
Software Made Simple: Effort Adjustment Factors and the Accuracy of the Estimate

Jeremy Goucher

MCR, LLC

June 2018

Abstract

This research investigates the sensitivity of estimated hours for software development in relation to
effort adjustment factors (EAFs). The analysis highlights the importance of performing original data
analysis for new estimates, rather than relying on rules of thumb or industry standards. Further, a
regression method is proposed as an alternative to traditional equivalent source lines of code (ESLOC)
methods and a proof is provided to show the relationship between the regression method and ESLOC
methods. Finally, the analysis is supported with data from over thirty historic programs.

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

2

Table of Contents
Introduction .. 3

Data Set ... 3

Basic ESLOC Method ... 3

ESLOC Error ... 5

The Regression Method .. 8

Summary ... 10

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

3

Introduction
Software development cost are particularly difficult to estimate. Further, a single software intensive
project can exceed $1B. GAO reported in 2013 that “IT projects too frequently incur cost overruns and
schedule slippages…” Further, four recent DoD programs reported a combined $1.3B in cost overruns
largely due to poor cost controls, according to the GAO (Powner, 2013)1. Nearly all modern DoD projects
include some sort of software development. This research investigates the sensitivity of estimated hours
for software development in relation to effort adjustment factors (EAFs). The analysis highlights the
importance of performing original data analysis for new estimates, rather than relying on rules of thumb
or industry standards. An alternative regression based method is proposed to overcome the subjective
bias that is incurred naturally from the ESLOC method. The regression method is supported with data
from over thirty historic programs.

Data Set
This study leverages historic data from 33 Department of Defense programs spanning 2001 to 2014
across all four major branches of armed services. There are a total of 212 computer software
configuration items (CSCIs) covered by the data. They include initial software lines of code (SLOC), final
SLOC, initial hours, and final hours. The SLOC is reported by new code, modified code, reused code, and
autogenerated code. For the purposes of this study, autogenerated code is assumed to be zero effort
and is ignored. The amount of autogenerated code reported is minimal, only 10 of 212 CSCIs reported
autogenerated code. A single test case was conducted using autogenerated code and the inclusion did
not impact the results.

The size, required hours, maturity, and coding languages used varied across the programs. The largest
program required over 3 million person-hours to complete. The smallest required only 22K hours.
Approximately 50% of the observations were considered “new” efforts, the remainder were considered
“upgrade” efforts. The coding languages included Java, C, and Ada type languages, with multiple
subtypes (ex: C++ or Ada95).

The programs also include a wide array of system types. There are radar systems, satellite systems,
command and control systems, user interface systems, communication systems, among others. Further,
the data set includes systems developed by many different companies or organizations. This robust data
set is ideal for a software analysis because any programmatic bias is removed and the analysis focuses
strictly on quantitative data.

Basic ESLOC Method
Equivalent Source Lines of Code (ESLOC) is a normalized measure of the amount of code that needs to
be or has been written. The most basic ESLOC method uses effort adjustment factors to generate ESLOC,
then computes an ESLOC growth rate and productivity rate to estimate hours required. An effort
adjustment factor (EAF) is the normalized effort required to develop a line of code. EAFs are typically
categorized by new, modify, and reuse and apply to the associated type of code. The rationale behind

1. Powner, D. A. Information Technology: OMB and Agencies Need to More Effectively Implement Major Initiatives
to Save Billions of Dollars. District of Columbia: United States Government Accountability Office, 2013. Retrieved
from GAO.gov: https://www.gao.gov/assets/660/656191.pdf

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

4

EAFs is that it takes less effort to incorporate previously developed code (aka reuse code) than it does to
modify code, and less to modify code than it does to develop new code.

Growth rate is an adjustment made to an ESLOC estimate based upon the historical accuracy of the
initial estimate. It is measured by comparing the initially estimated ESLOC to the final ESLOC that is
developed on a given program. Measurements assume the same EAFs are used to compute initial and
final ESLOC values for all programs being analyzed. Though there is no inherent requirement for the
growth rate to be a positive number, it typically is a positive number.

Productivity is the number of ESLOC that can be developed in an hour. The measurement is based on
final developed ESLOC and final hours upon program completion. The measurement assumes the same
EAFs are used for all programs being analyzed.

The equations needed to compute ESLOC and estimate the growth and productivity rates are given
below.

𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝑁𝑁𝑁𝑁 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐸𝐸𝐸𝐸𝐸𝐸𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑀𝑀 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐸𝐸𝐸𝐸𝐸𝐸𝑅𝑅𝑁𝑁𝑅𝑅𝑅𝑅𝑁𝑁 ∗ 𝑅𝑅𝑁𝑁𝑅𝑅𝐸𝐸𝑁𝑁 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐺𝐺𝐺𝐺𝑀𝑀𝑁𝑁𝑡𝑡ℎ𝑅𝑅𝑅𝑅𝑡𝑡𝑁𝑁 =
𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓

𝑃𝑃𝐺𝐺𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑡𝑡𝑀𝑀𝑃𝑃𝑀𝑀𝑡𝑡𝑃𝑃 =
𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐻𝐻𝑀𝑀𝑅𝑅𝐺𝐺𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

The growth rate and productivity should be computed for each program in the data set being analyzed.
To compute estimated hours required for a new program, the estimated ESLOC for a new program will
be multiplied by the mean growth rate and the mean productivity as shown below. Keep in mind the
growth rate and productivity variables are distributed random variables with a mean and variance and
therefor these metrics introduce quantitative risk into the estimated hours.

𝐸𝐸𝐸𝐸𝑡𝑡𝐻𝐻𝑀𝑀𝑅𝑅𝐺𝐺𝐸𝐸 =
𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝐸𝐸[𝐺𝐺𝐺𝐺𝑀𝑀𝑁𝑁𝑡𝑡ℎ𝑅𝑅𝑅𝑅𝑡𝑡𝑁𝑁]

𝐸𝐸[𝑃𝑃𝐺𝐺𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑡𝑡𝑀𝑀𝑃𝑃𝑀𝑀𝑡𝑡𝑃𝑃]

EAFs have been around for a long time. One common method for developing EAFs is to determine the
amount of code that needs to be designed, written, and tested, then multiplying these by the relative
effort required for each type of effort (ie COCOMO method)2. For example, suppose it is determined
that a software developer spends 40% of their time designing code, 30% writing code, and 30% testing
code. New code requires all of this effort. Suppose the developer determines that 50% of the modified
code requires designing and coding, and 100% requires testing. Then the ESLOC equation for modified
code would be:

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑀𝑀𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑀𝑀𝑡𝑡𝑀𝑀𝑀𝑀𝑁𝑁 ∗ (. 4 ∗ %𝐷𝐷𝑁𝑁𝐸𝐸𝑀𝑀𝐷𝐷𝐷𝐷 + .3 ∗ %𝑊𝑊𝐺𝐺𝑀𝑀𝑡𝑡𝑁𝑁 + .3 ∗ %𝑇𝑇𝑁𝑁𝐸𝐸𝑡𝑡)

= 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑀𝑀𝑡𝑡𝑀𝑀𝑀𝑀𝑁𝑁 ∗ (.4 ∗ .5 + .3 ∗ .5 + .3 ∗ 1)

= 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑁𝑁𝑀𝑀𝑡𝑡𝑀𝑀𝑀𝑀𝑁𝑁 ∗ 0.65

2. Barry Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani, Bradford K. Clark, Ellis Horowitz, Ray Madachy,
Donald J. Reifer, and Bert Steece. Software Cost Estimation with COCOMO II (with CD-ROM). Englewood Cliffs,
NJ:Prentice-Hall, 2000.

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

5

Once the equation is simplified, the resulting factor is a single factor and therefor this method reduces
to the generic method described above. There is no standard way to create an EAF. One rule of thumb
commonly used includes values of 1 for new code, 0.5 for modified code, and 0.08 for reused code.
Regardless of the chosen EAFs, the subjectivity of the EAFs is a source of bias error in the cost model and
this error is demonstrated below.

ESLOC Error
The first step in measuring the error is to define the data sets for new, modified, and reused code in
order to generate growth and productivity metrics, as shown below.

𝐸𝐸𝐸𝐸𝑡𝑡𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝐸𝐸𝐸𝐸𝑡𝑡𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, and 𝐸𝐸𝐸𝐸𝑡𝑡𝑅𝑅𝑁𝑁𝑅𝑅𝐸𝐸𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are the engineering predictions for the required
SLOC to complete the program. These values are plugged into the ESLOC equation above using the
chosen set of EAFs and the resulting estimated ESLOC is computed and denoted 𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. Recall the
growth rate computation above will capture the estimating error in the estimated SLOC provided by the
engineer, therefor the estimated ESLOC is treated as a constant. Substituting the productivity and
growth rate equations into the 𝐸𝐸𝐸𝐸𝑡𝑡𝐻𝐻𝑀𝑀𝑅𝑅𝐺𝐺𝐸𝐸 equation above gives the below simplification:

𝐸𝐸𝐸𝐸𝑡𝑡𝐻𝐻𝑀𝑀𝑅𝑅𝐺𝐺𝐸𝐸 =
𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ∗ 𝐸𝐸[𝐺𝐺𝐺𝐺𝑀𝑀𝑁𝑁𝑡𝑡ℎ]

𝐸𝐸[𝑃𝑃𝐺𝐺𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑡𝑡𝑀𝑀𝑃𝑃𝑀𝑀𝑡𝑡𝑃𝑃]

Substituting and attempting to simplify the above equation is a non-trivial effort. For example, take the

Growth term in the above equation: [𝐺𝐺𝐺𝐺𝑀𝑀𝑁𝑁𝑡𝑡ℎ] = 𝐸𝐸 � 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓

�. It can be shown that 𝐸𝐸 � 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓

� ≠
𝐸𝐸�𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�
𝐸𝐸[𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓]

; at least not as a matter of fact. So any attempt to simplify the estimated hours equation

becomes difficult right from the start because the expectation operator cannot be distributed to each
term in the quotient. Therefore when trying to assess the error associated with the selection of EAFs, it’s
easier to look at a delta type equation as shown below, rather than looking to simplify the larger
equation.

The error from using EAFs can be defined as 𝐸𝐸𝐸𝐸𝐸𝐸𝑁𝑁𝐺𝐺𝐺𝐺𝑀𝑀𝐺𝐺 = 𝐸𝐸𝐸𝐸𝑡𝑡𝐻𝐻𝑀𝑀𝑅𝑅𝐺𝐺𝐸𝐸𝑓𝑓 − 𝐸𝐸𝐸𝐸𝑡𝑡𝐻𝐻𝑀𝑀𝑅𝑅𝐺𝐺𝐸𝐸𝑘𝑘 where 𝑙𝑙 and 𝑘𝑘
represent two sets of EAFs. The right hand side of this equation will look as follows:

𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓 ∗ 𝐸𝐸[𝐺𝐺𝐺𝐺𝑀𝑀𝑁𝑁𝑡𝑡ℎ𝑓𝑓]
𝐸𝐸[𝑃𝑃𝐺𝐺𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑡𝑡𝑀𝑀𝑃𝑃𝑀𝑀𝑡𝑡𝑃𝑃𝑓𝑓]

−
𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘 ∗ 𝐸𝐸[𝐺𝐺𝐺𝐺𝑀𝑀𝑁𝑁𝑡𝑡ℎ𝑘𝑘]

𝐸𝐸[𝑃𝑃𝐺𝐺𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑡𝑡𝑀𝑀𝑃𝑃𝑀𝑀𝑡𝑡𝑃𝑃𝑘𝑘]

This equation again becomes difficult to work with, but with a few assumptions there are important
inequality metrics that can be determined. Suppose all of the EAFs in set 𝑘𝑘 are larger than the EAFs in
set 𝑙𝑙, with the exception of 𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓𝑁𝑁𝑁𝑁 which is equal to one in both cases. Then all ESLOC calculations are
necessarily larger, whether predicted or historical. This is because all of the SLOC terms are the same
value and positive, and the factors being multiplied are larger, therefore each term is larger and the sum
is larger. We can also say that productivity is higher, since the numerator, ESLOC, in the productivity
calculation gets bigger while the denominator, hours, stays the same. We can summarize it as follows:

𝐸𝐸𝑀𝑀𝐺𝐺 𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓 < 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘; 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓 < 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘 𝑅𝑅𝐷𝐷𝑀𝑀 𝑃𝑃𝐺𝐺𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑡𝑡𝑀𝑀𝑃𝑃𝑀𝑀𝑡𝑡𝑃𝑃𝑓𝑓 < 𝑃𝑃𝐺𝐺𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑡𝑡𝑀𝑀𝑃𝑃𝑀𝑀𝑡𝑡𝑃𝑃𝑘𝑘

But, since both ESLOC and Productivity are increasing, it’s impossible to state whether or not
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

𝑃𝑃𝑃𝑃𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑖𝑖𝑓𝑓𝑃𝑃𝑓𝑓𝑖𝑖𝑃𝑃
 is getting larger or smaller since it depends on the size of the increase of ESLOC and

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

6

Figure 2: Cord Line Slopes

productivity relative to each other. If ESLOC increases by more than productivity, then the ratio
increases, but if productivity increases by more than ESLOC, then the opposite happens.

However, we can add an assumption to help further our progress. In typical cost estimating, the relative
size and complexity of the historical program or project from which data is drawn should be similar to
the thing we are trying to estimate. Let’s say that estimated ESLOC is very similar in size to the mean
historical ESLOC. More specifically that the new, modified, and reused SLOC components of the
E[ESLOC] equation is very similar to the new, modified, and reused SLOC components of the EstESLOC.
Then we know the estimated ESLOC term is likely increasing at a rate faster than productivity. This is
because the estimated ESLOC term is increasing at a rate very similar to historic mean ESLOC. But final
hours, which is the denominator in the productivity calculation is staying the same, therefore
productivity itself is growing at a slower rate than estimated ESLOC. Therefore we can make the
following statements given the assumptions outlined:

𝐸𝐸𝑀𝑀𝐺𝐺 𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓 < 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 𝑅𝑅𝐷𝐷𝑀𝑀 𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ≅ 𝐸𝐸[𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡]

𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓 < 𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘

𝐸𝐸[𝑃𝑃𝐺𝐺𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑡𝑡𝑀𝑀𝑃𝑃𝑀𝑀𝑡𝑡𝑃𝑃𝑓𝑓] < 𝐸𝐸[𝑃𝑃𝐺𝐺𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑡𝑡𝑀𝑀𝑃𝑃𝑀𝑀𝑡𝑡𝑃𝑃𝑘𝑘]

𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑓𝑓
𝐸𝐸[𝑃𝑃𝐺𝐺𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑡𝑡𝑀𝑀𝑃𝑃𝑀𝑀𝑡𝑡𝑃𝑃𝑓𝑓]

<
𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑘𝑘

𝐸𝐸[𝑃𝑃𝐺𝐺𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑡𝑡𝑀𝑀𝑃𝑃𝑀𝑀𝑡𝑡𝑃𝑃𝑘𝑘]

However, to determine whether or not the delta equation above is positive or negative, we still must
address the growth term. Recall that growth is measured by comparing the initial estimated ESLOC form
a historic project to the final ESLOC that was developed. We know that when the (k) set is larger than
the (l) set of EAFs, then initial ESLOC(k) is larger than initial ESLOC(l). We also know the same holds for
the final ESLOC equations. However the question remains to whether or not the ratio of initial to final is
getting bigger, which is to say whether or not final ESLOC is increasing at a rate faster than initial ESLOC.

To gain an understanding of the change in the growth rate relative to a change in the assumed EAFs,
surface plots were created for each of the 33 programs studied with the modify EAF on the X1 axis,
reuse EAF on the X2 axis, and growth on the Y axis. Again the new code EAF is left out of the analysis
because it is deterministically equal to one in all cases. Below is an example of one of these surface
plots. In this plot, a cord line has been drawn along the diagonal which represents the positively
correlated values of the modify and reuse EAF. This cord line depicts the direction of the change in the
growth rate when both EAFs increase or decrease at the same time. In order to assess the change in the
growth rate relative to a change in the assumed EAFs, the point values along this cord line was collected
for all programs and the slope of the line, relative to the modify EAF. See figure 1 for a sample plot. A
bar chart showing these slopes is shown immediately to the right of the surface plot (figure 2).

Cord
Line

Figure 1: Cord Line Sample Plot

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

7

The purpose of this exercise is to demonstrate the difficulty in measuring the change in growth rates
due to a change in the assumed EAFs. Nine of the 33 programs studied had a positive cord line slope,
implying that when both the modify and reuse EAFs increases, the growth rate also increases. For these
nine programs, when combined with the ESLOC and productivity statements above and the restrictive
assumptions put in place, we can ascertain that the estimated hours will be overstated if the assumed
EAFs are also overstated. For the remaining 24 programs, we cannot be sure whether or not the
estimated hours will be overstated, understated, or will remain approximately the same due to an
overstatement of the assumed EAFs. The issue of measurement error due to erroneously assumed EAFs
is further complicated by the cases in which the modify and reuse EAFs are wrong in opposite directions,
for example the modify EAF is overstated while the reuse EAF is understated. And all of this analysis
relies on the assumption that the expected value of the final ESLOC in the historic data set is similar to
and behaves similarly to the estimated ESLOC for the new program. Therefor the next step is to
compare residuals of estimated hours across the programs in our data set.

To assess the quality of the residuals, five sets of EAFs were used to compute growth, productivity,
estimated ESLOC, and, ultimately, estimated hours. The five sets of modify and reuse EAFs were (0.3,
0.02), (0.5, 0.1), (0.75, 0.2), (0.3, 0.2), and (0.75, 0.02). The new EAF was set to 1 as per usual. Growth
rates and productivity were computed for each of the 33 programs, using each of the five sets of EAFs.
Then estimated hours was computed for each program and each set of EAFs, using the average
productivity and average growth rate across all programs relative to each set of EAFs. The result is a set
of five predicted hours for each program which can then be compared to actual hours and residuals
computed for each set. The below graph shows these residuals as a percentage of the actual hours. The
candlestick pattern shows the highest and lowest residual factor at each end as well as the second
highest and second lowest at the top and bottom of each bar. Red bars represent cases where the
residual factor decreases as the EAFs increase and green bars represent cases where the residual factor
increases as the EAFs increase. The yellow line is the zero line which is the case in which the predicted
hours equals the actual hours and the residual is zero.

Figure 3: Residual Factors

In figure 3 above, a positive residual factor implies actual hours were larger than the residual hours and
the program would have overrun. The y-axis denotes percent over/underrun when comparing actual to

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

8

predicted values. A value of 1 implies a 100% overrun, which is to say the actual cost was twice as much
as the predicted cost. Using this methodology 21 of 33 programs would likely have had an overrun and
nine would likely have doubled their predicted hours.

Not only are there large residuals between the predicted hours and the final hours, but there is also
large variance within programs across various EAF assumptions. Programs 2, 17, and 32, circled above,
are examples of particularly large variance in the residual across various sets of EAFs. This sample data
demonstrates that assuming a set of EAFs based on industry standards or rules of thumb often results in
largely inaccurate predicted hours and relies on subjective factors.

The Regression Method
An alternative method, and one which is seemingly much simpler over traditional methods of EAFs, is to
regress hours on the three types of SLOC in a multivariate linear regression. Regression modelling is one
of the most common forms of data analysis in use for physical systems. Typically the variable of interest
is a size type, such as weight. In software the SLOC is the size and SLOC is also arguably the number one
cost driver. The proposed equation is as follows:

𝐻𝐻𝑀𝑀𝑅𝑅𝐺𝐺𝐸𝐸 = 𝛽𝛽0 + 𝛽𝛽1 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽2 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽3 ∗ 𝑅𝑅𝑁𝑁𝑅𝑅𝐸𝐸𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜀𝜀

When performing the regression, it is important to use only final hours regressed on final code counts.
This ensures only completed projects with actuals are included in the regression. DCARC identifies initial
data as being estimates at the time of contract award and therefor these values would not be
appropriate to include in a CER.

The regression method leaves the problem of addressing the growth rate. The data studied includes
both initial and final hours. The initial hours reported are the hours bid or the estimated hours at the
time of contract award. Since the proposed regression based CER is a direct measure of hours, the best
way to capture growth is by directly comparing initial hours to final hours. This ignores the errors
associated with converting from SLOC to ESLOC and focuses on the growth strictly from the initial
proposed hours to the final hours reported. In this way, the growth rate becomes a distributed random
variable which can be applied directly to the estimated hours for the new program. The interpretation of
growth remains the same - it is still a measure of estimating error in a software program.

𝐺𝐺𝐺𝐺𝑀𝑀𝑁𝑁𝑡𝑡ℎ = 𝛾𝛾 = 𝐸𝐸 �
𝐻𝐻𝑀𝑀𝑅𝑅𝐺𝐺𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓
𝐻𝐻𝑀𝑀𝑅𝑅𝐺𝐺𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

�~𝑁𝑁(𝜇𝜇𝐻𝐻 ,𝜎𝜎𝐻𝐻2)

𝐸𝐸𝑀𝑀𝐷𝐷𝑅𝑅𝑙𝑙𝐻𝐻𝑀𝑀𝑅𝑅𝐺𝐺𝐸𝐸 = 𝐻𝐻𝑀𝑀𝑅𝑅𝐺𝐺𝐸𝐸� ∗ 𝛾𝛾

The multivariable linear regression results and gamma analysis are provided below in figures 4 and 5.

Model Form: Weighted Linear model
Number of Observations Used: 33
Equation in Unit Space: Hours = 2.255e+004 + 1.173 * New + 0.3617 * Mod + (-0.03106) * Reuse
Error Term: MUPE (Minimum-Unbiased-Percentage Error)

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

9

Figure 4: Regression Results

Growth Rate (Hours Basis)
Number of Observations 33

𝜇𝜇𝛾𝛾 𝜎𝜎𝛾𝛾2 𝑡𝑡.𝑉𝑉.𝛾𝛾
1.3699 .4671 .34

Figure 5: Growth Rate Analysis

It is interesting to note that the coefficient on reuse code is negative 0.03. This implies the use of reuse
code reduces total required hours by 0.03 hours per line of reuse code. The value has a greater than
88% probability that the true mean is not zero which also means there is a greater than 88% probability
that the coefficient is a negative number. This is likely because the use of reuse code results in
efficiencies throughout the software development process.

On a final note relating to the regression method, at its core this is not particularly different from the
ESLOC method. The EAFs in the ESLOC method can be interpreted as normalized coefficients. If each
coefficient in the regression equation were divided by the coefficient on new code, the resulting factors
would be unit-less EAFs. This is inherently what the EAF is doing. The ESLOC method then adds hours
back in by dividing by productivity, which is actually just the coefficient on new code. See below
equations for proof.

Coefficient Statistics Summary

Variable Coefficient Std Dev of Coef Beta Value
T-Statistic
(Coef/SD) P-Value Prob Not Zero

Intercept 22547.7943 15474.2763 1.4571 0.1558 0.8442
New 1.1731 0.1573 0.8035 7.4574 0.0000 1.0000
Mod 0.3617 0.1877 0.2068 1.9270 0.0637 0.9363
Reuse -0.0311 0.0190 -0.1787 -1.6376 0.1122 0.8878

Goodness-of-Fit Statistics

Std Error (SE) R-Squared
R-Squared

(Adj)
Pearson's Corr

Coef
0.4806 68.98% 65.77% 0.8306

Analysis of Variance

Due To DF
Sum of Sqr

(SS)
Mean SQ =

SS/DF F-Stat P-Value Prob Not Zero
Regression 3 14.8991 4.9664 21.4987 0.0000 1.0000
Residual (Error) 29 6.6992 0.2310
Total 32 21.5983

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

10

𝐻𝐻𝑀𝑀𝑅𝑅𝐺𝐺𝐸𝐸� = 𝛽𝛽0� + 𝛽𝛽1� ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽2� ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽3� ∗ 𝑅𝑅𝑁𝑁𝑅𝑅𝐸𝐸𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐸𝐸𝑀𝑀𝐷𝐷𝑅𝑅𝑙𝑙𝐻𝐻𝑀𝑀𝑅𝑅𝐺𝐺𝐸𝐸 = 𝛾𝛾 ∗ 𝐻𝐻𝑀𝑀𝑅𝑅𝐺𝐺𝐸𝐸� = 𝛾𝛾 ∗ �𝛽𝛽0� + 𝛽𝛽1� ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽2� ∗𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽3� ∗ 𝑅𝑅𝑁𝑁𝑅𝑅𝐸𝐸𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�

𝛾𝛾 ∗ 𝐻𝐻𝑀𝑀𝑅𝑅𝐺𝐺𝐸𝐸� ∗ 𝐸𝐸[𝑃𝑃𝐺𝐺𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑡𝑡𝑀𝑀𝑃𝑃𝑀𝑀𝑡𝑡𝑃𝑃]
= 𝛾𝛾 ∗ �𝛽𝛽0� + 𝛽𝛽1� ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽2� ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽3� ∗ 𝑅𝑅𝑁𝑁𝑅𝑅𝐸𝐸𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� ∗ 𝐸𝐸[𝑃𝑃𝐺𝐺𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑡𝑡𝑀𝑀𝑃𝑃𝑀𝑀𝑡𝑡𝑃𝑃]

But 𝐸𝐸[𝑃𝑃𝐺𝐺𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑡𝑡𝑀𝑀𝑃𝑃𝑀𝑀𝑡𝑡𝑃𝑃] = 𝐸𝐸 �𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝐻𝐻𝑀𝑀𝑅𝑅𝑃𝑃𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

� = 𝐸𝐸 � 𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝑀𝑀𝑀𝑀𝑁𝑁
𝐻𝐻𝑀𝑀𝑅𝑅𝑃𝑃𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

� = 1
𝛽𝛽1�

. Recall that the purpose of the EAFs are to

normalize code to represent the same effort required to develop a single line of new code. This provides
the result shown. Therefor,

𝛾𝛾 ∗ 𝐻𝐻𝑀𝑀𝑅𝑅𝐺𝐺𝐸𝐸� ∗ 𝐸𝐸[𝑃𝑃𝐺𝐺𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑡𝑡𝑀𝑀𝑃𝑃𝑀𝑀𝑡𝑡𝑃𝑃] = 𝛾𝛾 ∗
�𝛽𝛽0� + 𝛽𝛽1� ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽2� ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽3� ∗ 𝑅𝑅𝑁𝑁𝑅𝑅𝐸𝐸𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�

𝛽𝛽1�

= 𝛾𝛾 ∗ �
𝛽𝛽0�

𝛽𝛽1�
+ 𝑁𝑁𝑁𝑁𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸 ∗ 𝑁𝑁𝑁𝑁𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸𝐸𝐸𝐸𝐸 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑅𝑅𝑁𝑁𝑅𝑅𝐸𝐸𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸 ∗ 𝑅𝑅𝑁𝑁𝑅𝑅𝐸𝐸𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�

= 𝛾𝛾 ∗ �
𝛽𝛽0�

𝛽𝛽1�
+ 𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�

𝛾𝛾 ∗ 𝐻𝐻𝑀𝑀𝑅𝑅𝐺𝐺𝐸𝐸� =
𝛾𝛾 ∗ �𝛽𝛽0

�
𝛽𝛽1�

+ 𝐸𝐸𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�

𝐸𝐸[𝑃𝑃𝐺𝐺𝑀𝑀𝑀𝑀𝑅𝑅𝑃𝑃𝑡𝑡𝑀𝑀𝑃𝑃𝑀𝑀𝑡𝑡𝑃𝑃]

Finally, consider the case where the regression model is forced through the origin, as is the case with the

ESLOC method. Then 𝛽𝛽0
�

𝛽𝛽1�
= 0 and the desired result is achieved. This reinforces the idea that the

regression method does not actually deviate from the ESLOC method, however it is objective in
measuring the coefficients applied to new, modified, and reused SLOC as well as the sensitivity of the
equation.

Summary
Software development has historically been difficult to estimate. Traditional EAF methods rely on effort
adjustment factors which are inherently subjective. This results in unmeasurable bias error and can
result in unnaturally large variance. GAO reports and the CEBoK highlight software estimating as being a
driver of risk in modern programs. This study investigated the error associated with using EAFs
leveraging data from 33 historic programs. The research shows that using a regression method rather
than an EAF method removes a significant portion of bias error and subjectivity in the software cost
estimate. The demonstrated regression shows promise because all of the parameters in the ANOVA are
within estimating norms and statistically significant. The next step in this research is to expand the data
set and begin to look at specific groups of data which are of common size, common coding languages, or
families of software products make a difference to these results. Additionally an analysis of
development methods, such as waterfall versus agile, should be pursued as more agile data becomes
available.

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

	Introduction
	Data Set
	Basic ESLOC Method
	ESLOC Error
	The Regression Method
	Summary

