Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

Modeling Technology/System Readiness Level Impacts on LCC

Apinut (Nate) Sirirojvisuth

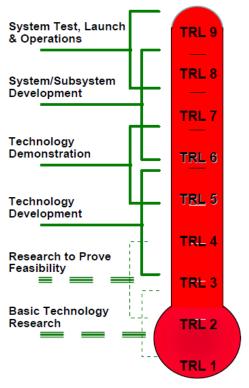
ICEAA 2018 PROFESSIONAL DEVELOPMENT & TRAINING WORKSHOP

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaachline.com Agenda — TRL Research

- Overview
- Analysis Framework
- Data Acquisition
- Regression and Model Development
- Proposed Mapping of SRL to DoD acquisition lifecycle

Understand how different level of TRL progressions (e.g. TRL 5-7 vs TRL 5-9) influence non-recurring development costs (NRDEV) and schedule

Research Questions


How does TRL inform system maturity?

What factors play a role in determining TRL progression timeline? System Complexity, IOC date, Weight, System Type, Unit Production Cost, ...

How do DoD 5000.02 milestone definitions correlate to TRL and System Maturity?

```
MS-A \rightarrow TRL/SRL 3
MS-B \rightarrow TRL/SRL 5
MS-C \rightarrow TRL/SRL 7
IOC \rightarrow TRL/SRL 9
```

Technology Readiness Level (TRL)

Actual system proven through successful mission operations

Actual system completed and qualified through test and demonstration

System prototype demonstration in a relevant environment

System/subsystem model or prototype demonstration in a relevant environment

Component and/or breadboard validation in relevant environment

Component and/or breadboard validation in laboratory environment

Analytical and experimental critical function and/or characteristic proof-of-concept

Technology concept and/or application formulated

Basic principles observed and reported

- Rate of maturity is unique to technology types
- Time is a factor and is dependent on investment

An integrated approach to managing technology maturation costs, NDIA 13th Annual Systems Engineering Conference, October 28, 2010, Dr. R. Smoker, Dr. D. Armon

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaachline TruePlanning Inputs affected by TRL

Research by:

Dr. Roy Smoker, MCR LLC

Mr. Joe Hamaker, previous head of NASA Cost

Dr. Hamid Habib-Agahi, JPL NICM II Model

Ray Covert, MCR LLC

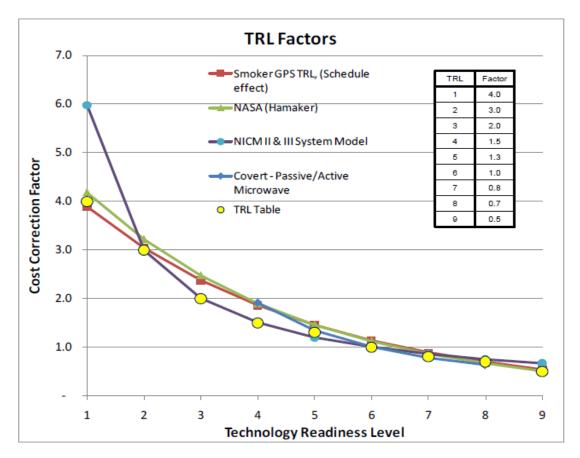
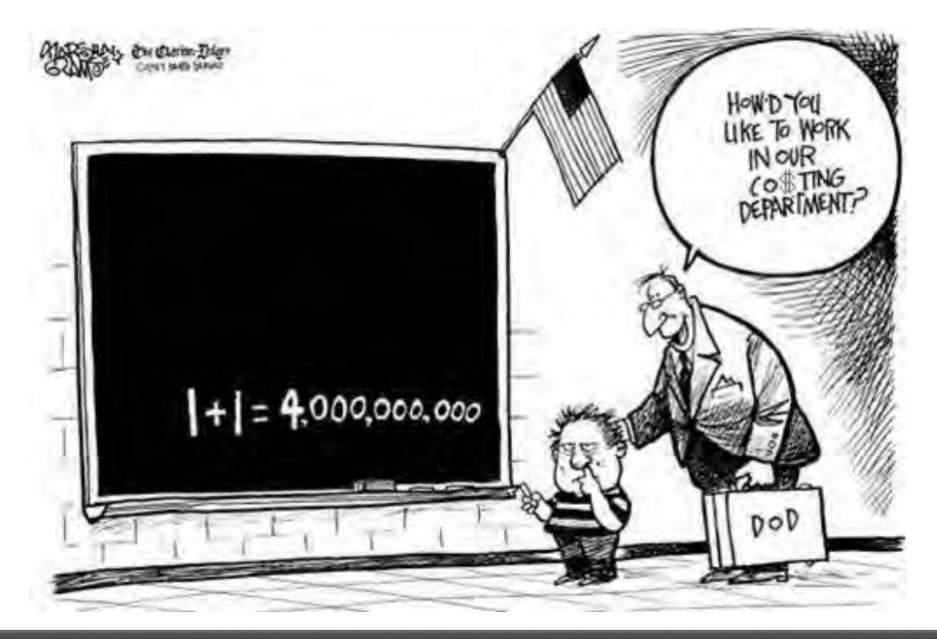


Figure 1. Cost correction factors based upon historical data.

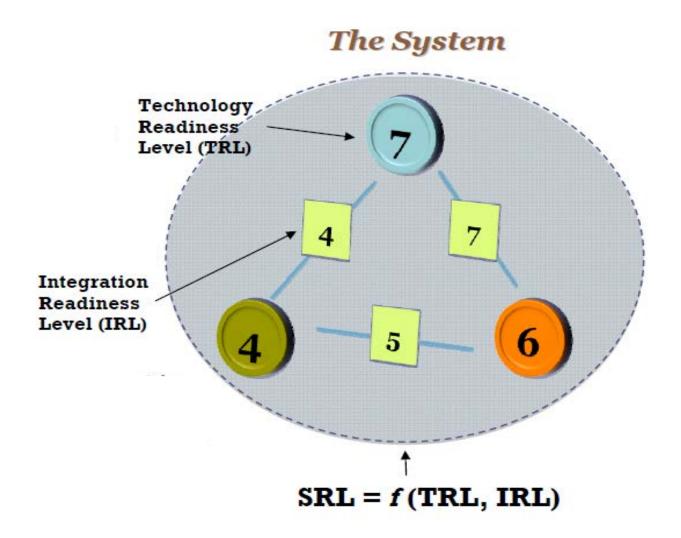
Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaachline.com


Analysis Framework

TRL Shortcomings

- Application of TRL to systems of technologies is not sufficient to give a holistic picture of complex system of systems readiness
 - TRL is only a measure of an individual technology
- Assessments of several technologies rapidly becomes very complex without a systematic method of comparison
- Multiple TRLs do not provide insight into integrations between technologies nor the maturity of the resulting system
 - Yet most complex systems fail at the integration points

From TRL to SRL: The Concept of Systems Readiness Levels, Conference on Systems Engineering Research, Los Angeles, CA, April 2006

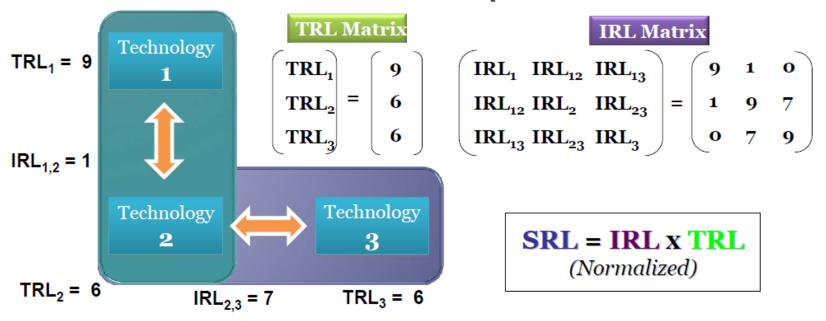

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaachline Chnologies ≠ System

Integration Readiness Level

	IRL	Definition
natic	9	Integration is Mission Proven through successful mission operations.
Pragmatic	8	Actual integration completed and Mission Qualified through test and demonstration, in the system environment.
	7	The integration of technologies has been Verified and Validated with sufficient detail to be actionable.
actic	6	The integrating technologies can Accept, Translate, and Structure Information for its intended application.
Syntactic	5	There is sufficient Control between technologies necessary to establish, manage, and terminate the integration.
	4	There is sufficient detail in the Quality and Assurance of the integration between technologies.
<u></u>	3	There is Compatibility (i.e. common language) between technologies to orderly and efficiently integrate and interact.
Semantic	2	There is some level of specificity to characterize the Interaction (i.e. ability to influence) between technologies through their interface.
	1	An Interface between technologies has been identified with sufficient detail to allow characterization of the relationship.

SRL Calculation

SRL Calculation


- The SRL is not user defined, but is instead based on the outcomes of the documented TRL and IRL evaluations
- Through mathematically combining these two separate readiness levels, a
 better picture of overall complex system readiness is obtained by
 examining all technologies in concert with all of their required integrations

$SRL = IRL \times TRL$

$$\begin{bmatrix} SRL_{1} & SRL_{2} & SRL_{3} \end{bmatrix} = \begin{bmatrix} IRL_{11} & IRL_{12} & IRL_{13} \\ IRL_{12} & IRL_{22} & IRL_{23} \\ IRL_{13} & IRL_{23} & IRL_{33} \end{bmatrix} \times \begin{bmatrix} TRL_{1} \\ TRL_{2} \\ TRL_{3} \end{bmatrix}$$
Composite SPL = $1/n \begin{bmatrix} SPL_{1} & SPL_{2} & SPL_{3} \\ TRL_{3} \end{bmatrix}$

Composite SRL =
$$1/n \left[SRL_1/n + SRL_2/n + SRL_3/n \right]$$

= $1/n^2 \left[SRL_1 + SRL_2 + SRL_3 \right]$

SRL Calculation Example

Component SRL =
$$\begin{bmatrix} SRL_1 & SRL_2 & SRL_3 \end{bmatrix} = \begin{bmatrix} 0.54 & 0.43 & 0.59 \end{bmatrix}$$

Component SRL, represents Technology "X" and its IRLs considered

Composite SRL =
$$1/3$$
 (0.54 + 0.43 + 0.59) = 0.52

The Composite SRL provides an overall assessment of the system readiness

Sauser, B., J. Ramirez-Marquez, R. Magnaye, and W. Tan. (2008). "A Systems Approach to Expanding the Technology Readiness Level within Defense Acquisition." International Journal of Defense Acquisition Management. 1:39-58

Key Assumptions and Limitations

- Ordinal data is given numeric value in order to assess overall progression or performance.
 - Grade Point Average (GPA), Failure Modes and Effects Analysis (FMEA)
- One system cannot be compared to the SRL of another system unless they are the same system.
 - You cannot a student with a 3.2 GPA in physics with a student that has a 3.8 GPA in biology. These students belong to different systems of education, but they are evaluated with the same system of metrics.
- Analysis is limited by the experience of previous assessments and experience of the assessors

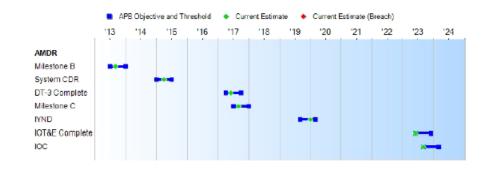
Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaanline.com

Data Acquisition

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaachline.com Milestone Dates

Selected Acquisition Report (SAR)

RCS: DD-A&T(Q&A)823-384



Air and Missile Defense Radar (AMDR)

As of FY 2015 President's Budget

Defense Acquisition Management Information Retrieval (DAMIR)

Schedule

Milestones	SAR Baseline Dev Est	Curre Develo Objective	Current Estimate	
Milestone B	JUL 2013	JUL 2013	JAN 2014	SEP 2013
System CDR	JAN 2015	JAN 2015	JUL 2015	APR 2015
DT-3 Complete	APR 2017	APR 2017	OCT 2017	JUN 2017
Milestone C	JUL 2017	JUL 2017	JAN 2018	SEP 2017
IYND	SEP 2019	SEP 2019	MAR 2020	JAN 2020
IOT&E Complete	JUN 2023	JUN 2023	DEC 2023	JUN 2023
IOC	SEP 2023	SEP 2023	MAR 2024	SEP 2023

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaappline Total Cost and Quantity

Selected Acquisition Report (SAR)

RCS: DD-A&T(Q&A)823-384

Air and Missile Defense Radar (AMDR)

As of FY 2015 President's Budget

Defense Acquisition Management Information Retrieval (DAMIR)

Cost and Funding

Cost Summary

Total Acquisition Cost and Quantity

	BY2013 \$M			BY2013 \$M	TY \$M			
Appropriation	SAR Baseline Dev Est	Curren Develor Objective/	pment	Current Estimate	SAR Baseline Dev Est	Current APB Development Objective	Current Estimate	
RDT&E	1860.0	1860.0	2046.0	1711.2	1911.1	1911.1	1761.4	
Procurement	3846.9	3846.9	4231.6	3290.8	4724.0	4724.0	4043.8	
Flyaway	_			2672.0	-	-	3286.2	
Recurring	-			2654.0	-	-	3266.2	
Non Recurring	-			18.0	-	-	20.0	
Support	_			618.8	-		757.6	
Other Support	-			521.9	-		638.3	
Initial Spares				96.9	-		119.3	
MILCON	28.8	28.8	31.7	28.6	27.5	27.5	27.5	
Acq O&M	0.0	0.0		0.0	0.0	0.0	0.0	
Total	5735.7	5735.7	N/A	5030.6	6662.6	6662.6	5832.7	

Confidence Level for Current APB Cost 50% -

Based on the AMDR Independent Cost Estimate (ICE) prepared for the Milestone B Defense Acquisition Board (DAB) review (memo dated May 29, 2013), it is about equally likely that the estimate will prove too low or too high.

Quantity	SAR Baseline Dev Est	Current APB Development	Current Estimate
RDT&E	0	0	0
Procurement	22	22	22
Total	22	22	22

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaachling Annual Funding

Selected Acquisition Report (SAR)

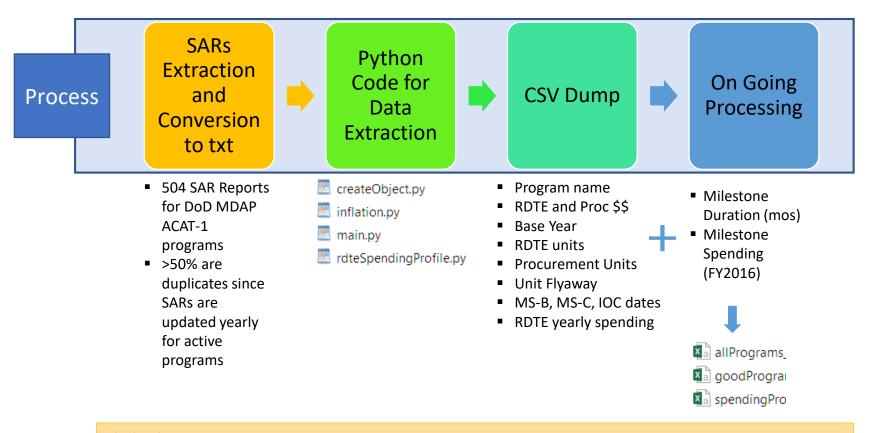
RCS: DD-A&T(Q&A)823-384

Air and Missile Defense Radar (AMDR)

As of FY 2015 President's Budget

Defense Acquisition Management Information Retrieval (DAMIR)

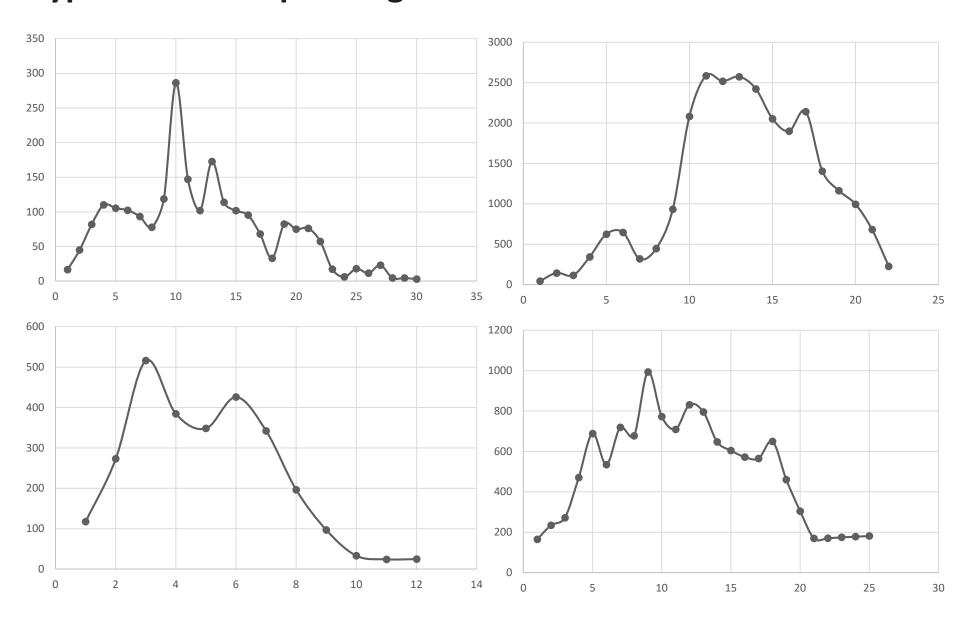
Cost and Funding

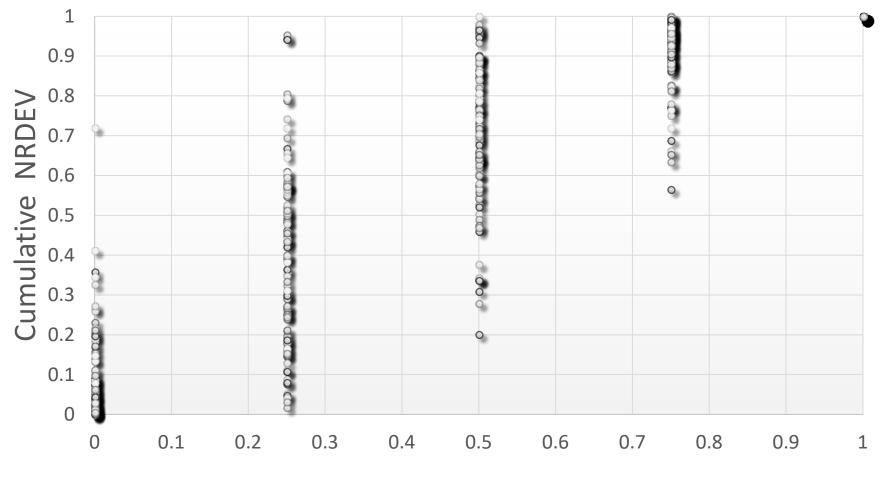

Annual Funding By Appropriation

Annual Funding TY\$

1319 | RDT&E | Research, Development, Test, and Evaluation, Navy

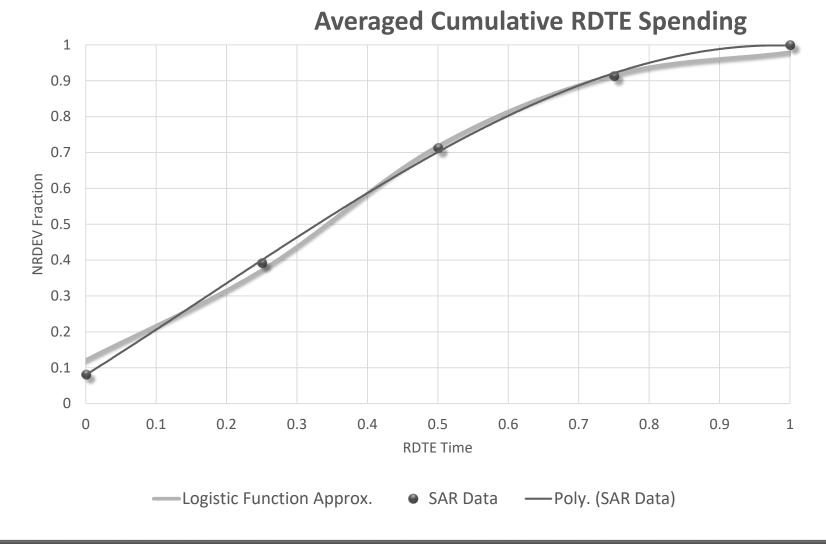
Fiscal Year	Quantity	End Item Recurring Flyaway TY \$M	Non End Item Recurring Flyaway TY \$M	Non Recurring Flyaway TY \$M	Total Flyaway TY \$M	Total Support TY \$M	Total Program TY \$M
2006	-			-		-	10.9
2007	-	-	-	-	-	-	35.3
2008	-			-			92.9
2009	-	-	-	-	-	-	92.5
2010	-	-	-	-	-	-	164.9
2011	-			-		-	204.2
2012	-			-	-	-	138.8
2013	-			-		-	193.9
2014	-			-		-	125.1
2015	-			-			144.7
2016	-			-	-	-	247.3
2017	-			-			100.4
2018	-		-	-	-	-	43.1
2019	-			-		-	41.3
2020	-	-	-	-	-	-	32.3
2021	-			-			30.5
2022	-			-		-	32.9
2023	-			-			30.4
Subtotal							1761.4

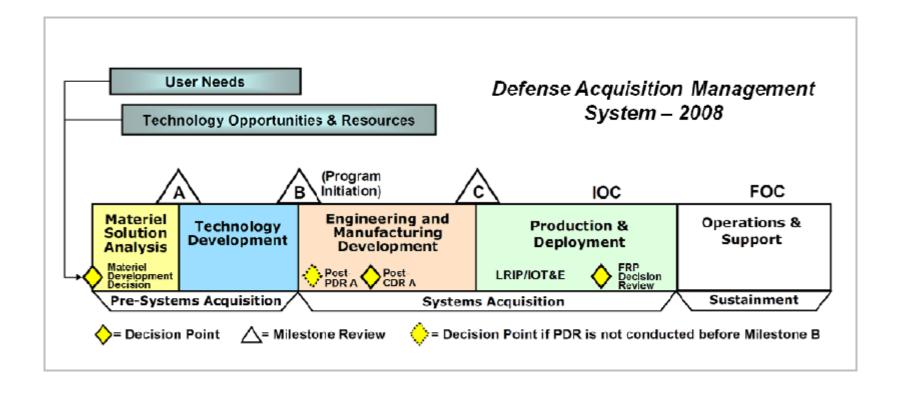

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaachline.com Process Overview

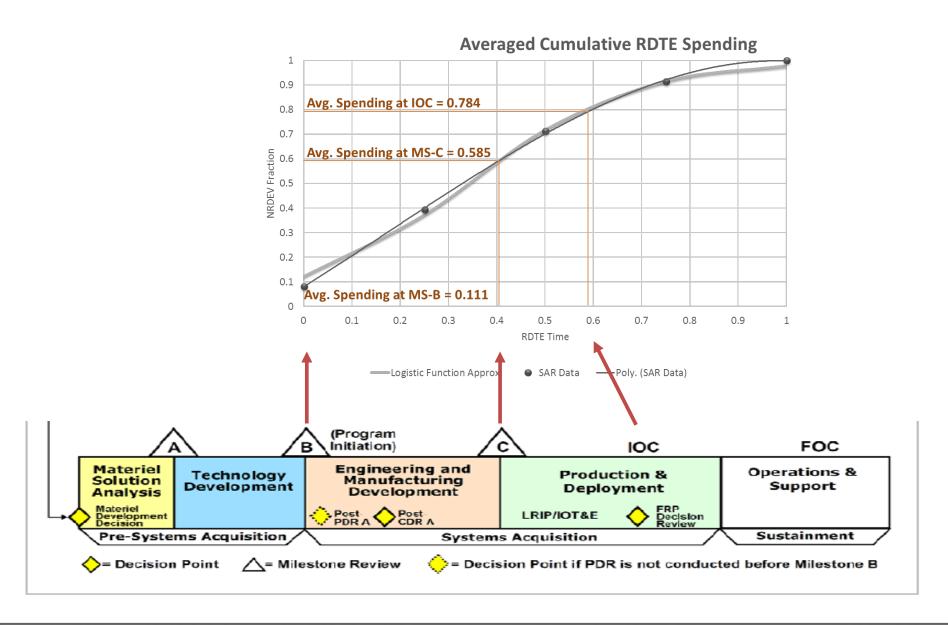

Limitations:

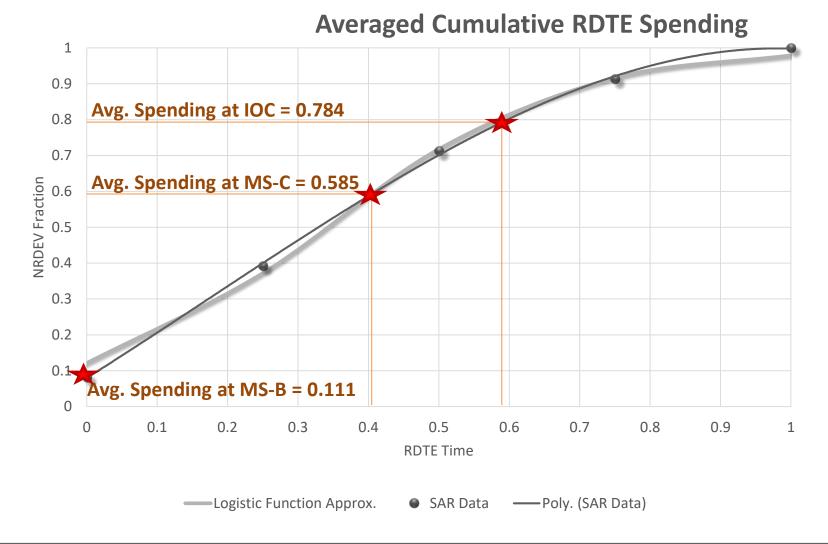
- 10-15% of data is expected to be outlier/inaccurate
- Cannot handle SARs that contain multiple sub-programs, e.g. F-35 airframe and engine programs are reported in the same SAR reports only the first sub-program is extracted
- Cannot distinguish system type (aircraft, missile, etc.), or program type (new development, major mod., remanufacture, etc.)
- Further improvements to this dataset would likely be done manually

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaachling Profiles Typical RDT&E Spending Profiles

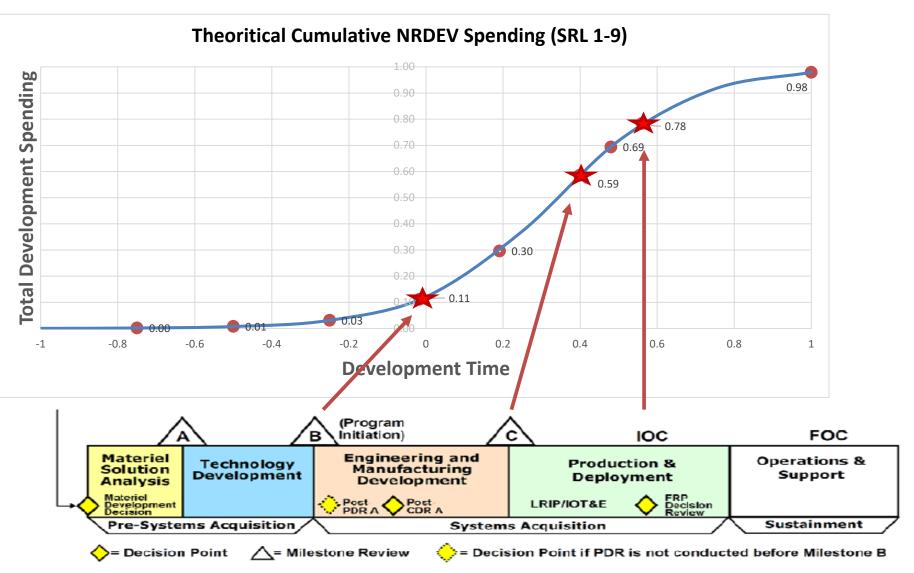

SAR Data for Cumulative Spending during RDTE period


DoD MDAP ACAT-1 RDTE Time

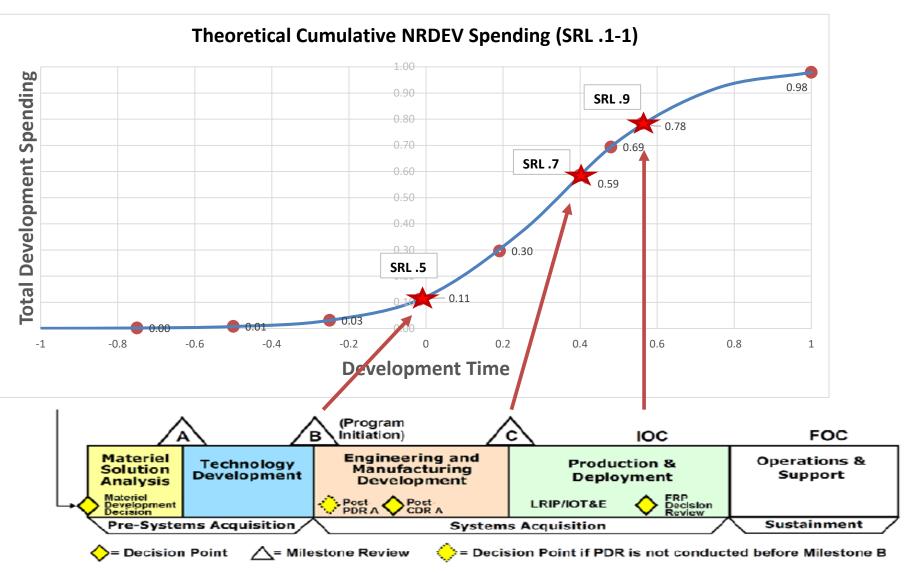

SAR Data

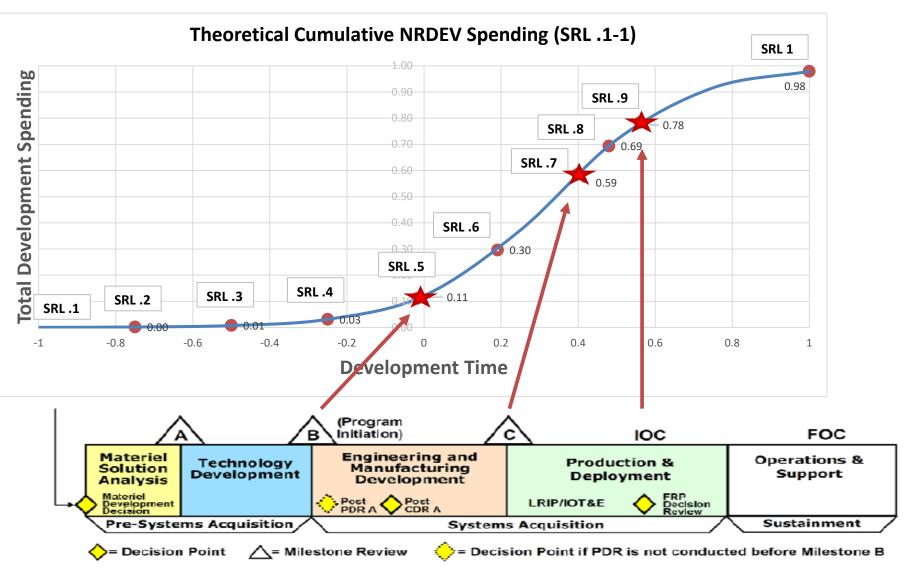


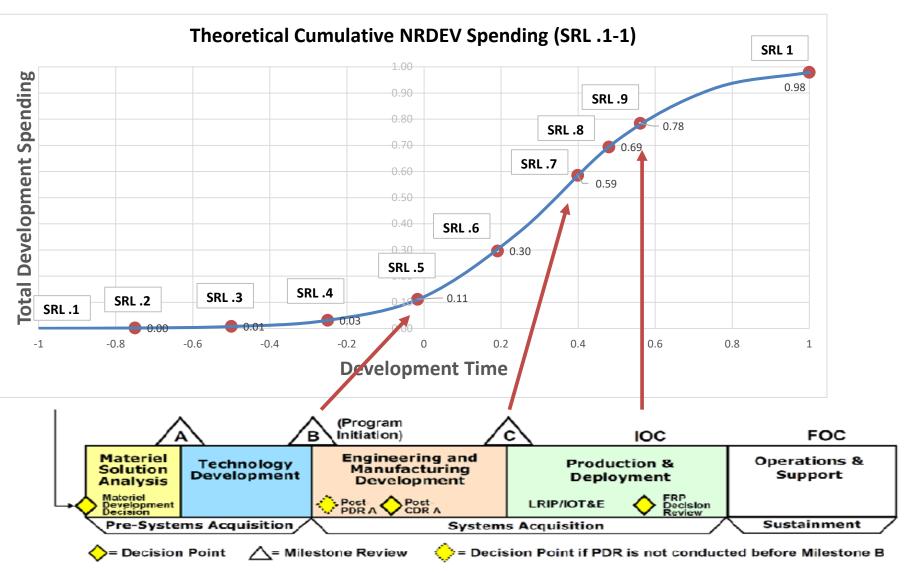
Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaachline.com DoD Acquisition Process

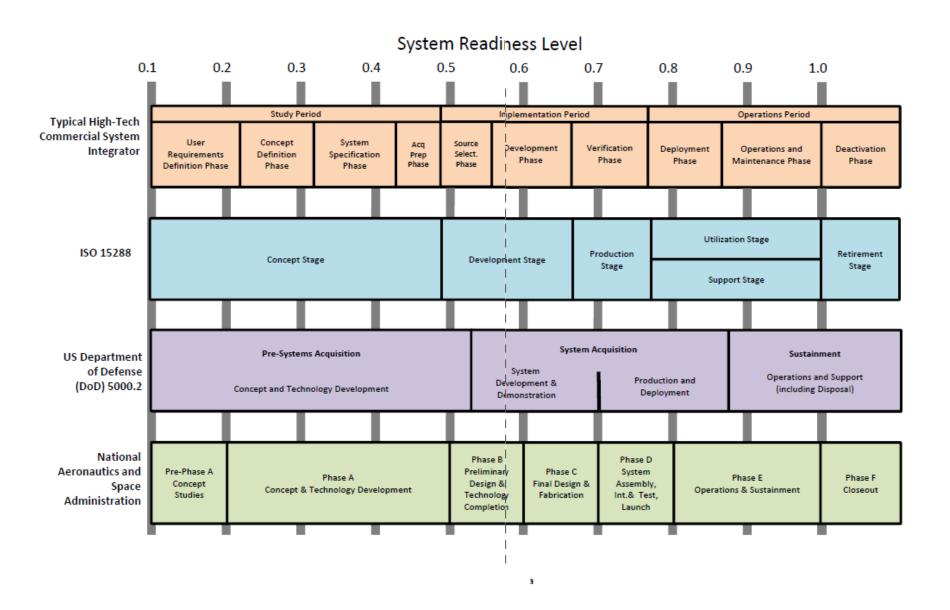


Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaachling Average RDTE Spending Over Time




Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaachline Correlation


Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaachline Theoretical Correlation


Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaachline Correlation

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaachline Theoretical Correlation

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaachline.com Mapping of SRL to Acquisition Processes

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaachline.comCusion

- SRL calculation framework is proposed to represent system maturity composing of multiple technologies with varying TRLs and IRLs
- Selected Acquisition Report (SARs) data are extracted through mining exercise for RDT&E cost and schedule
- Aggregate level data is used to determine average cost and schedule for each milestone A/B/C and IOC when available
- Generic mapping of MDAP ACAT1 Milestones and SRL is proposed
- Math model representing normalized, non-linear behavior of SRL/TRL progression is proposed
 - Model can be calibrated to any program when at least two data points are known,
 e.g. cost and schedule at MS B and C,

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaachline.com Future Work

- Improve data quality and segmentation based on
 - System type (aircraft, missile, ship, ground system, space system, etc.) and
 - Program type (new development, modification, remanufacture)
- Consider additional dataset
 - TBD
- Validate model with actual program
 - TBD