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Abstract 
 
How can we achieve success with software-intensive systems? To control project outcomes we 
need to better understand which factors truly drive those outcomes versus those merely 
correlated with them. In this paper, we will share early results from the application of causal 
modeling tools to evaluate several potential causes of late delivery, cost overruns, and technical 
performance gap, such as the nature of the acquisition environment, number of requirements, 
team experience, existence of a known feasible architecture early in the project, and about 40 
other factors. 
 
To showcase the capability of causal modeling tools, the authors select two algorithms to 
analyze two datasets. Both datasets consist of survey results, one that was created for and 
analyzed in (Sheard, 2012) and the other from surveying software developers in a high-maturity 
government organization. These analyses give insight into the factors for project context, 
resources, stakeholder dynamics, and level of experience that cause particular project 
outcomes.  
 
The authors conclude that causal modeling methods provide useful and usable insight for 
project management, extending the capabilities available using more traditional statistical 
methods toward achieving a more fundamental understanding: among the many options 
available to a project manager, which are more likely to have desirable effects on project 
outcomes? For example, if the project is not progressing well, what interventions should be 
taken (e.g., provide staff with additional training, reduce the number of difficult requirements 
or stakeholder decision makers) and what would the effects of those interventions likely be? 
 

1. Introduction 
Researchers investigating causality in software engineering avail themselves of a mixture of 
both observational data and limited, randomized control trials. Correlations in observational 
data, by themselves, cannot generally determine which relationships are causal (Cook, 2002); 
and while randomized control trials are the gold standard for establishing causality in other 
scientific domains, there are “practical and ethical considerations that limit the application of 
controlled experiments in many cases” (Spirtes, 2010). From a research perspective, what is 
needed is something to help bridge that gap, that is, to make causal and not just correlational 
inferences from whatever observational data and experimental data are available, and help 
target future research on specific sets of variables for further study to add to that base of 
knowledge. This is what Causal Inference is about. 
 
In this paper, we describe the application of causal search algorithms (also called causal 
discovery algorithms) to two project datasets to investigate what causal relationships can be 
learned. The analyses of these and similar datasets are ongoing, so these should be considered 
to be early results. 
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There are many (at least several dozen) causal search algorithms (Center for Causal Discovery, 
2017b) but in this paper, due to time and space limitations, and because the two project 
datasets are similar, consisting of a few dozen project variables composed of answers given to 
multiple-choice survey questionnaires, we treat our data as discrete and will focus on two 
different types of causal search algorithms that work with discrete data.  More background on 
and sources for causal search and modeling can be found in (Hira, 2018a) and (Hira, 2018b). 
  
Why should we care about obtaining causal vs. correlational results? Project prediction and 
control begins with an understanding of which factors cause project outcomes, and their 
causes, et cetera. Correlational results only indicate which pairs of variables tend to change in 
the same direction together (or in opposite directions together); and are thus not a basis for 
deciding what intervention to take. To give a simple example, the presence of yellow fingers in 
year Y may be correlated with having lung cancer in year Y+10; the two variables are correlated. 
But controlling whether one’s fingers are yellow in year Y by wearing gloves or staining them 
yellow is unlikely to have any effect on contracting lung cancer by year Y+10. Rather, there is a 
common cause to having yellow fingers in year Y and lung cancer in year Y+10, and that 
common cause is cigarette smoking. Indeed, conditioning on cigarette smoking in years Y 
through Y+10 should cause the correlation between yellow fingers and lung cancer to 
disappear. Likewise, when we speak of obtaining a causal understanding for software project 
control, we’re talking about finding the causes of those project outcomes, and not merely the 
variables that correlate with those project outcomes (as yellow fingers in year Y correlates with 
lung cancer in year Y+10). Perhaps a more compelling example of the limits of correlation is 
found in Simpson’s paradox (Wikipedia, 2018). 
 
Here’s what a causal understanding of project outcomes and the variables that control them 
should enable program management and acquirers to have the knowledge to be able to do: 

• Understand why reported costs, schedule, and quality for a program are what they are 
• Control program costs, schedule, and quality throughout software development and 

sustainment lifecycles 
• Inform “could/should cost” analysis and price negotiations 
• Improve contract incentives for software intensive programs 
• Increase competition using effective criteria related to software cost 

 
So the above is the goal, and causal learning, which includes causal search and causal 
estimation, is the mechanism for determining the types of interventions that can improve 
project outcomes. 
  
The rest of this paper is organized as follows: Section 2 describes the two types of causal search 
algorithms featured in this paper: constraint-based search and score-based search. In Section 3, 
we describe one algorithm from each causal search method type: PC-Stable and FGES, which 
are constraint-based and score-based, respectively. We employ two different search algorithms 
that work by different mechanisms to help reduce risk of over-interpreting search results. This 
risk of over-interpretation is especially evident when working with small datasets, so we will 
show in Section 4 the effects of having a small dataset on obtaining causal inference in Case 
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Study 1, which uses datasets having 42 variables and only 61 and 81 cases. We investigate a 
somewhat larger dataset in Section 5 and demonstrate how much more refined our view can 
be when looking at the same dataset (Case Study 2) through the lens of causal search rather 
than a correlation table. Finally, in Section 6 we come to our Conclusions. Section 7 is Next 
Steps, Section 8 is References, Section 9 is Author Bios, and we end with a description of the 
survey instrument use in Case Study 2 (Appendix A) as it is not available elsewhere. (The survey 
instrument used in Case Study 1 is fully described in (Sheard, 2012).) 
 

2. Causal Learning Summary 
 
The paper (Hira 2018b) contains a short, self-contained and yet relatively complete introduction 
to causal search algorithms and how they work, which the authors of this paper contributed. 
That introduction is liberally excerpted in the Section 2 subsections that follow. 
  
2.1. Causal Discovery 
Quoting from the section on causal search algorithms in (Hira 2018b):  
 

Causal search algorithms (also, called causal discovery algorithms) typically take a dataset 
and settings (or hyper-parameters) governing the search, and output a set of graphs 
whose nodes are the variables appearing in the dataset (and depending on the algorithm, 
may include latent variables) and whose edges indicate some kind of direct causal 
connection between the pair of nodes they join. (Optionally, the algorithms also take sets 
of required and prohibited direct causal relationships between pairs of variables, which 
the user can use to encode the results of experiments or elicited domain knowledge.) 
There are many variations on this simple theme among the dozens of search algorithms, 
but in terms of understanding how they function and thus something of their relative 
strengths and limitations, it will help to organize them into two broad categories: 
constraint-based and score-based search algorithms (Spirtes, 2010).  

 
For both categories of searches, pointwise-consistent convergence has been proven. In 
other words, with increasingly-large datasets drawn from the same population, the 
algorithm will eventually find the correct causal graph(s). Unfortunately, uniformly-
consistent convergence has not been proven, which could provide the rate of 
convergence and level of confidence for particular causal relationships (Spirtes, 2010).  

 
2.1.1. Constraint-Based Search Algorithms 
Again quoting from the section on causal search algorithms in (Hira 2018b):  
 

One of the first practical constraint-based search algorithms developed was the PC 
search algorithm, which is the algorithm used in the previous paper by the authors (Hira, 
2018a). In its simplest form, constraint-based search involves two stages: Adjacency 
Search and Edge Orientation. Starting with a complete undirected graph, edges are 
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iteratively removed by testing for the conditional independence of joined nodes given a 
subset of neighboring nodes. If conditional independence is found, the edge is removed 
and the conditioning set employed is noted for later use in the Edge Orientation stage. 
This process is continued until all edges have been evaluated in this way. The result of 
this first stage, Adjacency Search, is thus an undirected graph. Edge Orientation starts 
with an undirected graph and iteratively orients edges according to a few rules that 
make use of the conditioning sets noted during the Adjacency Search stage. The result is 
an equivalence class of graphs, called a Markov Equivalence Class (MEC), rather than a 
single graph, because it is often impossible to determine the orientation of all the edges 
in the undirected graph that is output from the Adjacency Search stage (Spirtes, 2010).  

 
For example, suppose we have a dataset featuring three variables, X1, X2, and X3; and 
the only independence discovered among them is: X1 is independent of X3 conditioned 
on X2. We also suppose we have no additional knowledge to encode about X1, X2, and 
X3; only the dataset. Then the Adjacency Search stage will output the undirected graph 
X1 – X2 – X3 (as well as some kind of note that the conditioning set that made X1 and X3 
independent is {X2}). Then, given that particular independence, it necessarily follows 
that during the Edge Orientation stage, the direction of orientations for the edges of this 
undirected graph will not be able to be determined uniquely. Indeed, any of the 
following three pairs of orientations are valid, constituting the MEC: { X1  X2  X3, X1 
 X2  X3, X1  X2  X3 }. Note that the following sequence of orientations is not 
part of the MEC: X1  X2  X3. This type of relationship among variables is referred to 
as a collider. In a collider, the independence conditioning set is the empty set, because 
X1 is independent of X3 unconditionally. Hence, if the only independence found among 
X1, X2, and X3 is that X1 and X3 are unconditionally independent, then the MEC would 
consist of exactly one graph: X1  X2  X3. Thus, colliders provide important clues for 
orienting edges during the Edge Orientation Stage (Spirtes, 2010). 

 
While the idea of a set of graphs being the output of a causal search may disappoint, it is 
important to note that all graphs in an MEC have the same set of colliders and are built 
on top of the same undirected graph. Thus all graphs in an MEC manifest the same set 
of correlations present in the dataset, but may vary as to the causal orientations for 
some edges. 

 
The settings or hyper-parameters of a constraint-based search algorithm typically 
include but are not limited to: 

1) Type of independence test used (e.g., Fisher Z Test, Conditional Correlation Test 
in the case of continuous data; Chi Square Independence Test in the case of 
discrete data) 

2) Confidence level for conditional independence testing (a parameter called Alpha, 
which is used as the cutoff for p-values in the independence testing specified by 
previous item) 

3) Maximum size of conditioning set (e.g., for the first Case Study, we use the value 
2, given the small sample size—see Section 3.1.2 for a fuller explanation) 
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2.1.2. Score-Based Search Algorithms 
Again quoting from the section on causal search algorithms in (Hira 2018b) but with revision to 
the paragraph contrasting constraint-based and score-based search algorithms:  
 

To those readers more familiar with machine learning, score-based search algorithms 
employ a familiar mechanism: a maximum likelihood-based score (such as, Bayesian 
information criterion (BIC)). Like constraint-based search, there are two stages, both are 
iterative, and in each iteration of each stage there is both a currently-considered MEC 
(see above section for an explanation of this term, but it is important to note that all 
graphs in a MEC share the same underlying undirected graph and same colliders) and a 
set of neighboring MECs, that either each possess an additional edge (first stage of 
search) or have one edge removed (second stage of search) (Spirtes, 2010).  

 
In each iteration of the first stage, from the currently-considered MEC, the algorithm 
scores all neighboring MECs that have one additional edge. The best-scoring 
neighboring MEC then becomes the currently-considered MEC in the next iteration. The 
algorithm continues to iterate, building graphs one edge at a time, until a better score 
cannot be attained. In the second stage, the algorithm proceeds similarly but in reverse, 
considering only those MECs having one edge removed. Again, the algorithm halts when 
no better score can be attained, and the resulting MEC is returned as the output 
(Spirtes, 2010).  

 
The relative pros and cons of score-based vs. constraint-based search algorithms are:  

• Score-based search algorithms: 
o Scale better and are more computationally efficient (Ramsey, 2017) 
o Scores closer to ground truth, especially for denser networks (Triantafillou, 

2016) 
• Constraint-based search algorithms: 

o Are intuitive (Friedman, 1998) 
o Are modular: the choice of how to build graph (adjacencies and orientations) 

is orthogonal to choice of what independence test to utilize (Spirtes, 2010) 
 
2.2. Causal Estimation 
And a final quotation from the section on causal search algorithms in (Hira 2018b):  
 

When we wish to apply the results of our causal modeling to make predictions about the 
future values that variables are likely to attain arising as a result of hypothesized 
interventions, we need to quantify the result of our causal search. This is called causal 
estimation. Causal estimation involves parameterizing the variables and relationships 
appearing in the search graph resulting from causal search and then estimating what 
values to assign these parameters from the dataset. The resulting quantitative model can 
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then be evaluated for model fit. Causal estimation is not the focus of our paper, and thus 
we don’t address that topic further in this paper and more can be found in (Spirtes, 2010). 

  

3. Case Studies Involving Discrete Data 
3.1.1. General Approach 
 
Both project datasets consist of survey responses to multiple-choice items. Any additional 
information, for example, free-form comments to specific survey items, were not utilized in 
these analyses. 
 
When working with response data from a survey whose items have an underlying ordinal 
structure such as a Likert scale (Case Study 1), the researcher has a choice to make: should 
algorithms designed to work with continuous variables be used, or algorithms designed to work 
with discrete variables (nominal data with either no order, a partial order, or a total order 
[ordinal]) be used? This is a more general question with some complicated considerations 
(Pasta, 2009); however, beyond the general answer of “it depends on your research question 
and your data,” employing both types of algorithms seems to be a fair strategy, mindful that 
you’re throwing away useful information in one case (when treating your data as nominal when 
it in fact has a total order; or when discretizing continuous data), and introducing incorrect 
information in the other (that an increment of one in an ordinal scale has the same meaning at 
every point in the scale).  
 
In Case Study 1, almost all of the variables are Likert variables on a five-point scale, and so 
either category of algorithm could be used; whereas in Case Study 2, all the survey items are 
binary, and thus we should limit ourselves to only using algorithms designed for discrete data. 
Until recently, the causal search algorithms available through Tetrad assumed the entire 
dataset could be categorized one way or the other, though the situation has recently changed 
and algorithms addressing mixed data types are now also available (Center for Causal 
Discovery, 2017b). However, in both case studies, for the purposes of this article, the authors 
chose to investigate their datasets by employing only those causal search algorithms designed 
to work with discrete data types.  
 
Beyond the option of discrete versus continuous, there is also the option, as mentioned earlier, 
of employing two different types of search algorithms that work by different mechanisms. 
Doing so will help reduce the risk of over-interpreting search results. In addition, by using two 
such different causal search algorithms, we can compensate for some of the weaknesses inherit 
in each causal search type—see Section 2.1.2 for a contrast. By using both constraint-based and 
score-based causal search algorithms, the authors are striving for an appropriate level of 
confidence in the causal search results, especially where the two resulting search graphs (graph 
sets) have common edges and orientations of edges.  Nevertheless, it has been the authors’ 
experience that different algorithms will provide different results, while having much 
consistency with each other. In particular, there seems to be value in slightly varying the 

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



[DISTRIBUTION STATEMENT A] Approved for public release and unlimited distribution.    9 

parameters and comparing the results using the Compare box in Tetrad that lists the specific 
adjacencies and orientations discovered in any of the search results, sorted by frequency of 
occurrence. 
 
3.1.2. Causal Discovery Algorithms Employed 
Here is a description of the search algorithms employed in this paper: 
 

1) PC Stable is a variant of PC, which historically was among the first causal search 
algorithms to resolve the exponential time barrier for constraint-based causal search of 
a dataset of N variables. PC Stable addresses a problem with PC that what causal graphs 
it outputs depends on the order of the variables within the dataset (Colombo, 2014).  
 
Parameters: 

• Alpha: case studies 1 and 2 use values for the Alpha parameter befitting the 
sample size: a larger value for Alpha for Case Study 1 (Alpha = .10) and a smaller 
value for Case Study 2 (Alpha = .05). 

• Independence Test: Chi Square Test for Discrete data 
• Adjacency search: PC-Stable is specified 
• Collider conflicts: Orient bidirected is specified 
• Maximum size of conditioning set: for both case studies, we use the value 2, 

given the small sample sizes. When the sample size is small, it is very important 
to choose a small value for this parameter, because the expected values for the 
cells of a conditional probability table used to test conditional independence 
among many variables but only a small sample will almost all be very near zero, 
which means that we’re nowhere near to achieving the asymptotic behavior of 
the chi-square statistic necessary to obtaining valid p-values from independence 
testing. 

• All other parameters were set to their default settings. 
 

2) FGES (Fast Greedy Equivalent Search) is a score-based search algorithms and perhaps 
best qualifies as the causal-search data analyst’s favorite “go to” search algorithm after 
PC (Center for Causal Discovery, 2017a).  
 
Parameters: 

• Scoring method: Discrete BIC Score 
• Penalty Discount: the default of 2 is often used, but for small dataset sample 

sizes: smaller values for the Penalty Discount are used, for example 1.0 or even 
0.5. This is because although BIC is statistically consistent in model selection, it 
may overpenalize for model complexity on small samples. For Case Study 1, the 
Penalty Discount 1.0 was used; while for Case Study 2, the default 2.0 was used.  

• All other parameters were set at their default settings. 
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3.1.3. Confounders 
We note that it is possible to have confounders (unobserved direct common causes of two 
variables in a system). However, in the causal discovery literature, properly dealing with 
confounders is still a challenging issue. For the data sets analyzed in the two case studies, 
researchers attempted to collect most, if not all, factors that might be relevant to the study. As 
a consequence, the researchers evaluate the risk of ignoring significant direct common causes 
which would have large effects is low. We therefore decided to adopt causal search methods 
that assume no confounders in order to benefit from the asymptotic correctness of the search 
results. 
 
3.1.4. Tetrad 
As part of a National Institutes of Health (NIH) Big Data initiative, the University of Pittsburgh, 
Carnegie Mellon University (CMU), and Pittsburgh Supercomputing Center serve as founding 
members of the Center for Causal Discovery (CCD). The CCD develops and maintains causal 
algorithms, software, and tools, including the Tetrad1 program with its GUI, API, and command-
line interfaces (referred to as Tetrad in this paper). Tetrad allows users to run causal search 
algorithms on a dataset as well as estimate and evaluate parametric models. For each case 
study (sections 4 and 5), the authors loaded the appropriate dataset and ran causal search 
algorithms (section 3.1.2) using Tetrad. Example screens, options, and results can be found in 
(Hira, 2018a), (Hira, 2018b), and in sections 4 and 5 of this paper. 

4. Case Study 1 
4.1. Problem 
This case study focuses on re-examining the results from an earlier study on complexity drivers 
of systems and software development project success. 
 
In 2012, Sarah Sheard completed her Ph.D. dissertation titled “Assessing the Impact of 
Complexity Attributes on System Development Project Outcomes” (Sheard, 2012). Here is an 
excerpt from the Abstract: 

The purpose of this study was to determine complexity variables that can be measured on 
a complex system development effort early or in the middle of the project and that have 
an impact on project outcomes of cost overrun, schedule delay, and performance 
shortfall. ... [This study used a] retrospective survey on 75 projects, mostly from the 
aerospace/defense domain. Surveys provided answers to over 50 questions about 
outcomes, demographics, and complexity of the system, the project, and the environment. 
Three of the complexity variables strongly predicted all outcomes. These variables were 
the number of difficult requirements, the amount of “cognitive fog” present in the project, 
and the relationships among stakeholders. About twenty variables total were usefully 
congruent with the outcomes. These variables can now be used in heuristics that suggest 
which kinds of complexity to reduce on what entities in order to increase the likelihood 
of positive project outcomes. 

 

                                                       
1 https://github.com/cmu-phil/tetrad 
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The question that motivated this case study is whether the results reported above (cognitive 
fog, stakeholder relationships, number of difficult requirements predicting cost overruns, 
schedule delay, and performance shortfall) characterize causal relationships (and thus 
intervening on a cause will affect an outcome) or merely correlations. We intended to answer 
this question by analyzing the same survey results using the causal search methods described in 
Section 3. 
 
4.2. Data 
The data and how it was obtained is described in full detail in (Sheard, 2012). In summary, 
based on the results of a literature review, Sheard developed a taxonomy that identified 
possible sources of complexity (the system, the organization that will build it, the environment 
it is developed in, and cognitive factors such as learning curve); at what stages will such 
indicators of complexity (whether structural, dynamic, or sociopolitical) be available. From this 
taxonomy, Sheard constructed a survey was that queried those familiar with a particular project 
some facts regarding outcomes and the presence of complex (or complicating) factors. The 
resulting survey was the administered, collecting data from individuals on about 75 projects. 
That dataset was analyzed in (Sheard, 2012) and re-analyzed for this paper.   
  
Figure 1 describes the various project outcomes considered in (Sheard, 2012): 
 

Delivered At the finish: (1) Project delivered a product; (2) Project was cancelled 
without delivering a product 

OverCost At the point of finishing, how much did the project cost, compared to 
the initially predicted cost for delivery?  (1) Under cost;  (2) At cost +/- 
5%;  (3) 5-20% over plan;  (4) 20-50% over;  (5) 50-100% over;  (6) more 
than 100% over plan 

Late At the point of finishing, how long had the project taken, compared to 
the initially scheduled development time?  (1) Ahead of schedule;  (2) 
On time within 5%;  (3) 5-20% late;  (4) 20-50% late;  (5) 50-100% late;  
(6) More than 100% late 

PerfGap At the point of finishing, how was the project performance, compared 
to the initially specified performance? (Please consider the average 
performance of *mission critical* features, and add any qualifiers in 
Notes.)  (1) Performance was higher than specified;  (2) Performance 
was the same as specified, within 5%;  (3) Performance was low by 5-
20% (in terms of fewer features or waived requirements);  (4) 
Performance was low by 20-50%;  (5) Performance was low by more 
than 50%, or the project was cancelled 

Success Using whatever criteria are appropriate for this project, please describe 
how successful the project was, and what made the project successful 
or unsuccessful: (1) A great failure; (2) A mild or moderate failure; (3) 
Neutral; (4) A mild or moderate success; (5) A great success 
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EvolOp How much did the system evolve during its operational lifetime? (1) 
System was never in operation; (2) System was in use, but it shut down 
fairly soon afterward; (3) System completed (or is in the process of 
completing) its intended operational lifetime essentially as delivered; (4) 
System was changed somewhat during its operational lifetime; (5) 
System evolved to be essentially a different system during its 
operational lifetime 

GoodEst “On the project, estimates generally turned out to be right.” Do you 
agree with this statement? (1) Strongly Agree; (2) Agree; (3) Neutral; (4) 
Disagree; (5) Strongly Disagree 

Figure 1 Project outcome variables in Case Study 1 (characterizations of project success) 

Figure 2 describes some of the variables that could be collected earlier in a project that were 
reported in (Sheard, 2012) as predictors of project success. 
 

Req-Diff Difficult requirements are considered difficult to implement or 
engineer, are hard to trace to source, and have a high degree of overlap 
with other requirements. How many system requirements were there 
that were Difficult? (1) 1-10; (2) 10-100; (3) 100-1000; (4) 1000-10,000; 
(5) Over 10,000 

CogFog “The project frequently found itself in a fog of conflicting data and 
cognitive overload”. Do you agree with this statement? (1) Strongly 
Agree; (2) Agree; (3) Neutral; (4) Disagree; (5) Strongly Disagree 

StakeRelnship Where did your project fit in the following eight attributes, on a scale of 
(1) Traditional, (2) Transitional, or (3) Messy Frontier? Stakeholder 
relationships: (1) Relationships stable; (2) New relationships; (3) 
Resistance to changing relationships 

Figure 2 Project factors that predict project outcomes in Case Study 1 according to (Sheard, 2012) 

Our purpose here is not to give a complete description of all factors but to see how far we can 
recreate the findings in (Sheard, 2012). Our focus above is on describing just these factors in 
greater detail. 
 
4.3. Discovery Results 
 
In Sheard’s dissertation, the relationships among complexity drivers and project outcomes is 
displayed in a color-coded table (see Figure 29, page 159 in (Sheard, 2012)). The table depicts 
the results of an effort to understand causality using a traditional statistical approach to 
evaluate the relationships among these variables. As we seek to make a contrast between what 
causal search offers over a more traditional approach, we provide an extended excerpt from 
(Sheard, 2012) describing this color-coded table and its interpretation: 
 

…created by placing all the p-values from all the t-tests in one chart, with the split 
variable on the left and the p-values for all other variables in the row. This results in an 
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N-squared chart in that the same variables appear on the left on the top. …the split 
variables appear down the left and t-test variables appear across the top.  
 
The p-value in each cell was then replaced by ** if the means difference was very 
significant (p<0.001) or * if the means difference was significant (p<0.05 but not 
<0.001). Cells without text in them had p-values above 0.05.  
 
Colors … indicate congruence. If the higher-complexity group (as split by the variable on 
the left) had a higher-complexity mean for the variable on the top, the two variables were 
considered congruent and the box was colored green. If the higher-complexity group had 
a lower complexity mean, the box was colored red. If the means were essentially 
equivalent (t-test showed 0.5 or more likelihood of the same population) then the box was 
colored yellow. Grey boxes denote the diagonal where the variables on the top and left 
are the same, and t-tests are meaningless. 
 
Note that most of the relationships with … * or ** … are green. This suggests that, with 
the exception of the variables in the third group (start and finish year and project 
management techniques), projects that are more complex are more complex globally 
rather than in only a few variables. Projects do not get more complex in some variables 
(say, socio-political variables) while simultaneously getting simpler in others (say, 
technical variables). 
 
…To make conclusions about which variables best align with improved outcomes, this 
chart should be ordered to make the most aligned variables on the top and left. This was 
accomplished by the following steps. 
 
For all variables except project management and year variables, the number of *’s in a 
row and the number of **’s were counted and summed these via the formula: 

sum = * + 2 **.  
Similarly, the number of *’s and **’s in the same variable’s column were counted and 
summed, again using sum = * + 2 **. Then the two sums were added to create a variable 
congruence number. 
 
The spreadsheet was then sorted (rows and columns) by variable congruence, highest to 
lowest, with the project management [techniques] and year variables placed at the 
bottom. A blank line was added between the top nearly all-green group and the middle 
group, which had fewer cases of significance association with the top variables. … 
 
The variable with the highest congruence value was Q32—Cognitive Fog, a middle-of-
the project variable, which produces 20 significant variables when used as the split 
variable, and shows significant differences when 22 other variables are used as the split 
variable. Other high congruence variables are Q13—Replanning and Q33—Estimates 
right, which are hybrids of complexity and outcome variables and not terribly useful, as 
explained earlier in this chapter, and then Q16d—Requirements Difficult, another of the 
hypothesis variables. The third hypothesis variable, Q38f—Stakeholder Relationships, 
appears below others such as cost, changes in limbo, and conflict either among 
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stakeholders or between technical requirements and cost/schedule constraints. The reason 
Q38f—Stakeholder Relationships is a hypothesis variable and those others are not is 
because Q38f has significant relationships with all three outcome variables (Cost overrun, 
schedule delay, and performance shortfall) and the others are missing significant 
relationships with at least one of the three outcomes. 

 
The table referred to in the above excerpt is shown as Figure 3 below.  
 

 

Figure 3 Congruence among complexity drivers and relationships with project outcomes (from (Sheard, 2012)). 

Intriguingly, Sheard also constructs a hypothetical causal model (see Figure 33, page 251 in 
(Sheard, 2012)), which is shown in Figure 4. The intended use for such a diagram is to identify 
what factors to change to help ensure a project stays on track toward achieving success (or to 
minimize particular departures from success). Of course, that’s also the intended use of results 
from a causal search, but the results of a causal search are based on the conditional 
independences identified within the dataset (or the log likelihood of the data given a particular 
causal model) and are thus more empirically grounded.  
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Figure 4 Relationship of Cognitive Fog to Other Variables (repeat of Figure 33 from (Sheard, 2012)) 

The next few paragraphs describe how we re-analyzed Sheard’s dataset using causal search. 
 
A typical preparation step in causal search is to organize the variables according to known 
precedence, therefore identifying what could not have caused what (with curious exceptions, 
later state or events cannot have caused earlier state or events). Providing such information 
may help disambiguate causal edge orientations. 
 
In her original study, Sheard studied 52 variables potentially impacting project outcomes. After 
discussion with Sheard, ten of these variables were dropped from our causal analysis: the eight 
management technique variables (use of PERT, Agile, etc.) and two start/end date (date range) 
variables. The two start/end date survey items were dropped primarily because repeated 
causal testing did not find any causal role for the start/end date variables. The eight 
management technique variables were for a different reason: the part of the survey covering 
management techniques had confusing logic and only asked that the respondent to check “yes” 
if the technique was used on the program, and thus introduced uncertainty in the responses for 
these eight items. Removing these 10 variables left 42 variables for our study. 
 
The remaining 42 variables were organized into three tiers in (Sheard, 2012) according to when 
they would likely be available for collection and thus serve as candidate early indicators of a 
project failing to meet desired outcomes. These tiers and two additional tiers are shown in 
Figure 5 below. Tiers 2 and 4 were inserted between Sheard’s first and second tiers, and second 
and third tiers, respectively, to accommodate variables that may need to be collected in more 
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than one project stage in order to obtain an accurate evaluation of the project variable. These 
tiers are notional, but Tier 1 corresponds to what should be available or estimable near the 
beginning of a software project. Tier 3 corresponds to a stage of the project where the project 
is hitting its stride and if some issue is likely to be persistent for the remainder of the project, it 
is often manifest at this time to some stakeholders. Tier 5 corresponds to project outcomes. 
The figure is a screen grab from a Knowledge box in Tetrad where the user specifies how the 
variables appearing in a dataset should be partitioned into tiers, which is one way in which 
domain knowledge can be introduced into and inform a causal search. 
 

 
Figure 5 Organizing the 42 complexity and project outcome factors into 5 tiers approximating when they might become 
available during the life of a project 

PC-Stable and FGES algorithms were then both applied to both the more limited dataset of 
Aerospace/Defense projects (61 in number) and the more full dataset of 81 projects (including 
Civil, Commercial, and Other). The result is four causal search graphs. An example graph from 
one of the searches (PC-Stable, full dataset) is shown in Figure 6 below. 
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Figure 6 Result from applying PC-Stable (Alpha=.10) to the full dataset. Outcome (Tier 5) variables are highlighted in yellow. 
Variables without causal relationships appear at very top. 

Note that almost half of the variables do not appear in any causal relationship. This would seem 
to be attributable to the relatively small sample size. The top two rows of variables consist of 
variables that do not appear in any causal relationship in any of the four searches (they were 
manually moved to those positions). The rest of the graph is where we’ve moved a lot of the 
variables that appear in one or more causal relationships among the four searches. Note: 

• NumDecMkr is adjacent to CogFog, which is adjacent to PerfGap, which is adjacent to 
Success. Because the first three of these variables belong to different tiers, the first two 
of these adjacencies are direct causal relationships. The valence of almost all of the 
variables in the dataset is generally from good to bad (the underlying ordinal scale runs 
from good condition to bad condition), so one way to interpret this causal path is that a 
lot of decision makers causes a lot of cognitive fog, which in turn causes a big 
performance gap in project outcome, and that this causes or is caused by a lack of 
overall project success. (We can’t determine causal direction for PerfGap and Success 
because, in part, both are assigned to the same tier.) 

• Note the three requirements variables causally relate to each other (Req-Easy to Req-
Nom to Req-Diff) but not to anything else, whereas (Sheard, 2012) discovers they had 
predictive value. This is not necessarily a contradiction, but instead reflects the inability 
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of a small sample to provide adequate power to identify any additional causal 
relationships involving these variables. 

• The three stakeholder variables (StakeConflict, StakeRelnship, StakeInvolve) causally 
relate to each other and StakeConflict is adjacent to NeedsChanged (that the project 
needs did change), though there’s not a direct path to any project outcome. 

• Late and OverCost are also causally related to each other, which is not so surprising. 
 
A word of caution in interpretation: whenever we say a variable directly causes another, this is 
relative to the set of other variables included in the causal search. Had additional variables 
been included in the causal search, it is possible that one or more of them might have mediated 
the relationship between the two variables; and thus what was a connection in the search 
graph might be replaced by a more nuanced network of causal relationships. 
 
How do the results of the four causal searches (from applying PC-Stable and FGES applied to 
both datasets) compare? In Tetrad, you can answer this question by feeding the results of the 
four search boxes are fed into a Tetrad Compare box. As a result, you obtain a report of with 
what frequency different adjacencies and directed edges appear in the four search graphs: 
 

In all 4 graphs, the following adjacencies (direct causal connections) were found (under 
each stated frequency, the order of rows and of variables in a row is not significant). 
 
1. CapDesired --- SysBehStable 
2. LifeCost --- AnnCost 
3. StakeRelnship  --- StakeInvolve 
 
In 3 graphs... 
 
1. Delivered --- EvolOp 
2. Late --- OverCost 
 
In 2 graphs... 
 
1. PerfGap --- CogFog 
2. PerfGap --- Success 
3. Req-Diff --- Req-Nom 
4. Req-Nom --- Req-Easy 
5. StakeRelnship --- StakeConflict 
6. Success --- Delivered 
 
In 1 graph... 
 
1. CogFog --- NumDecMkr 
2. NeedsChanged --- StakeConflict 
3. Scope --- AcqEnv 
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4. StakeConflict --- SysBehStable 
5. StakeInvolve --- StakeConflict 
6. TechCSReqConflict --- TechReqConflict 
 
Direct causal connections uncontradicted in 2 graphs (note the edge is now oriented)... 
 
1. AnnCost --> LifeCost 
2. SysBehStable --> CapDesired 
 
Uncontradicted in 1 graph... 
 
1. CogFog --> PerfGap 
2. Success --> PerfGap 
3. SysBehStable --> StakeConflict 
 
Contradicted (where the search results of the four searches were not consistent): 
 
(empty) 
 

By setting Alpha equal to 0.10, we are admitting more false positives in the search results; 
however, where agreement is found among the results of multiple searches, we’re more likely 
to have found true positives, especially if different types of causal search algorithms are used, 
as we have done here (constraint-based vs score-based causal search). 
 
As mentioned, we could have also tried to search the dataset treating the data as Continuous 
rather than Discrete. This turns up additional causal connections but for this paper we focus on 
a treatment of the data as Discrete. 
 
4.4. Case Study 1 Conclusions 
Sarah Sheard’s dissertation suggested that by addressing causes of cognitive fog and selected 
other complexity drivers, project outcomes could be improved.  
 
Using PC-Stable and FGES algorithms and applying them to both the more limited dataset of 
Aerospace/Defense projects (61 in number) and the more full dataset of 81 projects (including 
Civil, Commercial, and Other) we discovered consistent evidence that indeed Cognitive Fog is a 
direct cause of some project outcomes, in particular, Performance Gap (appearing as PerfGap in 
Figure 1). There was some limited evidence for Stakeholder Relationships (appearing as 
StakeRelnship in Figure 2) being a direct cause of some project outcomes as well. Finally, there 
was almost no evidence for the number of difficult requirements being a direct cause of project 
success unless we tuned the causal search parameters in a way that also further increased the 
probability of false positives; however, recognizing that the sample size was small, the authors 
chose to exercise some level of conservatism in the parameter settings employed in the causal 
searches to keep the level of false positives relatively low. 
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Intriguingly, the causal search teased apart some of the causal influences. For example, 
specifically for Cognitive Fog, a direct cause is suggested: Number of Decision Makers. This 
result suggests that a program manager can take action to improving project outcomes: 
scrutinizing the organization of the program and its stakeholders to reduce the number of 
decision makers. 
 
In any case, the bottom line is that even with a relatively small dataset with a number of cases 
only slightly larger than the number of variables, direct causal relationships could be found that 
can guide a program manager to make constructive changes to the direction of a program 
toward improved project outcomes. 
 

5. Case Study 2 
5.1. Problem 
Several years ago, an SEI client from the U.S. Department of Defense (DoD) desired to further 
study software team dynamics across 100+ active maintenance projects with the aim to better 
understand what drives software team performance.  Although a litany of published research 
existed for teams in general and for software teams specifically, there appeared to be a major 
gap in any systematic causal research of software team performance factors.  Given this 
situation, the SEI partnered with the client organization to construct a set of surveys that 
covered a lengthy list of factors mined from Watts Humphrey’s publication on leading Team 
Software Process (TSP) teams (Humphrey, 2006).  More than 120 factors were identified in the 
publication as potential reasons for software teams performing differently, although only a few 
were embodied in official TSP software measures.  The SEI and client felt that the factors could 
be measured subjectively through a set of periodic, random surveys to members of the client’s 
software projects.  The factors were grouped according to the time periods in which change 
would be expected and managed.  As such, a set of factors based on a weekly team survey, 
represented in Appendix A, comprise the causal learning demonstration for this case study.  
This case study does not purport to cover a complete analysis of this data but seeks to show 
how traditional correlation of data can be misleading to decision makers who wish to act on the 
analysis and intervene with process improvements expected to increase team performance.  
For the scope of this paper, the authors only focus on causal discovery of relationships of the 
independent factors and three outcome factors related to cost, schedule and quality.  The 
authors purposely will not discuss causal discovery from a time series standpoint, although that 
would equally make an interesting demonstration. 
 
5.2. Data 
Thirty-four factors were identified for the weekly survey which included identity of the 
organizational entity (e.g. squadron) and thirty-three subjective binary assessments by 
randomly-chosen individuals across the entities related to their software team operation.  
Although the original design for the survey included continuous and ordinal scales for the 
survey questions, the client felt strongly that individuals would not take the survey if it was not 
simple and quick.  A series of experiments concluded that a binary set of questions would be 
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best initially to ensure desirable response rates.  Individuals received communications from 
senior leadership encouraging participation knowing that all responses would be anonymous 
and analyzed by a third party, i.e., the SEI.  The SEI took great pain to minimize required 
scrolling during survey administration and to enable point and click in rapid fashion.  The 
resulting response rates varied week by week but were near 90%.  The client invested time to 
ensure random sampling was representative across the entities but also did not require any one 
individual taking more than 3 surveys in a given calendar year.  The SEI and client reasoned that 
analyses of this initial survey would motivate more detailed research on a subset of the 120+ 
factors.  A total of 418 weekly survey responses made up the data set for this case study. 
 
5.3. Discovery Results 
One motivation for this paper is to contrast the traditional use of statistical correlation with 
what can be determined through application of causal search algorithms to these change 
drivers and team performance outcomes.  In Figure 7, traditional correlation analysis of the 
independent binary factors against the three ordinal outcome factors may be seen.  A number 
of correlations were used for corroboration including Kendall tau-b, Kendall tau-c, Gamma and 
Spearman’s correlation.  All four correlation measures were in agreement using the 0.05 cutoff 
for significance.  Significant correlations are marked by the shaded blue cells.  As shown, 
eighteen factors were significantly correlated with the Quality outcome, five factors were 
significantly correlated with the Cost outcome and twenty-one factors were significantly 
correlated with the Schedule outcome. 
 
Although not shown, one could also review the correlation among the set of 33 independent 
factors themselves to observe the degree of multicollinearity.  Depending on the next step of 
modeling, the multicollinearity may be desired (e.g., for Covariance Based Structural Equation 
Modeling) or not (e.g., logistic regression on the ordinal outcome factors).  The authors 
continued performing ordinal logistic regression on each of the outcomes:  cost, schedule and 
quality.  As may be seen in Figure 8, subsets of factors remained significant when participating 
in ordinal logistic regression exercises of the three outcome factors.  Although all three models 
performed poorly in context of the McFadden score (McFadden, 1974), specific factors for each 
outcome remained statistically significant.  Three factors remained significant predicting 
Quality:  1) Team Consensus, 2) NeedUnplannedHelp, and 3) OpenClimateIdeas2.  Three factors 
remained significant predicting Cost:  1) MissedLateDecisions, 2) TeamConsensus, and 3) 
ProcessProbResolved.  Seven factors remained significant predicting Schedule:  1) 
LeaderDealPerfProblems, 2) PrioritizedWork, 3) MissedLateDecisions, 4) GoodImproveData, 5) 
GoodTeamCommunication, 6) StressOvertime, and 7) OpenClimateIdeas2.  As a result, whether 
correlation of factors to outcomes is used or whether ordinal logistic regression is used, a 
decision maker would now be facing a dilemma in terms of which factors to address to improve 
any one of the outcome factors. 
 
The question now arises whether causal learning comprised of causal discovery (e.g. search) 
and causal estimation, can shed further light on the real causal drivers of the outcome factors.  
At this point, the authors initiated two causal search journeys that, although not 
comprehensive, do serve to show the value add of such causal technology. 
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Figure 7 Factors Significantly Correlated with Outcomes 

 

QualityOutcome CostOutcome ScheduleOutcome
ID

WeekNumber
Squadron

IndivUnclearGoals
IndivMotivateByLeader

LeaderDealPerfProblems
TeamConflictNotResolved

PerfMeasured
PrioritizedWork

ChangeDirection
QualitySuffer

IndivUnhappyTasks
MissedLateDecisions

IndivSatisRole
GoodMeetings

ProcessNonCompliance
TeamConsensus

LackConsensusImpacts
GoodProgressReviews

GoodImproveData
OpenClimateIdeas
ExternalFeedback

TeamLoadBalanced
ReqtsNotAnalyzed

NeedUnplannedHelp
CustomerInvolved

ProcessGuidanceUsed
ProcessProbResolved

IndivQualityData
IndivTaskDisatisfaction

GoodTeamCommunication
StressOvertime

OpenClimateIdeas2
OpenTeamDiscussion

InternalTeamCooperation
F2FwithLeader
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Figure 8 Factors with Red Borders deemed significant in Ordinal Logistic Regression 

 
Figure 9 displays the Knowledge Box within the Tetrad tool used for both discovery searches 
discussed in this case study (PC-Stable and FGES).  One may observe that the authors used a 3 
tier approach to add constraints for what causal relationships are not allowed in the analysis 
based on time precedence.  In this instance, the three factors in Tier 1 are purely exogenous 
and cannot be caused by any other factors in the model.  The three factors in Tier 3 represent 
true outcomes of interest and cannot serve as causal drivers of factors in the Tiers 1 and 2.    
 

QualityOutcome CostOutcome ScheduleOutcome
LeaderDealPerfProblems

PrioritizedWork
MissedLateDecisions

TeamConsensus
GoodImproveData

NeedUnplannedHelp
ProcessProbResolved

GoodTeamCommunication
StressOvertime

OpenClimateIdeas2
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Figure 9 Tetrad Knowledge Box used in Discovery for PC-Stable and FGES 

 
Figure 10 shows one of the output displays from Tetrad, the causal structure seen in the Search 
box of Tetrad.  This initial search journey employed the PC-Stable algorithm using an alpha of 
0.0001 and set the maximum size of the conditioning sets of 2.  The causal structure in its 
current form is not easily readable but does show five factors unconnected to the remainder of 
the factors.  The three outcome factors are highlighted in yellow to distinguish their placement.  
Such a causal structure from a Search box may include undirected edges, directed edges and bi-
directed edges.  Although this graph may provide causal answers for any of the possible 
relationships among factors, the authors next focus on the Markov blankets surrounding key 
factors of interest. 
 
Figure 11 shows the Markov blanket for the set of three outcome factors using the PC-Stable 
search algorithm.  As may be seen, only two other factors comprise the Markov blanket:  1) 
Stress from Overtime and 2) Good Improvement Data collected within the team.  Thus, all 
influences on the three outcome factors must come through these two factors.  As such, the 
three outcome factors are independent of all the other factors not in the Markov blanket, 
conditioned on these two factors. 
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Figure 10 Overall Causal Structure from PC-Stable 

 

 
Figure 11 Markov Blanket for Set of Outcome Factors using PC-Stable 

Figure 12 shows that one may also analyze the Markov blanket of any other factor in the causal 
structure.  Here, one may see the Markov blanket for the factor, Quality Suffers, using the PC-
Stable search algorithm.  Hence, one can learn more about how the causal influences reach the 
factor, Quality Suffers.  In this case, Quality Suffers can only influence factors outside of the 
Markov blanket through the factors in the Markov blanket. 
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Figure 12 Markov Blanket for “Quality Suffers” Factor using PC-Stable 

Figure 13 and Figure 14 depict the same results for the Markov blanket of the three outcome 
factors but using the FGES score-based search algorithm instead of the PC-Stable constraint-
based search algorithm.  There is agreement in the FGES and PC-Stable results of the Markov 
blanket for the three outcome factors except that PC-Stable additionally identifies a causal 
relationship between Quality to Cost and a causal relationship from Stress from Overtime to 
Cost.  The Markov blanket for Quality Suffers agrees between both search algorithms with the 
exception of the role of two factors:  LackConsensusImpacts and IndivUnhappyTasks.  The 
authors do not necessarily expect to see unanimity across search algorithms but treat the 
collective results as informative on the causal structure and as motivation for further study.   
 
 

 
Figure 13 Markov Blanket for Set of Outcome Factors using FGES 
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Figure 14 Markov Blanket for “Quality Suffers” Factor using FGES 

 
5.4. Case Study 2 Conclusions 
It remains interesting that both causal searches identified the causal structure among the three 
outcome factors to be:  Quality causes Schedule causes Cost.  In the FGES case, Quality also had 
a direct causal influence on Cost.  Also of interest is that only two factors directly cause the 
three outcomes, namely GoodImprovementData and StressOvertime.  Thus, outside 
intervention on the process to improve Cost, Schedule and Quality should focus on improving 
the quality of improvement data collected and used, as well as, taking action to reduce 
individual stress concerning working required overtime.  Each of these two factors can, in turn, 
be analyzed by their Markov blankets to identify the direct causes to be manipulated to change 
them as well.  This is in stark contrast to conclusions to be made from the traditional correlation 
analysis alone. 
 

6. Conclusions 

In both case, studies, interesting causal relationships were identified though the total number 
of projects or subjects involved was small (especially for Case Study 1). Both PC-Stable and FGES 
saw somewhat different but complementary, and mostly consistent relationships. 
 
We believe this paper makes a case for other systems and software researchers to begin 
employing causal search algorithms in their research. In addition to providing a few simple 
predictive relationships, the causal graphs that are produced establish a much more nuanced 
causal context for interpreting variable relationships and predictors of project outcomes than 
can be found in most uses of regression. (However, properly applied, regression is a special case 
of causal search and estimation that produces results entirely consistent with casual search and 
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estimation (Spirtes, 2010).)  Advancing beyond prediction, causal search enables the researcher 
to begin prescribing the nature of interventions that accurately define the expected changes in 
outcome factors. 

7. Next Steps 
7.1. Related to the case studies 
In both of the case studies, additional causal search activity remains to be completed including 
the use of additional causal search algorithms to corroborate results and the sensitivity analysis 
of the various inputs to the search algorithms.  To further validate the causal search findings, 
the authors would like to engage organizations to intervene and test the causal search findings 
for expected changes in the outcomes. 
7.2. Related to desired research collaboration with others 
The authors would enjoy additional research collaboration from others.  The collaboration may 
occur in different forms depending on the situation related to the data and collaborator 
interests and availability.  Several example collaboration approaches are detailed as follows: 

1) Collaborators provide the authors with access to research data and the researchers 
provide causal search results as a service, 

2) Collaborators provide the authors with access to research data and then receive training 
from the researchers and conduct causal search as a partnership with the researchers, 
and  

3) Collaborators, for proprietary and other reason, receive causal search training from the 
researchers and then perform the causal search themselves, with long distance coaching 
from the researchers, thereby respecting the privacy or confidentiality of the research 
data.  In this case, the researchers gain sanitized research results which may be 
published as sanitized causal structures. 

7.3. Further deployment and adoption by cost estimation community 
The authors would like to progress the adoption of causal search and estimation within the cost 
estimation community.  We believe that cost estimation modeling would become more 
valuable with the capability to become prescriptive in nature, thereby guiding interventions in 
active programs and in contract negotiations.  We believe cost estimation should progress far 
beyond prediction and offer greater value to cost stakeholders. 
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The Tetrad program is released under the GNU GPL v. 2 license and may be freely downloaded 
and used without permission of copyright holders, who reserve the right to alter the program at 
any time without notification.  Executable and Source code for all versions of Tetrad V are 
copyrighted, 2015, by Clark Glymour, Richard Scheines, Peter Spirtes and Joseph Ramsey. The 
Tetrad codebase is publically available on GitHub. The programmer's website can be found here 
(https://www.andrew.cmu.edu/user/jdramsey/ ). 
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Appendix A:  Binary Questions of Random Weekly Team Surveys 
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Please read each question carefully and answer with regards to your team's leadership during 
the past week: 

 Yes (1) No (2) 

Were you unclear about any 
of the primary team goals? 

(3) 
    

Were you motivated by your 
team leader to accomplish 

the task at hand? (4) 
    

Did your team leader 
properly deal with any poor 
performers on your team? 

(5) 

    

Were you aware of team 
conflicts that were not 

resolved in a timely manner? 
(6) 

    

Were you satisfied with how 
performance was measured 

within your team? (7) 
    

Were you satisfied with how 
your team prioritized work? 

(8) 
    

Did your team leader need 
to unexpectedly change 

direction of the team? (9) 
    

Were you aware of quality 
suffering to meet other 

goals? (10) 
    

Were you aware of team 
members unhappy with their 

assigned work? (11) 
    

Were you aware of 
important team decisions 
that were missed or late? 

(12) 

    

Were you satisfied with your 
role as defined on the team? 

(13) 
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Please read each question carefully and answer with regards to your team's operation during 
the past week: 

 Yes (1) No (2) 

Were your team meetings 
well-organized and well-run? 

(1) 
    

Were you aware of team 
members not following the 
team plan or processes? (2) 

    

Did your team reach 
consensus when needed on 

key team decisions? (5) 
    

Did you team experience 
negative impacts from a lack 

of team consensus? (6) 
    

Did you feel sufficient 
progress reviews were held 

within your team? (7) 
    

Were you satisfied with the 
quality and timeliness of 
team improvement data 

collected? (8) 

    

Was there an open climate 
to submit ideas for 
improvement? (20) 

    

Were you satisfied with the 
feedback provided to the 

team from external 
stakeholders? (21) 

    

Were you satisfied with the 
load balancing within your 

team? (22) 
    

Were you aware of team 
requirements changes not 

accompanied by impact 
analysis? (23) 
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Please read each question carefully and answer with regards to your team's operation during 
the past week: 

 Yes (1) No (2) 

Did your team need to ask 
for unplanned help from 
outside the team? (24) 

    

Were you satisfied with the 
amount of customer 

involvement, via face time, 
meeting time, or telecons? 

(25) 

    

Were you satisfied with the 
degree to which process 

guidance and checklists were 
used? (26) 

    

Were you satisfied with the 
degree to which process 
problems were tracked, 

handled and resolved in a 
timely fashion? (27) 

    

Did you collect your own 
personal quality data? (28)     

Were you dissatisfied with 
the number of tasks you 

handled or the number of 
changed tasks? (29) 

    

Were you satisfied with the 
frequency and nature of 

team communications? (30) 
    

Did you observe team 
members under unusual 

stress or working excessive 
overtime? (31) 
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Please read each question carefully and answer with regards to your team's culture during the 
past week: 

 Yes (1) No (2) 

Was there an open climate 
to submit ideas for 
improvement? (1) 

    

Was open discussion and 
individual commitment 

demonstrated within your 
team? (2) 

    

Were you satisfied with the 
degree of internal team 

cooperation? (3) 
    

Were you satisfied with the 
degree of one-to-one face 
time you experienced with 

your team leader? (4) 

    

 
 
Describe your team performance at this point in time. 

 Worse than Plan 
(1) On Plan (2) Better than Plan 

(3) Don't Know (4) 

Quality (1)         

Cost (2)         
Schedule (3)         
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