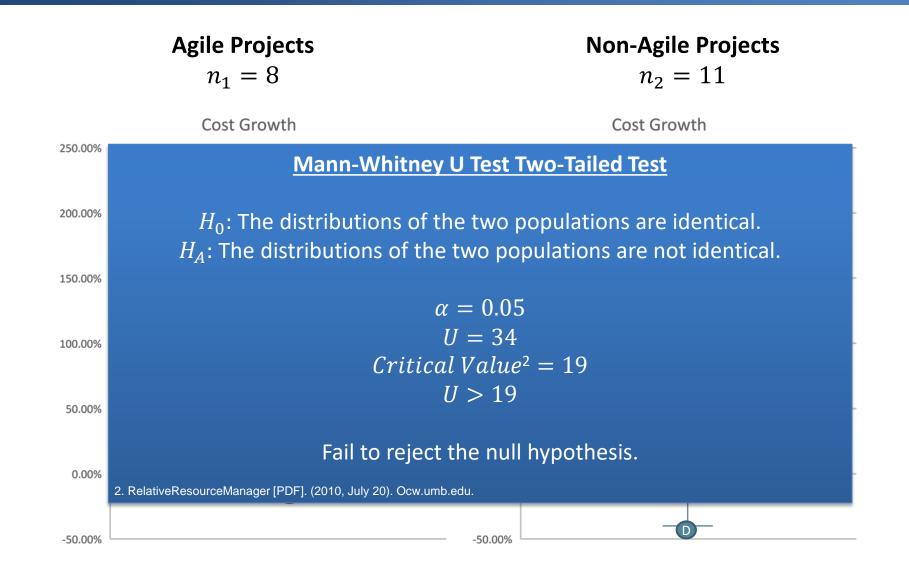


Agile Projects Non-Agile Projects $n_1 = 8$ $n_2 = 11$ 7.00 7.00 Mann-Whitney U Test Two-Tailed Test 6.00 H_0 : The distributions of the two populations are identical. 5.00 H_A : The distributions of the two populations are not identical. ESLOC/Hr 4.00 $\alpha = 0.05$ U = 433.00 Critical Value² = 19U > 192.00 Fail to reject the null hypothesis. 1.00 2. RelativeResourceManager [PDF]. (2010, July 20). Ocw.umb.edu. 0.00 0.00


Agile Projects $n_1 = 8$

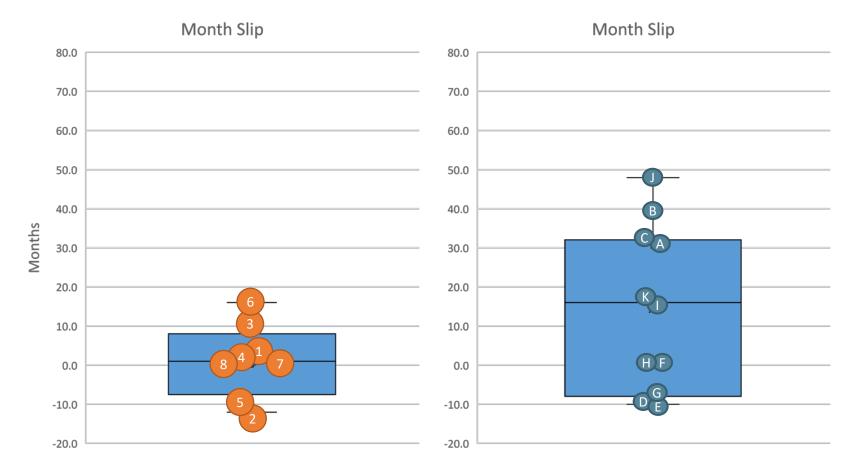
Non-Agile Projects $n_2 = 11$

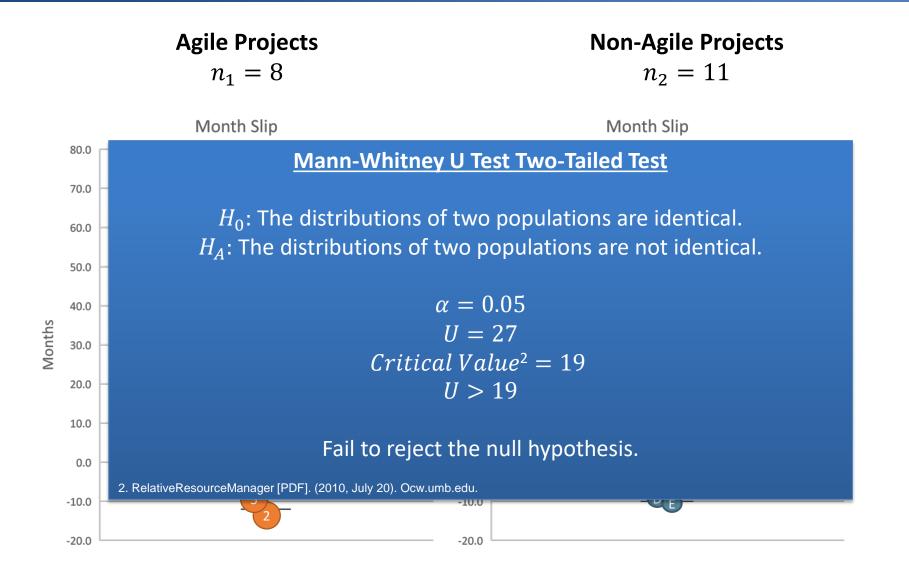

Agile Projects $n_1 = 8$ Non-Agile Projects $n_2 = 11$



Agile Projects $n_1 = 8$

Non-Agile Projects $n_2 = 11$





Agile Projects $n_1 = 8$ Non-Agile Projects $n_2 = 11$

<u>Comparison Between</u> <u>Two Samples</u>

<u>Comparison Within</u> <u>Each Sample</u>

50

30

Fail to reject the null

Metric	<i>U</i> Statistic	Critical Value	Result	Metric	<i>U</i> Statistic	Critical Value	Result
Initial ESLOC/Hr	43	19	Fail to reject the null	Agile Initial vs. Final			
Final ESLOC/Hr	20	19	Fail to reject the null	ESLOC	23	13	Fail to reject the null
Initial Hrs/Req Final Hrs/Req	41 36	19 19	Fail to reject the null Fail to reject the null	ESLOC/Hr	28	13	Fail to reject the null
Cost Growth	34	19	Fail to reject the null	Hrs/Req	30	13	Fail to reject
Hours Growth	41	19	Fail to reject the null	Non-Agile Initial vs. Final			the null
SW Growth	28	19	Fail to reject the null	ESLOC	54	30	Fail to reject
Req Growth	25	19	Fail to reject the null	ESLOC	54	50	the null
Month Slip	27	19	Fail to reject the null	ESLOC/Hr	57	30	Fail to reject the null

Hrs/Req

Introduction

- ➢ Purpose
- ➢Agile Project Descriptions
- >Non-Agile Project Descriptions
- Project Data Summary

>Analysis Details

- Productivity Initial and Final Reports
- Cost, Schedule, and Performance Variance
- ➢Mann-Whitney U Test

➢<u>Summary</u>

- ➤Conclusion
- ➢Future Research

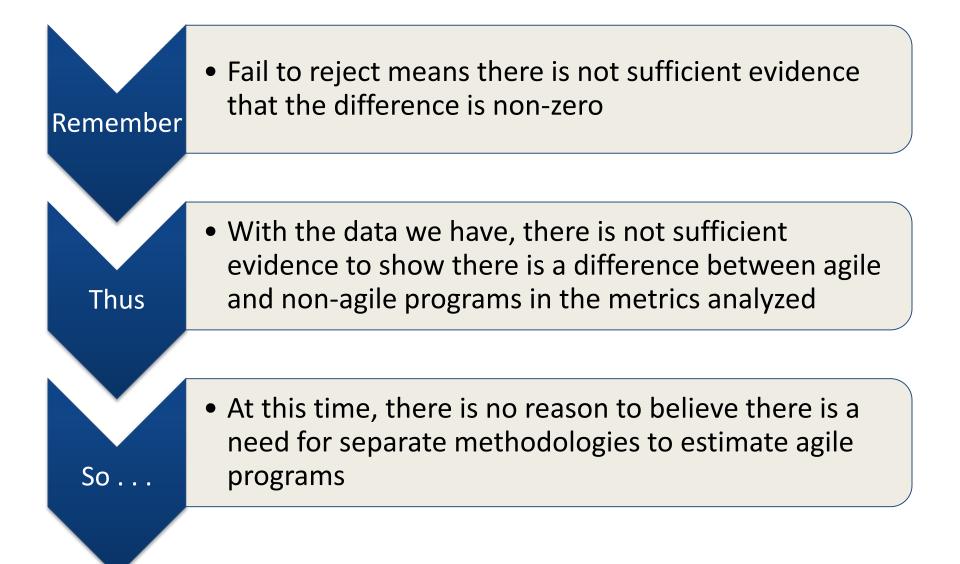
Fail to Reject the Null Hypothesis

Initial and Final ESLOC Per Hour

Initial and Final Hours Per Requirement

Schedule Slip

Cost Growth


Hours Growth

Software Growth

Requirements Growth

Reject the Null Hypothesis

- Future Research
 - Collect more data and rerun analysis
 - If the results change, calculate effect size and practical significance
 - Analyze scope of agile and non-agile projects to compare initial and final scope
 - More detailed analysis on the comparability of the two samples in other technical parameters (e.g. product type, software language)
 - Partner with industry to analyze non-government acquisition agile development and compare with government acquisition agile development metrics

- Data Concerns
 - As more agile software development acquisition programs are completed, more data can be collected and analyzed
 - Due to limited data points, assumption of independence within datasets as well as between data sets was violated
 - Some data points within agile and between agile and non-agile were either developed by the same contractor for the same program or different contractors for the same program
 - Multiple data points are radar software development programs; prior analysis has shown radar software development is statistically different from other software development efforts⁵

5. Popp, Michael. (2013, 08). How I continued to stop worrying and love the Software Resources Data Report.

Final Thoughts

What we are saying

 Agile software development may not require separate metrics for cost estimating purposes

What we aren't saying

 Agile software development is no better than non-agile software development methods

Katelyn Barbre Cost Engineering & Analysis Branch (V11)

katelyn.barbre@navy.mil

540-653-6668 Presented at the 2019 ICEA Brafessian Presented Brafessian 33

Back ups

34 Presented at the 2019 ICEAAt Brafessianal Development & Training Workshop - www.iceaaonline.com

- 1) OSD CADE. (2018, 05). SRDR Data Compilation. *SRDR Data Compilation as of 20180516*. Retrieved from https://www.osd.cade.mil
- 2) RelativeResourceManager [PDF]. (2010, July 20). Ocw.umb.edu.
- 3) 7.3 Decision Making in Hypothesis Testing [PNG]. (n.d.). Onlinecourses.science.psu.edu.
- 4) Mann-Whitney U Test Statistics Solutions. (n.d.). Retrieved from <u>https://www.statisticssolutions.com/mann-whitney-u-test/</u>
- 5) Popp, Michael. (2012, 02). *How I learned to stop worrying and love the Software Resources Data Report*.

³⁵ Presented at the 2019 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Approved for public release. Distribution is unlimited.

- Definition of "Good":
 - This is a data point that is complete for both hours and SLOC and has correct demographic, reporting event, personnel, and AD information. It also is not a TD or EMD effort (in other words the data point represents the totality of the software effort and does not have the artificial split created by TD/EMD), did not require an allocation of hours associated with support elements like CM, QA, SW Program Management or integration, or did not require combining build or phase information to make the data point complete.
- Definition of "Good Allocation"
 - This is a data point that meets the criteria of good, but it has allocated hours associated with it to distribute things like QA, CM, SW PM and integration that were reported at the total effort level back to the lowest level CSCIs or work breakdown structure.