
NSWCDD/PN-18/157
DISTRIBUTION A: Approved for public release; distribution unlimited.

Impact of Scope Changes on Software Growth
Dr. Jonathan Brown

Ms. Gail Flynn

Naval Surface Warfare Center, Dahlgren Division

Abstract: A recent Software Engineering Institute (SEI) technical report, the Department of Defense Software Factbook, summarizes
historical Major Defense Acquisition Program/Major Automated Information System Software Requirements Data Report data for
programs that have experienced software growth. The mean value reported for equivalent source lines of code growth is 106%. While
accurate, this analysis captures total software growth, including the large impact of scope changes. Large, planned scope changes are
outside the definition of what should be included in software growth. This paper introduces the notion of “Pure Software Growth,” and
differentiates large, planned scope changes from traditional software growth. Several large software programs are analyzed from this
perspective to show the difference between pure and total growth and the unexpected impact this could have on estimates if not
accounted for.

Keywords: software growth, pure growth, software size estimating, requirements creep, scope creep, software cost estimating

INTRODUCTION

Problem Statement/Purpose of Study

In software cost estimating, software size growth is
expected and can have a dramatic impact on software cost
estimation models, sometimes resulting in a 1-for-1
percentage increase in the final cost estimate. Historically,
cost and software size estimators have attempted to predict
software growth using subject-matter expert inputs and more
recently, actual analysis of Department of Defense (DoD)-
specific software trends (Jones & Hardin, 2007), (Lanham &
Wallshein, 2015), (Clark, et al., July 2017). The software
growth owing to scope that is added during the program is not
insignificant. As seen in Figure 1, studies have shown that this
scope, or requirements growth, can be upward of 160%.

Figure 1

However, as Figure 2 shows, the historical data
underlying these studies, e.g., Software Requirements Data
Reports (SRDRs), capture all types of program growth,
including growth because of scope changes (Clark, et al., July
2017) (Jones & Hardin, 2007) (Lanham & Wallshein, 2015)
(OSD CADE, 2017). By comparing the initial software size to
the final software size, the data are capturing all software
growth of the original scope but also software growth owing
to any scope that has been added to the program.

Figure 2

This paper defines and differentiates pure software
growth from total software growth to differentiate between
software growth of the original scope and growth added by
new scope. This paper also analyzes several example systems
in depth to determine the magnitude of pure growth vs. total
growth, and demonstrates the potential impact on cost
estimates and uncertainty analysis.

Definition of Software Size Growth

Software size growth is the change in software size from
the initial estimate to the final actual. This growth happens for
many reasons, as listed in Table 1.

Table 1

Module 12 of the
ICEAA CEBok®

2008 NCAA
Software
Development Cost
Estimating
Handbook

2007 Software Code
Growth (Jones)

Underestimating
required SLOC

Size projection
errors

Underestimating the
amount of new SLOC

Poor understanding of
initial requirements

Requirements
volatility

Underestimating the
software complexity

Code reuse optimism
Product
functionality
changes

Overestimating the
expected use of existing
SLOC, i.e., modified
and unmodified SLOC

New requirements
added during
development

Human errors

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

NSWCDD/PN-18/157
DISTRIBUTION A: Approved for public release; distribution unlimited.

There are similarities and constant themes for likely
causes of software growth. For our purposes, total software
growth consists of the software growth because of:

 Software size projection errors (source lines of code
[SLOC] to code A)

 Underestimated software complexity (SLOC for “a”
vs. SLOC for A)

 Optimistic amount of reuse (only need A, reuse B vs.
A+B)

 Changes in the software’s scope (only A+B, not
A+B+C)

While it is definitely a part of total software growth,
changes in its scope should be treated differently than software
growth caused by other reasons. To put it another way, this is
similar to the uncertainty in the number of end units procured
for a hardware estimate. The final number of units procured
will likely not be the initial number of units assumed;
however, no adjustment is made to the estimate for this
uncertainty. When the number of units procured is changed,
the estimate—and hopefully the budget—are adjusted
accordingly. Additionally, the actuals reported in the selected
acquisition report (SAR) are adjusted for the changes to initial
units.

Completely unrelated software scope additions are similar
and should be estimated separately and adjusted for in the
historical data. To help differentiate this scope, we will use the
definitions of growth from Module 12 of the ICEAA Cost
Estimating Body of Knowledge (CEBoK) to define pure
software growth as total software growth removing all growth
caused by changes in its scope, as illustrated in Figure 3.

Figure 3

PURE SOFTWARE GROWTH ANALYSIS

Method

To illustrate this concept and to investigate the magnitude
of pure vs total growth, we analyzed four separate programs.
The programs were selected based on relevance and
availability of data. To determine when and how much scope
is added takes additional software data outside of that
available in an SRDR. The specific data analyzed will be
discussed under each example as it varies slightly from
program to program.

Program 1

Program 1 is a large (~5000K DSLOC) complex DoD
Combat Management System (CMS) software consisting of
sensors, command and control, display, monitoring, engage,
and training. The software development Program 1 analyzed
was an upgrade to the existing CMS. The data analyzed were
monthly reports of equivalent source lines of code (ESLOC),
systems engineering technical review (SETR) packages, and
program schedule. Figure 4 shows ESLOC change over time.

Figure 4

Notice the large spike at cost report # 10. Overlaying the
SETR dates from the program schedule shows the large spike
corresponds to critical design review (CDR) and the smaller
spike corresponds to another minor review, as seen in Figure
5.

Figure 5

Reading the CDR documentation, we found scope was
added for an open architecture redesign of the monitoring
computer software configuration item (CSCI). Checking this
against monthly reports verified there was a large increase,
140K, in the monitoring CSCI ESLOC. There was additional
capability added to the Sensor CSCI. Checking the monthly
reports we found a corresponding 56K ESLOC addition to the
sensor CSCI in report #10. It was unclear what portion of this
56K from report #10 was tied to the capability increase and
what was traditional growth. We assumed all growth from
report #10 was tied to the capability increase and all growth
not in report #10 was traditional growth. No additional
increase was clearly tied to scope increases. Table 2
summarizes the results for Program 1.

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

NSWCDD/PN-18/157
DISTRIBUTION A: Approved for public release; distribution unlimited.

Table 2

Program 2

Program 2 is a large (~4000K DSLOC) complex DoD
CMS software consisting of sensors, command and control,
display, engage, and planning. The software development
Program 2 analyzed was an upgrade to the existing CMS. The
data analyzed were monthly reports of ESLOC, SETR
packages, and program schedule. Figure 6 shows the change in
ESLOC over time overlaid with the schedule.

Figure 6

Unlike the previous program, there were gaps in the
available data reports. In addition, there was a less-defined
pattern. There were no specifics given in the SETR reports for
why the ESLOC was rising and falling significantly. Judging
from the graph, it is possible scope was added prior to
preliminary design review (PDR) but removed prior to the
next milestone, since the line would be more continuous if one
shifted the CDR portion of the curve down ~75K ESLOC.
There was also an anomalous event at report #35 but no
mention was made in any report. Since no obvious scope was
added, all growth was attributed as pure software growth.
Table 3 summarizes the results for Program 2.

Table 3

Program 3

Program 3 is a large (~4000K DSLOC) complex DoD
CMS software consisting of sensors, command and control,
display, engage, and planning. The software development
Program 3 analyzed was a major upgrade to the existing CMS.
The data analyzed were quarterly reports of ESLOC, SETR
packages, and program schedule. Figure 7 shows the change in
ESLOC over time overlaid with the schedule.

Figure 7

This program exhibited a relatively smooth software
growth profile and did not trigger any immediate red flags.
However, reading the SETR packages and notes of the
quarterly reports we found there was a large change in the
capabilities of the system; an updated target was not part of
original scope. In the documentation, the developer
summarized this change added 340K ESLOC from report #8
to 13. Table 4 summarizes the results for Program 3.

Table 4

Program 4

Program 4 is a medium-sized (~2000K DSLOC) complex
DoD CMS software consisting of sensors, command and
control, display, and training. The software development
Program 4 analyzed was an upgrade to the existing CMS. The
data analyzed was 15 software metrics reports spanning 4
years of development. Figure 8 shows the change in ESLOC
over time.

Figure 8

This data point was more challenging to analyze since we
did not have access to the SETR information for this software
development. However, the software metrics reports did
describe software growth. While most reasons listed would be
categorized as total growth (e.g., specific CSCIs required more
updates than anticipated, one CSCI’s actuals were higher than

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

NSWCDD/PN-18/157
DISTRIBUTION A: Approved for public release; distribution unlimited.

estimated), there were items identified that were direct scope
increases. Scope was added for additional capability for sensor
identification and unplanned changes driven by external
interoperability changes. These corresponded to the “bump”
just before May 2013. No identified scope increase drove the
second bump in Feb 2014. Table 5 summarizes the results for
project 4.

Table 5

Examples Summary and Comparison to Recent Examples
of Software Size Growth Analysis

Not all programs analyzed were determined to have
identifiable scope increases. However, there were large
differences between the measured pure software growth and
total software growth for the programs that did experience
measurable scope increases. The total software growth
measured was also similar to the average ratios found for
several recent studies, as seen in Figure 9.

Figure 9

IMPACT ON SOFTWARE COST ESTIMATES

Methodology

A hypothetical software cost model was developed using
generic and typical inputs. One year of development was
calculated in base year 2018 (BY18 $) using the model
illustrated in Figure 10:

Figure 10

Based on the research of Major Defense Acquisition
Programs (MDAPs) mentioned earlier, total growth was 0.79
and pure growth was 0.28. Also, if non-DCTI [design, code,
test, and integration] was varied, so was government; likewise,
if non-DCTI was fixed, so was government. ESLOC was then
changed to analyze the impacts of the choice between total
and pure growth on different program sizes.

The goal in the following subsection is to demonstrate the
choice is an important one, regardless of which growth one
chooses to use.

Point Estimate Impacts

One way to view the effects seen from this model is
displayed in Figure 11, where cost estimates obviously
increase as the effort increases, although at different rates.
Notice the estimates are largest when using total growth with
non-DCTI varied. The focus is not on the hour or dollar value
outcome but on the percentage impact to a cost model based
on software growth choice, total or pure.

Figure 11

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

NSWCDD/PN-18/157
DISTRIBUTION A: Approved for public release; distribution unlimited.

Figure 12 reflects results when non-DCTI fixed and
variable methods are crosschecked at 50K ESLOC only. We
can clearly see the impact the choice between pure and total
estimate can have on one’s software development effort,
dependent on the size of the effort.

Figure 12

According to these results, as development efforts
increase in size and the only variation in a model is the choice
between pure growth (28%) and total growth (79%), using
variable non-DCTI could result in a 40% difference in the cost
estimate no matter the program size. If using a fixed non-
DCTI, however, the difference in the cost estimate increases,
approaching about 40%, as the size of the effort increases.

Figure 13 reflects results when non-DCTI fixed and
variable methods crosschecked at 250K ESLOC only.

Figure 13

Figure 14 reflects the results when non-DCTI fixed and
variable methods crosschecked at all ESLOC tested.

Figure 14

The results shown, based on our model, indicate that one
would expect between a 15 and 40% difference for an MDAP
software development cost estimate using total growth instead

of pure growth; the larger the software development effort, the
greater the difference between the cost estimates.

Cost Uncertainty Analysis Impacts

The subsequent subsection demonstrated the large impact
using pure vs. total software growth can have on a cost model
point estimate. It can also have an impact on risk bounds.
Assuming an analyst has collected data on relevant historical
examples of software growth and completed the analysis to
calculate the pure and total software growth, there are five
possible combinations that we considered for risk analysis, as
seen in Figure 15.

Figure 15

These options represent possible software growth
outcomes, but next we’ll determine if any of first four
represent possible outcomes that should be captured in an
uncertainty analysis. To frame this discussion, we use the
three categories of uncertainty described in the Joint Agency
Cost Schedule Risk and Uncertainty Handbook (JA CSRUH):

 Section 1.3.1, “Uncertainty to be Captured”
 Section 1.3.3, “Uncertainty That Could be Captured”
 Section 1.3.4, “Uncertainty That Should Not Be

Captured”

The easiest two options to discuss are L-Pure, PE-Pure,
H-Pure (Option 1) and L-Total, H-Total, PE-Total (Option 4)
cases. In each case, the endpoints (or statistics) of the set are
either pure or total, and the analyst has determined either pure
or total software growth is the correct one to be captured.
Option 1 reflects no scope creep, only pure growth; Option 4
reflects a situation in which the analyst believes the program
(and/or all programs) will have scope creep. These are both
valid and represent the minimum uncertainty for software
growth since this range capture the uncertainty in the software
growth equation. Capturing the uncertainty in the estimating
equation falls into Section 1.3.1.

The other two options represent a mix of pure and total
software growth concepts. We first examine L-Pure, PE-Total,
H-Total (Option 3). Using total software growth as the point
estimate, the analyst has assumed software growth owing to
scope creep is the most likely outcome. In that case, the
correct bounds would be L-Pure, H-Total since it is possible

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

NSWCDD/PN-18/157
DISTRIBUTION A: Approved for public release; distribution unlimited.

for a program to be completed without scope creep. This puts
this option into Section 1.3.1. As we mentioned earlier, this
scenario is similar to the L-Total, PE-Total, H-Total, since L-
Pure and L-Total are similar.

The most interesting case is L-Pure, PE-Pure, and H-Total
(Option 2). By definition the difference between pure and total
software growth is scope increases or scope creep. This is
explicitly called out in Section 1.3.3. Since scope creep is
uncertain but possible, it should be included in the upper risk
bounds or risk statistics for software size growth.

Figure 16 displays the results of our hypothetical dataset
for the different options mentioned above. These estimates
were calculated using Tecelote Research Inc.’s ACEIT RI$K
software.

Figure 16

Figure 16 reflects probability allocated at 50%, and
Figure 17 reflects probability at the mean. Again, the dollar
value is not as important in this study as is the magnitude of
the impact the risk bound choice can have on the cost
estimate.

Figure 17

 Figure 18 clearly points out the largest differences
between the options and Option 4.

Figure 18

Option 4 was considered as the base option because total
growth is most commonly used. Regardless of ESLOC, one
can see from Figure 18 that the difference of software
development cost estimates between base option and Option 1
is obviously much larger than between base option and Option
2 or Option 3.

These results all point toward a conclusion that Option 1
(using pure growth only) is not advisable in any case for
MDAPs since it can lead to underestimation, but Option 2 (L-
Pure, PE-Pure, and H-Total) has risk bounds that analysts need
to consider since it can lead to significant differences in the
estimate, irrespective of a program’s size.

Another possibility that was not assessed with our model
was Option 5. This option involves using pure growth only in
the uncertainty for software growth but adding a risk event to
the model where scope creep occurs. This would require an
additional assumption to quantify how likely scope creep is to
occur on a given program.

CONCLUSIONS

The goal of this research was to define the concept of
pure software growth and to demonstrate the importance of
choosing between using pure or total growth in an estimate.
Three of four examples in this paper exhibited scope growth
that accounts for a large percentage of total software growth
measured for each program. One program exhibited no
measurable scope growth. While it is only a small sample, it is
likely similar to what one would encounter using a much
larger dataset like the SRDR database.

Given the potential impacts to the cost estimate, as
demonstrated, it is important to document whether total
growth or pure growth is used in a cost estimate. Even if total
growth is used, it is important to document that a portion on
the software growth is avoidable if scope creep can be avoided
in a program. If there is separated pure vs total software
growth, analysts can quantify how much costs can be avoided.
It is also essential to document risk boundaries and the
assumptions used to support them.

FUTURE WORK

The programs analyzed in this research were only in the
real-time, command and control domain. It would be judicious
to also analyze programs in other real-time domains and in the
super-domains of Engineering, Support, and Automated
Information Systems.

REFERENCES

Clark, B., Miller, C., McCurley, J., Zubrow, D., Brown, R., &
Zuccher, M. (July 2017). Department of Defense
Software Factbook. Software Engineering Institute,
Software Solutions Division. Hanscom AFB, MA:
Carnegie Mellon University. Retrieved from
http://www.sei.cmu.edu

Jones, R. P., & Hardin, P. (2007). Software Code Growth:
New Approach Based on Historical Analysis of
Actuals. ISPA/SCEA Joint Annual International

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

NSWCDD/PN-18/157
DISTRIBUTION A: Approved for public release; distribution unlimited.

Conference and Workshop (p. 15). New Orleans, LA:
Technomics.

Lanham, N., & Wallshein, D. (2015). Exploring DoD
Software Growth: A Better Way to Model Future
Software Uncertainty. ICEAA Professional
Development and Training Workshop (p. 18). San
Diego, CA: Naval Center for Cost Analysis.

OSD CADE. (2017, 10). SRDR Data Compilation. SRDR
Data Compilation as of 20171016. Retrieved from
https://www.osd.cade.mil

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

