
1

Predicting Maintainability for Software Applications Early in the Life Cycle
By Cara Cuiule

PRICE Systems, L.L.C.

Abstract
Maintainability is defined as the difficulty of altering a software system’s source
code, thus it is tied very closely to the concept of software maintenance. The
following research is an investigation of the methods used for measuring this
characteristic (including the Maintainability Index). Guidance on how
maintainability affects maintenance effort will be proposed. This will be followed
by a discussion of which metrics could possibly predict maintainability early in
the life cycle.

Introduction

As software systems age, it becomes critical to determine how much effort will be needed to
perform maintenance. Maintainability has the potential to help measure maintenance effort, but
no model describing a relationship between both has been perfected yet. Therefore, the purpose
of this paper is twofold: to provide guidance on how to interpolate maintainability for a software
system at the beginning of the life cycle, and to discuss its relationship with maintenance effort.

The first section of this paper will give a description of maintenance while the second will
define maintainability and its sub characteristics. Next, a brief overview of studies that measure
maintainability will be given, followed by a discussion on how maintainability is tied to
maintenance effort. Then, measuring maintainability near the beginning of the life cycle will be
examined. After that, additional research will be recommended followed by a conclusion.

Part 1: Definition of Maintenance

Maintainability is tied very closely to maintenance, which makes up the last stage of the
Software Development Life-Cycle (SDLC) [1]. Maintenance is defined as any change made after
the system’s initial release [2, p. 2]. There are multiple ways software maintenance effort hours
can be predicted, but none of the currently proposed methods are an industry-accepted approach
[3, p. 1]. According to experts, a general rule is that this phase of the software life cycle typically
costs about 60% of the entire budget of a system’s lifetime [4, p. 9].

There are four types of maintenance:

 Adaptive – changes made to a system so it interacts properly with external parts such as
government laws, hardware or third-party applications [5, p. 36]

 Corrective – work done to eliminate bugs within the system
 Perfective – adding new features to the system or adjustments to make it more

maintainable
 Preventive – adjustments made to the system to fix underlying issues [2, p. 4]

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

2

By these definitions, maintainability is specifically tied to perfective maintenance.

Part 2: Definition of Maintainability and its Use

The International Organization for Standardization/International Electrotechnical
Commission (ISO/IEC) developed international standards that define maintainability as the
“degree of effectiveness and efficiency with which a product or system can be modified by the
intended maintainers” [6]. Maintainability is composed of sub characteristics, which break it
down further. The most recent definitions presented by the ISO/IEC are below:

 Modularity – how much of an issue it is to change one part of the system based on how
it affects the other parts

 Reusability – how often parts can be used again in separate components or systems
 Analyzability – ease of figuring out how a change will be made and how it will affect the

system
 Modifiability – ability to change a system without creating bugs or decreasing quality

(also tied to modularity and analyzability)
 Testability – ability to create and meet standards for testing [6]

There are two types of quality attributes for software: internal and external. Depending on
how it is viewed, maintainability can be considered either. It can be considered an internal
attribute if it is only measured using properties within the system. When additional information
outside the system is used to develop a rating, such as staff related characteristics or maintainer
guidelines, then it is viewed as an external quality attribute [5, pp. 260-261]. Since the sub
characteristic analyzability observes the quality in terms of how it is viewed by the maintainer,
we would like to observe maintainability as an external quality attribute for the purposes of our
analysis.

If viewed as an external attribute, maintainability can only be measured once the
development of the system is nearly finished. This is because of the amount of source code
metrics needed to measure external qualities [7]. Briand et al. [8] suggests that it is possible to
use design metrics to interpolate maintainability [p. 388]. This will be discussed further in a later
section.

Maintainability is calculated by workers in the software industry for multiple reasons.
Maintainers working on the code use this quality attribute so they can figure out which modules
are weak and need work done [9, p. 44]. This can end up saving effort and cost if a problem is
caught early [10, p. 367]. In addition, it is used as a second opinion to help software engineers
know if they’re doing their job properly [11, p. 31].

Part 3: Notable Methods of Measuring Maintainability

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

3

There are multiple ways this metric has been measured throughout the years, using two types
of models: those that have a numerical output and those that do not. This study will focus on the
former. Similar to maintenance effort prediction, there is no standard way to measure
maintainability [10, p. 375]. Most numerical models use some combination of the following:
design metrics, source code metrics, and expert opinion. It is important to note that this section is
not a comprehensive list of every significant maintainability model, but a brief overview of ones
that use the distinct categories of metrics.

The most referenced model that uses source code metrics is called Maintainability Index
(MI), discussed in many articles (e.g., [10], [12], and [13]). MI was initially proposed by Oman
and Hagemeister, and was originally validated against professional opinion and eleven real
systems [13, p.14]. A modified version of this equation is even used in programs such as
Microsoft Visual Studios [14]. The original equation was modified several times after its
introduction, but generally a score in the range of 65-85 indicates average maintainability. Scores
below and above that range suggest low or high maintainability, respectively [12, p. 15]. The
most popular deviation of their model is the following:

𝑀𝐼 = 171 − 5.2 ∗ 𝑙𝑛(𝑎𝑣𝑒𝑉) − 0.23 ∗ 𝑎𝑣𝑒𝑉(𝑔’) − 16.2 ∗ 𝑙𝑛(𝑎𝑣𝑒𝐿𝑂𝐶) + 50.0 ∗ 𝑠𝑖𝑛√2.46 ∗ 𝑎𝑣𝑒𝐶𝑀

Where the independent variables are the averages calculated for every module:

 aveV = Average Halstead Volume
 aveV(g’) = Average McCabe’s extended Cyclomatic Complexity
 aveLOC = Average Lines of Code (LOC)
 aveCM = Average percent of lines of comments [12, p. 15]

Note that Halstead Volume and Cyclomatic Complexity can be studied further in [15] and
[16]. For a more critical review of MI, see [12] and [17, pp. 2-4].

Some researchers have looked at measuring maintainability by assigning source code metrics
for its sub characteristics as defined by ISO/IEC. Members of the Software Improvement Group
(SIG) created a model that assigned specific aspects of the code to the sub attributes of
maintainability defined in ISO/IEC 9126. Some of the inputs were similar to those used in the
MI model, such as LOC, the percent of code reused, complexity (also measured by Cyclomatic
Complexity), and the percent of code covered by quality unit tests. The creators of this method
claimed it was better than MI, since it indicates specifically what is wrong with the system and
how can be made more maintainable [17, pp. 5-7]. This model was later tested and verified in
[13].

There have also been models using only design related metrics. Design-level metrics such as
control flow complexity and fan-out can predict error rate, which is related to maintainability
[10, pp. 373-374]. The study detailed in [18] developed a maintainability model for modules
between 1-2 KLOC of size using metrics that measure average data flow, fan out, and
Cyclomatic Complexity [p. 252]. Lu et al. [19] developed a case study that found a relationship
between class level diagrams and their developed maintainability measure. They also briefly

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

4

describe other studies that have measured design metrics for object oriented software [pp. 53-
54].

There are other studies that have looked at creating a model with the aid of expert opinion.
Bakota et al. [20] used multidimensional probability-based distributions tied with expert opinion
to develop a model. Their model demonstrates the relation between lower-level attributes and the
sub characteristics of maintainability to approximate a maintainability score [p. 6].

There are other models various academic and industry professionals have utilized to estimate
maintainability. Many of these are detailed in reviews such as [10] and [21].

Part 4: Methodology/Guidance on How Maintenance Effort May be Affected by
Maintainability

If there is a relationship between maintenance effort and maintainability, then drivers of
effort could be easily related to maintainability. Unfortunately, very few studies observe the
relationship between these two metrics. In theory, as the maintainability of a system or a part of
one goes up, the maintenance effort associated with doing work on it goes down. But is this
accurate?

As stated before, expert opinion uses maintainability to gauge maintenance effort so that
problematic sections of code can be managed early and thus save cost [10, p. 367]. This method
assumes that the idea proposed above is true. In addition, the experience of those in the field
conclude that a program that has a higher maintainability will be associated with a lower amount
of maintenance effort [22, p. 300].

Several studies that used quantitative data make assumptions about this relationship. A
handful of these investigations use effort hours as a measurement to gauge maintainability itself.
This is true for two experiments, which assumed that lower effort hours meant that a system was
more maintainable [23, p. 107], [24, p. 135]. The only experiment that attempted to tie these two
characteristics was [25], which created a model where expert opinion generated a number to
measure maintainability. In this experiment, maintainability had a positive relationship with
effort of design and requirements analysis, but an inverse relationship with the effort of coding a
change [pp. 1, 3-4].

For the purposes of this paper, a relationship between these two metrics will be the same as
what expert opinion generally surmises; it will be assumed that the higher the maintainability,
the less maintenance effort hours may be required to make changes on a given system.

Part 5: Promising Metrics for Estimating Maintainability at the Beginning of the Life
Cycle

As stated before, one of the purposes of this paper is to find or propose a method for
estimating maintainability at the beginning of the SDLC, such as during the requirements

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

5

analysis phase or the design phase. High-level decisions, such as which personnel and
programming languages are chosen, must be made before the system is implemented. For further
reading on the life cycle, see [1] and [26].

Out of the models summarized in Section 3, the only ones that can be used for predicting
maintainability early in the life cycle are the ones that measure maintainability in its design
phase. However, it may be possible to suggest other metrics that may be useful for predicting
maintainability that can also be determined during the early phases. In this section, the discussion
centers on two types of metrics: source code and external.

Based on materials collected for this paper, there are two types of source code metrics that
could indicate maintainability very early in the life cycle: size-related and if the programs within
the system are written in an object oriented language. These will be described in detail below.

LOC is a common maintainability predictor successfully used by researchers [10, p. 373].
This makes sense since the larger the system is, the more difficult it would be to understand or
make a change. One study claims it is the most effective predictor of maintainability for their
experiment [23, p. 110]. There are also claims that that size is tied to maintainability mainly
through the sub-characteristic of analyzability [17, p. 4]. Similarly, LOC is one of the better
predictors of comprehension in an experiment done by Nishizono et al. [27, pp. 3,7]. However,
some models did not find a strong correlation between maintainability and size metrics,
specifically in [25, p. 2] and [28, p. 11]. Since expert findings generally tend to indicate that size
metrics can be used to measure maintainability, we will assume there is a relationship between
the two.

Another aspect is the use of an OO language. Previous research done by Dash et al. proposes
that using an OO language leads to a more maintainable system [29, p. 209]. Lim et al.’s [24]
work found that between two “real-world” systems with the same functionality, the OO system
was judged to have a better maintainability, where maintainability was measured by effort and
volume. However, they pointed out that their conclusion may be due to the use of superior design
practices along with the use of an OO language [p. 136].

There are some external factors that might have an impact on effort (and thus
maintainability) but sufficient research has not been conducted to support any claims. For
example, there have been various environmental computing factors suggested that can impact
maintenance effort such as the amount of operating systems, but these were merely theories that
were never verified [30, pp. 102-103]. Another external characteristic of a maintenance team that
could possibly be beneficial to maintainability is the use of a standard practice such as the
Software Maintenance Maturity Model (SMmm), whose framework is meant to be a supplement
to the Capability Maturity Model Integration (CMMI) [31, p. 23].

The CMMI guidelines are only aimed at improving development [32]. This could still be
beneficial to predicting the maintainability of a system. A study done in [33] found that using the
CMMI can generally improve the productivity and quality of an organization and its output by
60% and 50%, respectively [p. 5]. However, not all of the organizations in the study used the
CMMI for improving software processes, as CMMI is a general set of guidelines that was used

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

6

for other processes as well as those related to hardware. Plus, there was no standard method
across the organizations that gave data for measuring productivity and quality [pp. 20, 38]. Based
on this study, it could be interpolated that if the developers of a software system use CMMI, then
the system should have less faults. Less faults would improve the sub characteristic of testability,
therefore making the system easier to maintain.

Since the SMmm is related to the CMMI, it can also be interpolated that organizations that
use the former would have better productivity levels and thus lower maintenance effort.
However, the effect that SMmm potentially has on quality or productivity has not been validated,
although the model’s framework has been vetted by multiple organizations [34, p. 21]. However,
there has also been research claiming that improving processes (which may be done with the
help of models like the two mentioned above) might improve productivity and quality of a
system. It is important to note that this study only looked at one organization over a 39-month
period [35, pp. 3-4].

There are also other personnel related factors that might influence maintainability. From their
experience, Hayes et al. [22] offers recommendations for aspects of creating parts of a system
that increase or decrease maintainability. Adhering to good coding and architecture practices,
being clear with rules and standards, and focusing effort on the most important modules help to
create sections of the system with good maintainability [p. 319]. These suggestions should be
applicable to both the development and maintenance phases as code is still being written during
both phases, although coding practices would probably have a more significant impact during
development. While their advocacy for the use of good coding styles is not very detailed, other
research has investigated specific coding practices. It has been proposed that using design
patterns may improve quality, but various research on the topic is contradictory [36, p. 3].

Part 6: Further Recommendations

As it stands now, a universal measure of maintainability has not been developed, let alone a
model that is useful in predicting maintainability early in the life cycle. In addition, a clear
relationship between this metric and maintenance effort must be defined before maintainability
can be used as a predictor of effort. However, expert opinion indicates that parts of the code with
higher maintainability have less maintenance work done on them. As explained earlier, one study
[25] found that maintainability had a positive relationship with two phases of maintenance
(design and requirements analysis), and a negative relationship with one (coding). This is only a
single study and more research should verify these ideas.

As stated earlier in this work, observing maintainability as an external characteristic means
that it can’t be measured until development is completed. There are certain aspects of a software
system and development/maintenance team that could guide an estimation of maintainability.
This includes size, and the use of good coding practices and processes. The use of an object
oriented language might improve maintainability, but this might be only when it is used along
with efficient design practices. It would be helpful to validate the relationships these attributes

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

7

have with maintainability. Only then could a model that predicts maintainability at the early
phases of a project be developed.

While it may be unlikely that models attempt to predict maintainability at the first step of the
SDLC, studies have shown that it can be predicted at the design stage. Design properties of a
system could be discerned only once initial schematics are finished, due to metrics either taken
from “design representations” or “design process” [18, p. 250]. It is realistic to expect research to
be focused here; it would be useful to either validate current studies or to create improved
models.

Part 7: Conclusions

Studying maintainability is challenging because there is no standard way to measure this
metric. Thus, academic and industry researchers are using different models to represent it. Some
studies used metrics such as the Maintainability Index to represent maintainability while others
used maintenance effort hours or the amount of changes made to the system.

Since maintainability is impossible to measure until a system’s creation is completed, it is
difficult to try to predict maintainability before any design work is completed. Any method that
could predict maintainability early in the SDLC might measure it as a function of predicted size,
personnel/organizational characteristics (of both developers and maintainers), and the use of an
object oriented language with proper design procedures. If this cannot be done, future works
should focus on predicting maintainability after the design phase is finished, which has already
proven to be possible.

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

8

Works Cited

[1] “Software Development Life Cycle.” Department of Technology Services, State of Utah,
4 Sept. 2013, https://dts.utah.gov/standard/software-development-life-cycle.

[2] Pigoski, Thomas M. “Software Maintenance.” Guide to the Software Engineering Body
of Knowledge: Trial Version SWEBOK: A Project of the Software Engineering
Coordinating Committee, edited by Alain Abran et al., IEEE Computer Society, 2001, pp.
1–16.

[3] Hayes, Jane Huffman, et al. “A Metrics-Based Software Maintenance Effort Model.”
Software Verification and Validation Lab,
http://selab.netlab.uky.edu/homepage/hayesj_sw_maintenance_effort_csmr_04-
Revised.pdf.

[4] Bell, G. C. “Estimating Software Maintenance Costs: The O&M Phase.” 17 Sept. 2014,
washingtoniceaa.com/files/presentations/SOFTWARE_MAINTENANCE_O&M_COST.
pdf.

[5] Grubb, Penny, and Armstrong A. Takang. Software Maintenance: Concepts and
Practice. 2nd ed., World Scientific, 2003.

[6] “ISO/IEC 25010:2011.” ISO - International Organization for Standardization, Mar.
2011, www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en.

[7] Wüst, Jürgen. “Principles of Quality Modeling with Design Measurement.” SDMetrics:
The Software Design Metrics Tool for the UML, www.sdmetrics.com/QModel.html.

[8] Briand, Lionel C, et al. “Empirical Studies of Object-Oriented Artifacts, Methods, and
Processes: State of the Art and Future Directions.” Empirical Software Engineering, vol.
4, 1999, pp. 387–404. Semantic Scholar, 10.1023/A:1009825923070.

[9] Coleman, Don, et al. “Using Metrics to Evaluate Software System Maintainability.”
Computer, vol. 27, no. 8, Aug. 1994, pp. 44–49., 10.1109/2.303623.

[10] Riaz, Mehwish, et al. “A Systematic Review of Software Maintainability Prediction and
Metrics.” 3rd International Symposium on Empirical Software Engineering and
Measurement, 2009, 10.1109/esem.2009.5314233.

[11] Babu, P. Chitti, and K. C. K. Bharathi. “Assessment of Maintainability Factor.”
International Journal of Computer Science Engineering and Information Technology
Research (IJCSEITR), vol. 3, no. 3, Aug. 2013, www.tjprc.org/publishpapers/2-14-
1370415259-5.%20Assessment%20of%20maintainability.full.pdf.

[12] Liso, Aldo. “Software Maintainability Metrics Model: An Improvement in the Coleman-
Oman Model.” The Journal of Defense Software Engineering, Aug. 2001, pp. 15–17.
CiteSeerX, 10.1109/2.303623.

[13] Bijlsma, Dennis, et al. “Faster Issue Resolution with Higher Technical Quality of
Software.” Software Quality Journal, vol. 20, no. 2, 2011, pp. 265–285.,
doi:10.1007/s11219-011-9140-0.

[14] Conorm. “Maintainability Index Range and Meaning.” Code Analysis Team Blog,
Microsoft Developer Network, 20 Nov. 2007,
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-
and-meaning/.

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

9

[15] “Complexity Metrics.” Complexity Metrics, Aivosto, www.aivosto.com/project/help/pm-
complexity.html.

[16] “Halstead Metrics.” IBM Knowledge Center, IBM,
http://www.ibm.com/support/knowledgecenter/en/SSSHUF_8.0.1/com.ibm.rational.testrt.
studio.doc/topics/csmhalstead.htm.

[17] Heitlager, Ilja, et al. “A Practical Model for Measuring Maintainability.” 6th
International Conference on the Quality of Information and Communications
Technology, 2007, 10.1109/quatic.2007.8.

[18] Muthanna, S., et al. “A Maintainability Model for Industrial Software Systems Using
Design Level Metrics.” Proceedings Seventh Working Conference on Reverse
Engineering, Feb. 2000, pp. 248–256., doi:10.1109/wcre.2000.891476.

[19] Lu, Yao, et al. “Assessing Software Maintainability Based on Class Diagram Design: A
Preliminary Case Study.” Lecture Notes on Software Engineering, vol. 4, no. 1, 2016, pp.
53–58., doi:10.7763/lnse.2016.v4.223.

[20] Bakota, Tibor, et al. “A Probabilistic Software Quality Model.” 2011 27th IEEE
International Conference on Software Maintenance (ICSM), 18 Nov. 2011. IEEE Xplore,
doi:10.1109/ICSM.2011.6080791.

[21] Saini, Monika, and Mukti Chauhan. “A Roadmap of Software System Maintainability
Models.” International Journal of Software and Web Sciences (IJSWS), vol. 2, no. 3, Feb.
2013, pp. 69–73., iasir.net/IJSWSpapers/IJSWS12-359.pdf.

[22] Hayes, Jane Huffman, et al. “Observe-Mine-Adopt (OMA): An Agile Way to Enhance
Software Maintainability.” Journal of Software Maintenance and Evolution: Research
and Practice, vol. 15, no. 5, 2003, pp. 297–323., doi:10.1002/smr.287.

[23] Sjøberg, Dag I.K., et al. “Questioning Software Maintenance Metrics: A Comparative
Case Study.” Proceedings of the ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement - ESEM '12, 2012, pp. 107–110.,
doi:10.1145/2372251.2372269.

[24] Lim, Joa Sang, et al. “An Empirical Investigation of the Impact of the Object-Oriented
Paradigm on the Maintainability of Real-World Mission-Critical Software.” Journal of
Systems and Software, vol. 77, no. 2, 2005, pp. 131–138. Science Direct, doi:
10.1016/j.jss.2004.11.004.

[25] Hayes, J.H., and L. Zhao. “Maintainability Prediction: A Regression Analysis of
Measures of Evolving Systems.” 21st IEEE International Conference on Software
Maintenance (ICSM'05), 2005, pp. 1–4., doi:10.1109/icsm.2005.59.

[26] Sofia. “Software Development Process – Activities and Steps.” Semantic Scholar, 2010,
http://pdfs.semanticscholar.org/cca9/2212758621f52cff68454cf152b1e9e2fc6f.pdf?_ga=
2.239741248.212595702.1521641029-1633884844.1519243151.

[27] Nishizono, Kazuki, et al. “Source Code Comprehension Strategies and Metrics to Predict
Comprehension Effort in Software Maintenance and Evolution Tasks - An Empirical
Study with Industry Practitioners.” 2011 27th IEEE International Conference on
Software Maintenance (ICSM), 2011, doi:10.1109/icsm.2011.6080814.

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

10

[28] Hegedűs, Péter, et al. “Source Code Metrics and Maintainability: A Case Study.”
Communications in Computer and Information Science Software Engineering, Business
Continuity, and Education, 2011, pp. 272–284., doi:10.1007/978-3-642-27207-3_28.

[29] Dash, Yajnaseni, et al. “Maintainability Measurement in Object Oriented Paradigm.”
International Journal of Advanced Research in Computer Science, vol. 3, no. 2, 2012, pp.
207–213., ijarcs.in/index.php/Ijarcs/article/download/1048/1036.

[30] Schneberger, Scott L. “Distributed Computing Environments: Effects on Software
Maintenance Difficulty.” Journal of Systems and Software, vol. 37, no. 2, 1997, pp. 101–
116., doi:10.1016/s0164-1212(96)00107-0.

[31] April, Alain, et al. “SMmm Model to Evaluate and Improve the Quality of the Software
Maintenance Process.” Eighth European Conference on Software Maintenance and
Reengineering, 2004. CSMR 2004. Proceedings., doi:10.1109/csmr.2004.1281425.

[32] “About CMMI Institute.” CMMI Institute, ISACA, cmmiinstitute.com/about-cmmi-
institute.

[33] Gibson, Diane L., et al. Software Engineering Institute, 2006,
resources.sei.cmu.edu/asset_files/TechnicalReport/2006_005_001_14762.pdf.

[34] April, Alain, et al. “Software Maintenance Maturity Model (SMmm): The Software
Maintenance Process Model.” Journal of Software Maintenance and Evolution: Research
and Practice, vol. 17, no. 3, 2005, pp. 197–223., doi:10.1002/smr.311.

[35] Desharnais, Jean-Marc, and Alain April. “Software Maintenance Productivity and
Maturity.” Proceedings of the 11th International Conference on Product Focused
Software - PROFES '10, Jan. 2010, pp. 1–6., doi:10.1145/1961258.1961289.

[36] Hegedűs, Péter. “Revealing the Effect of Coding Practices on Software Maintainability.”
2013 IEEE International Conference on Software Maintenance, 2013,
doi:10.1109/icsm.2013.99.

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

