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Introduction

• The focus of this presentation is on enhancing risk 
calibration methods

• We discuss risk calibration and compare it with input-
based approach to cost risk

• Underestimation of risk, especially early in a project’s 
life-cycle, provides motivation for risk calibration

• Current risk calibration that are commonly used rely 
on either two-parameter normal or lognormal 
distributions

• We can provide better calibrations using a three-
parameter lognormal distribution

• We provide a variety of ways to calibrate risk using a 
three-parameter lognormal along with several 
examples of how to apply this technique
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Taxonomy of Cost Risk Methods

• Cost risk methods are generally of two types:

• Input-based

• Output-based

• Input-based

• This is the more common approach to analyzing cost
risk

• Involves assessing uncertainty on one of most
independent variables in a parametric equation

• Risk/uncertainty is assigned to the inputs and then
aggregate using simulation or method of moments

• Output-based

• Not as common but very valuable approach

• Involves assessing uncertainty on a point estimate of
cost © 2017 Galorath Incorporated 3
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Taxonomy of Cost Risk Methods (2)

• Output-based methods include:

• Risk-scoring (Subjective)

• Examples include Intelligence Community Cost Analysis 
Improvement Group (Gupta 2003) and Missile Defense 
Agency in the 1990s

• Calibration to historical cost growth (Empirical)

• Examples include Quick Risk (Smart 2011 & MDA Cost 
Handbook 2012) and the Enhanced Scenario-Based 
Method (Garvey et al. 2012)

• There are many ways to combine the two approaches

• The Missile Defense Agency has been successfully using 
a risk calibration approach at the WBS level for several 
years (Boone and Crowe 2013) and then aggregating 
these risks to the total system level
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Motivation

• There is a tendency to significantly 
underestimate risk early in a program’s lifecycle

• See Taleb’s Black Swan (2007) and Hubbard’s 
Failure of Risk Management (2009)

• Drives need for calibration of risk to empirical data

• Multiple authors have presented calibration 
methods

• Smart’s Quick Risk (2011) and Garvey’s 
“Enhanced Scenario-Based Method” (2012)

• These methods focus on two-parameter 
lognormal and normal and the system-level
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Motivation (2)

• Multiple cost growth studies have shown that 
cost risk is best modeled by a three-parameter 
lognormal

• Smart (2011), Prince (2017)

• Expanding on work first presented in “Covered 
with Oil: Incorporating Realism in Cost Risk 
Analysis” (Smart 2011), the author explains in 
detail how to calibrate risk to a three-parameter 
lognormal

• There is also a need to calibrate risk at the WBS 
level; we present a method for doing this that 
has been successfully used at the Missile Defense 
Agency for several years
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Underestimation of Risk

• We tend to confuse predicting the future with explaining 
the past

• Explaining the past is easy but predicting the future is 
much more difficult

• “Prediction is very difficult, especially about the future.” –
Physicist Niels Bohr

• However we often confuse our ability to explain the past 
with the ability to predict the future

• Leads us to be overconfident about the future and 
underestimate risk

• “Generals always fight the previous war.”

• Nassim Taleb calls this the “narrative fallacy” (Taleb 2007)

• Andy Prince also has an excellent presentation at this 
conference that goes into more detail (Prince and Smart 
2018)

© 2017 Galorath Incorporated 7
Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



Narrative Fallacy - Illustrated

Source: Sergio Aragones
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Risk Perception Vs. Risk Reality

• Risk is not static over time, but evolves as the project 
matures

• The conventional wisdom is that uncertainty shrinks 
over time
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Risk Perception Vs. Risk Reality 
(2)

• However, this is typically not what happens in
terms of how risk is perceived and
measured/estimated

• More typical is for rosy optimism to prevail early
in a project’s life cycle

• High amounts of heritage

• Few known risks

• Many of the true risks in the project are not
uncovered until the details of the design take
shape

• As the saying goes, the devil is in the details!
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Risk Perception Vs. Risk Reality 
(3)

• For example, early in the project engineers 
determined that there was a serious technical 
issue that required a design fix

• The identification of these kinds of risks 
widens the S-curve as they are discovered, 
leading to an increase in the amount of 
uncertainty, which widens and flattens the S-
curve
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Risk Perception Vs. Risk Reality 
(4)
• The true way in which risk is measured does not 

appear to be a cone at all, but more like a diamond

• Risk perception starts out narrow, then widens to a 
peak around CDR, then narrows as the project 
approaches completion
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Example of Risk Measurement 
Disconnects
• There is often a severe disconnect between the cost 

risk analysis and the final cost

• Tethered Satellite System Example:
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Second Example of Risk 
Measurement Disconnects
• Many early risk estimates were criticized because 

they did not include correlation, and used triangles 
with limited variation to model uncertainty, among 
other issues

• However, even accounting for these concerns, it is all 
too common that we underestimate risk in the early 
stages of a program’s life cycle

• I program that I worked on for several years had the 
issue that the final budget was higher than the 95th

percentile of the first four S-curves that we 
developed 
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Second Example of Risk 
Measurement Disconnects (2)
• S-curves widened as the project matured, accounting 

for a greater increase in understanding of the risks 
involved and as optimistic heritage assumptions gave 
way to reality
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Calibration Example

• An S-curve calibrated to empirical cost growth data
put the final budget at approximately the 80th

percentile
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The Use of Calibration

• The Joint Agency Cost Schedule Risk and Uncertainty 
Handbook (2014) recommends input-based methods 
as a primary risk methodology

• However, for the reasons mentioned on previous 
slides, calibration should be considered as a primary 
risk methodology early in a program’s life-cycle

• At the very least I strongly recommend doing a risk 
calibration for programs prior to full-rate production 
as a sanity check
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Cost Growth and Cost Risk

• Cost growth is cost risk in action

• Historical record of risks that have been 
realized in the past

• Variation in this growth represents the 
variation in historical costs over time 

• Calibration methods by Smart (2011a, 
2011b) and Garvey et al. (2012) are 
based on this key insight
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Empirical Cost Growth Data

• Numerous cost growth studies have shown the cost 
for development programs grow on average by 50% 
from inception to completion

• Histogram from one study (Smart 2011b)
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History of Calibration Methods

• Calibration methods to date have focused primarily 
on two-parameter normal and lognormal distributions

• In 2011 and 2012 authors presented methods on 
calibrating risk to two-parameter normal and 
lognormal distributions (Smart 2011a, Garvey et al. 
2012)

• Garvey terms calibration the “Enhanced Scenario-
Based Method” (Garvey et al. 2012) 

• Smart briefly presented a method for calibrating risk 
to a three-parameter lognormal (2011b, Smart)

• We next give an overview of two-parameter 
calibration methods

• We focus only on the lognormal as the normal 
distribution is not appropriate for modeling cost risk
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Lognormal Distribution (1)

• At both the WBS and system-level, empirical data 
indicates that a lognormal distribution is the best 
representation of cost uncertainty

• WBS level data from 1,400 CERs, from the Joint 
Agency Cost Schedule Risk and Uncertainty 
Handbook (2014):
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Lognormal Distribution (2)

• A lognormal distribution has also been found to be 
the best fit for cost growth data at the system level 
(Smart 2011b and Prince 2017):
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Calibration

• Assumes that the point estimate (PE) is equal to the 
mode, mean, or percentile of a lognormal distribution

• Use expert judgment to determine the relative 
riskiness of the estimate, as measured by the 
coefficient of variation

• The coefficient of variation (CV) is the ratio of the 
standard deviation to the mean

• CV is a scalar, unit less measure; this makes it easy 
to compare riskiness across missions regardless of 
scale
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Output-based Calibration

• Given a point estimate of cost you need to determine 
where that point estimate lies on the S-curve and the 
CV 

• Three options for the PE:

• Mode is the most likely, or peak of the distribution

• Mean is the expected value

• Percentile, which is the likelihood that cost will grow 
beyond the PE

• Cost growth studies indicate that at the beginning of 
development, the percentile of a PE is between the 12th and 24th

percentiles (Garvey et al. 2012, Prince 2017, and Smart 2011b)

• Average is the 19th percentile

• Analyst judgment needs to be applied to determine 
which assignment of the PE is most appropriate
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Determining the CV

• Historical cost growth studies indicate (Garvey et al. 2012, 
Prince 2017, Smart 2011b):

• Multiple programs

• CV = 50% at beginning of development

• CV = 30% at the beginning of production

• CV = 10% at the beginning of O&S

• Air Force programs

• CV = 40% for space and software

• CV = 30% for aircraft

• CV = 15% for large electronics systems

• Joint Agency Cost Schedule Risk and Uncertainty Handbook

• CV = 15% for “low” risk

• CV = 25% for “medium” risk

• CV = 36% for “high” risk

• CV = 47% for “extremely high” risk
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Mean: Parameters Calculation

• This is the easiest case. Your mean is set equal to 
your PE, and the standard deviation is calculated 
based on your CV:

𝑴𝒆𝒂𝒏:𝑬 𝑿 = 𝑷𝑬

𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏: 𝑺. 𝑫. 𝑿 = 𝑪𝑽 ∗ 𝑬[𝑿]

• To use the lognormal distribution in Excel 
(“LOGNORM.DIST”) you need the log space mean and 
standard deviation:

𝝈 = 𝒍𝒏 𝟏 + 𝑪𝑽𝟐

𝝁 = 𝒍𝒏
𝑴𝒆𝒂𝒏

𝟏 +
𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆
𝑴𝒆𝒂𝒏𝟐
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Mode: Parameters Calculation

• Assume that the point estimate (PE) is equal to the
most likely value of the distribution, or the mode

• Then the mean and standard deviation can be
calculated from these formulas:

𝑴𝒆𝒂𝒏:𝑬 𝑿 = 𝑷𝑬 ∗ 𝟏 + 𝑪𝑽𝟐
𝟏.𝟓

𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏: 𝑺. 𝑫. 𝑿 = 𝑪𝑽 ∗ 𝑬[𝑿]

In Log Space:

𝝈 = 𝒍𝒏 𝟏 + 𝑪𝑽𝟐

𝝁 = 𝒍𝒏
𝑴𝒆𝒂𝒏

𝟏 +
𝑽𝒂𝒓𝒊𝒂𝒏𝒄𝒆
𝑴𝒆𝒂𝒏𝟐
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Mode Calculation: Parameters 
Derivation (1)
• Let m and s denote the log-space mean and standard 

deviation of a lognormal distribution, then from the 
properties of a lognormal:

𝑷𝑬 = 𝑴𝒐𝒅𝒆 = 𝒆𝝁−𝝈
𝟐

𝝈 = 𝒍𝒏 𝟏 + 𝑪𝑽𝟐

• Solving for m and substituting for s, we find:

𝝁 = 𝒍𝒏 𝑷𝑬 + 𝒍𝒏 𝟏 + 𝑪𝑽𝟐
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Mode Calculation: Parameters 
Derivation (2)
• From the properties of a lognormal distribution:

𝑬 𝑿 = 𝒆𝝁+𝟎.𝟓𝝈
𝟐

𝑺.𝑫. 𝑿 = 𝑬 𝑿 𝑪𝑽

• Substituting for m and s and noting that 𝒆𝒍𝒏 𝒙 = 𝒙, we 

find:

𝑬 𝑿 = 𝒆𝒍𝒏 𝑷𝑬 +𝟏.𝟓𝒍𝒏 𝟏+𝑪𝑽𝟐 = 𝒆𝒍𝒏 𝑷𝑬 𝒆𝒍𝒏 𝟏+𝑪𝑽𝟐
𝟏.𝟓

= 𝑷𝑬 𝟏 + 𝑪𝑽𝟐
𝟏.𝟓

𝑺.𝑫. 𝑿 = 𝑬[𝑿]𝑪𝑽
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Percentile: Parameters Calculation

• Assign a percentile to your point estimate, and pick 
your CV

• Then the mean and standard deviation can be 
calculated from these formulas:

𝐌𝐞𝐚𝐧: 𝐄 𝐗 = 𝐏𝐄 ∗ 𝟏 + 𝐂𝐕𝟐𝐞
−𝐙 𝐥𝐧 𝟏+𝐂𝐕𝟐

𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏: 𝑺. 𝑫. 𝑿 = 𝑪𝑽 ∗ 𝑬[𝑿]
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Percentile: Parameters Derivation 

• From the properties of a lognormal, 

𝑷𝑬 = 𝒆𝝁+𝒁𝝈

𝝈𝟐 = 𝒍𝒏 𝟏 + 𝑪𝑽𝟐

where Z is the number of standard deviations from the 
mean of a standard normal to a specified percentile

• Solving for m:

𝝁 = 𝒍𝒏 𝑷𝑬 − 𝒁 𝒍𝒏 𝟏 + 𝑪𝑽𝟐
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Percentile: Parameters Derivation 
(2)

• Substituting for m and s and noting that 𝒆𝒍𝒏 𝒙 = 𝒙, we 

find:

𝑬 𝑿 = 𝒆𝝁+𝝈
𝟐
= 𝒆

𝒍𝒏 𝑷𝑬 −𝒁 𝒍𝒏 𝟏+𝑪𝑽𝟐 +𝟎.𝟓𝒍𝒏 𝟏+𝑪𝑽𝟐

= 𝒆𝒍𝒏 𝑷𝑬 𝒆
−𝒁 𝒍𝒏 𝟏+𝑪𝑽𝟐

𝒆𝒍𝒏 𝟏+𝑪𝑽𝟐

= 𝑷𝑬 𝟏 + 𝑪𝑽𝟐𝒆
−𝒁 𝒍𝒏 𝟏+𝑪𝑽𝟐

𝑺.𝑫. 𝑿 = 𝑬[𝑿]𝑪𝑽
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Example

• Suppose your point estimate is $100 million, your CV 
is estimated at 30%, and you assume that your PE is 
at the 25th percentile

• Then:

𝑴𝒆𝒂𝒏 = 𝟏𝟎𝟎 𝟏+. 𝟑𝟐 𝒆
𝟎.𝟔𝟕𝟒𝟒𝟗 𝒍𝒏 𝟏+.𝟑𝟐

≈ $𝟏𝟐𝟕. 𝟑 𝒎𝒊𝒍𝒍𝒊𝒐𝒏

𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 ≈ $𝟏𝟐𝟕. 𝟑 ∗ 𝟎. 𝟑 = $𝟑𝟖. 𝟐 𝒎𝒊𝒍𝒍𝒊𝒐𝒏
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Using SME input for CV

• One issue with applying risk analysis is that there is a
limited amount of information available to estimate
uncertainty

• Empirical cost growth indicates that the total system
CV should be between 10% and 50%

• We use three dimensions of system-level uncertainty
and calibrate it to a CV that ranges from 10% to 50%

• The next three charts present a method for risk
calibration that we successfully used at the Missile
Defense Agency for the last several years (Boone,
Crowe 2013)
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Risk Categories

• Use SME input to determine ratings for the Definition 
and Experience category, and your knowledge to of 
the Estimating Methodology
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Translating to CV

• Multiply the three values you obtained from the
previous chart (and number between 1 and 125) to
determine the overall rating
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Example

• Suppose your:

• Definition = 2: some definition, unclear requirements

• Experience = 3; 50% similar to a previous program

• Estimating Methodology = 4; analogy with good data

• Then your rating is equal to 2*3*4 = 24, which 
results in a CV equal to 32% from the table
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Output-Based at the WBS Level 

• Calibration can be applied at the system or WBS level

• CV needs to be adjusted if applied at the WBS level

• Assuming same CV for all WBS elements and 
common correlation r :

𝑪𝑽𝑾𝑩𝑺 = 𝑪𝑽𝑻𝒐𝒕𝒂𝒍
𝑵

𝑵 + 𝝆𝑵 𝑵− 𝟏

• The WBS level CV needs to be higher than the total 

CV, by a factor equal to roughly 
𝟏

𝝆
, where r is the 

correlation coefficient between all elements

• For example, if the Total CV is assumed to be 30% 
and the correlation coefficient is 60%, then the WBS 
level CV is 1.3*30% = 39%
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Output-Based at the WBS 
Level:Aggregation
• Once risk is assigned at WBS level, use aggregation 

method, such as Monte Carlo, to add the WBS risks 
to obtain a total S-curve
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CALIBRATING WITH A 
THREE-PARAMETER 
LOGNORMAL
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Motivation

• Cost growth fits a three-parameter lognormal better 
than a two-parameter lognormal.

• Three-parameter lognormal is a two-parameter 
lognormal with a location parameter added – location 
is the minimum value, for a two-parameter lognormal 
the location is equal to zero

• For a two-parameter lognormal, you are saying it is 
possible for risk to drop arbitrarily close to zero, 
which is not realistic

• In practice, there is some threshold given your point 
estimate below which cost will not drop once 
contracts are signed and the effort is started

• Three-parameter lognormal allows you to model this 
phenomenon
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Comparison with cost growth data

• Comparison of the probability of underruns

• The two-parameter lognormal overestimates the 
probability compared to the empirical data; easily 
corrected by using a three-parameter lognormal 
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Three-parameter Lognormal

• Comparison of fits of normal, two-parameter 
lognormal, and three-parameter lognormal to cost 
growth data

• Two-parameter calibration also misses the bulk of the 
cost growth distribution
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Three-parameter Lognormal (2)

• A three-parameter lognormal adds a third parameter 
for location

• The minimum value for a two-parameter lognormal is 
equal to zero

• The three-parameter lognormal is a two-parameter 
lognormal shifted by the location parameter
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Three-parameter Lognormal 
Properties
• Let l denote the location parameter for a three-

parameter lognormal. Then

𝑪𝑽 𝑿 =
𝑽𝒂𝒓 𝑿

𝑬 𝑿 − 𝝀

𝑬 𝑿 = 𝝀 + 𝒆𝝁+
𝝈𝟐

𝟐

𝝈 = 𝒍𝒏 𝟏 +
𝑽𝒂𝒓 𝑿

𝑬 𝑿 − 𝝀

𝟐

𝝁 = 𝒍𝒏 𝑬 𝑿 − 𝝀 −
𝝈𝟐

𝟐
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Using a Three-parameter 
Lognormal
• A three-parameter lognormal is easy to implement in 

Excel - once you have determined l, m, and s, you 
can calculate the value of the CDF at a value x > l as

“=LOGNORM.DIST(x-l, m, s, true)”  

• Programs such as @Risk and Crystal Ball include a 
shift factor capability that can take this into account
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Calibrating with Three Parameters

• PE is given

• Analyst makes some judgment about the location l
(suggested range is 50%-70% of the point estimate 
based on cost growth studies) 

• Analyst makes an assessment of the percentile of the 
point estimate (two-parameter guidance of 12th-24th

percentile still holds)

• Because 

𝑪𝑽 𝑿 =
𝑽𝒂𝒓 𝑿

𝑬 𝑿 − 𝝀

involves the location parameter and the guidance we 
have discussed is based on raw data (only involving           
the mean and standard deviation) we have to update 
our guidance on CVs
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Three-Parameter CV

• The three-parameter CV is affected by 

• The value the point estimate represents – percentile, 
mode, median, or lower bound and the ratio of the 
point estimate to the lower bound

• The ratio of the point estimate to the lower bound l

• Assume l=0.7*PE

• Calibrating to a percentile

• If we use cost growth studies that indicate that the 
point estimate is at the 20th percentile and the mean is 
1.5 times the point estimate, and the two-parameter 
CV = 50% then we have that

𝑽𝒂𝒓(𝑿)

𝑴𝒆𝒂𝒏
= 𝟎. 𝟓
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Three-Parameter CV (2)

𝑽𝒂𝒓 𝑿 = 𝟎. 𝟓 ∗ 𝑬(𝑿)

𝑪𝑽 =
𝟎. 𝟓 ∗ 𝑬(𝑿)

𝑬 𝑿 − 𝝀
= 𝟎. 𝟓 ∗

𝟏. 𝟓 ∗ 𝑷𝑬

𝟏. 𝟓 ∗ 𝑷𝑬 − 𝟎. 𝟕 ∗ 𝑷𝑬
=
𝟎. 𝟕𝟓 ∗ 𝑷𝑬

𝟎. 𝟖 ∗ 𝑷𝑬

≈ 𝟎. 𝟗𝟑𝟕𝟓

• This is an 87.5% increase from the 50% two-
parameter CV

• For the other calibrations we will show how the three-
parameter CV can be calculated from the inputs and 
the two-parameter CV
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Calculating the Parameters

• Given the percentile and the three-parameter CV we 
calculate the parameters of the lognormal in the 
three-parameter case as:

𝝈 = 𝒍𝒏 𝟏 +
𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏

𝑴𝒆𝒂𝒏 − 𝝀

𝟐

𝑷𝑬 = 𝝀 + 𝒆𝝁+𝝓
−𝟏 𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒊𝒍𝒆 𝝈

• Solving for 𝝁we find that

𝝁 = 𝒍𝒏 𝑷𝑬 − 𝝀 − 𝝓−𝟏 𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒊𝒍𝒆 𝝈

where 𝝓−𝟏 is the inverse of the standard normal
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Example

• PE = $100 million

• Location = $70 million

• Two-parameter CV = 50%, so three-parameter CV = 
94%

• PE is at the 20th percentile

𝝈 = 𝒍𝒏 𝟏 + 𝟎. 𝟗𝟒𝟐 ≈ 𝟎. 𝟕𝟗𝟓𝟕

• The inverse of the standard normal pdf at the 20th

percentile is approximately equal to  -0.8416 (this is 
the z-score from elementary statistics)

𝝁 = 𝒍𝒏 𝟑𝟎 − −𝟎. 𝟖𝟒𝟏𝟔 ∙ 𝟕𝟗𝟓𝟕 ≈ 𝟒. 𝟎𝟕𝟎𝟗
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Example (2)

• Calculating the linear space mean and standard 
deviation we find

𝑴𝒆𝒂𝒏 = 𝝀 + 𝒆𝝁+𝟎.𝟓𝝈
𝟐
≈ $𝟏𝟓𝟎. 𝟒 𝒎𝒊𝒍𝒍𝒊𝒐𝒏

𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 = $𝟏𝟓𝟎. 𝟒 − $𝟕𝟎 ∗ 𝟎. 𝟗𝟒
≈ $𝟕𝟓. 𝟔 𝒎𝒊𝒍𝒍𝒊𝒐𝒏
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Calibrating PE=Mode

• When calibrating a risk estimate to an analogy, the 
best choice for the point estimate may not be a 
percentile, but rather the most likely value, or mode

• The mode of a lognormal distribution is equal to 

𝑴𝒐𝒅𝒆 = 𝒆𝝁−𝝈
𝟐

• In the three-parameter case, the mode is equal to

𝑷𝑬 = 𝑴𝒐𝒅𝒆 = 𝝀 + 𝒆𝝁−𝝈
𝟐

• Given the mode and the CV we can solve for the 
parameters of the lognormal 
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Calibrating PE=Mode (2)

• As before

𝝈 = 𝒍𝒏 𝟏 +
𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏

𝑴𝒆𝒂𝒏 − 𝝀

𝟐

• Solving for m in the mode equation yields

𝝁 = 𝒍𝒏 𝑷𝑬 − 𝝀 + 𝝈2
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Example

• PE = Mode = $100 million

• Location parameter = $70 million

• Two-parameter CV = 50%

• Cost growth studies indicate that the mode is 5% 
above the initial cost, the median is 30% higher, and 
the mean is 50% higher

• Thus we assume that the mean is equal to 

𝟏. 𝟓/𝟏. 𝟎𝟓 ≈ 𝟏. 𝟒 times the point estimate

• Thus

𝑪𝑽 =
𝟎. 𝟓 ∗ 𝑬(𝑿)

𝑬 𝑿 − 𝝀
=

𝟎. 𝟓 ∗ 𝟏. 𝟒 ∗ 𝑷𝑬

𝟏. 𝟒 ∗ 𝑷𝑬 − 𝟎. 𝟕 ∗ 𝑷𝑬
≈ 𝟏. 𝟎
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Example (2)

𝝈 = 𝒍𝒏 𝟏 + 𝟏𝟐 ≈ 𝟎. 𝟖𝟑𝟐𝟔

𝝁 = 𝒍𝒏 𝑴𝒐𝒅𝒆 − 𝝀 + 𝝈𝟐 = 𝒍𝒏 𝟑𝟎 + 𝟎. 𝟖𝟑𝟐𝟔𝟐 ≈ 𝟒. 𝟎𝟗𝟒𝟒

𝑴𝒆𝒂𝒏 = 𝝀 + 𝒆𝝁+𝟎.𝟓𝝈
𝟐
≈ $𝟏𝟓𝟒. 𝟗 𝒎𝒊𝒍𝒍𝒊𝒐𝒏

𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 = $𝟏𝟓𝟒. 𝟗 − $𝟕𝟎 ∗ 𝟏 ≈ $𝟖𝟒. 𝟗 𝒎𝒊𝒍𝒍𝒊𝒐𝒏
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Calibrating to the Mean

• If we believe that the point estimate is equal to the 
mean, for example, if we have a small number of 
data points, enough to calculate a mean but not 
enough to confidently calculate a probability 
distribution, then the mean may be appropriate for 
calibration

• Recall,

𝑴𝒆𝒂𝒏 = 𝝀 + 𝒆𝝁+𝟎.𝟓𝝈
𝟐

• We need to calculate the log-space mean and 
standard deviation

𝝈 = 𝒍𝒏 𝟏 +
𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏

𝑴𝒆𝒂𝒏 − 𝝀

𝟐

𝝁 = 𝒍𝒏 𝑴𝒆𝒂𝒏 − 𝝀 − 𝟎. 𝟓 ∙ 𝝈𝟐
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Example

• PE = Mean = $100 million

• Location = $70 million

• Two-parameter CV =50%

𝑽𝒂𝒓(𝑿)

𝑴𝒆𝒂𝒏
= 𝟎. 𝟓

𝑽𝒂𝒓 𝑿 = 𝟎. 𝟓 ∗ 𝑬(𝑿)

𝑪𝑽 =
𝟎. 𝟓 ∗ 𝑬(𝑿)

𝑬 𝑿 − 𝝀
= 𝟎. 𝟓 ∗

𝑬 𝑿

𝑬 𝑿 − 𝟎. 𝟕 ∗ 𝑬 𝑿
≈ 𝟏. 𝟔𝟔𝟔𝟕

𝝈 = 𝒍𝒏 𝟏 + 𝟏. 𝟔𝟔𝟔𝟕𝟐 ≈ 𝟏. 𝟏𝟓𝟐𝟗
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Example (2)

𝝁 = 𝒍𝒏 𝑴𝒆𝒂𝒏 − 𝝀 − 𝟎. 𝟓 ∙ 𝝈𝟐 ≈ 𝟐. 𝟕𝟑𝟔𝟔

𝑴𝒆𝒂𝒏 = $𝟏𝟎𝟎𝒎𝒊𝒍𝒍𝒊𝒐𝒏

𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 = $𝟏𝟎𝟎 − $𝟕𝟎 ∗ 𝟏. 𝟔𝟔𝟕 ≈ $𝟓𝟎𝒎𝒊𝒍𝒍𝒊𝒐𝒏
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MAIMS Principle

• There is a common belief that “money allocated is 
money spent” (MAIMS)

• The central idea is that once project managers know 
how much they have been allocated, they will spend 
at least that amount, if not more

• Lockheed Martin developed a tool to allocate risk 
based on this principle (Goldberg and Weber 1998)

• Not always true, there are occasionally underruns
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Calibrating with MAIMS (1)

• When using the three-parameter lognormal, it is 
possible to set the point estimate as the minimum 
value, i.e., PE = Location

• Denote the location parameter by l

• We need two additional parameters to calibrate the 
lognormal

• Assume a mean value

𝑴𝒆𝒂𝒏 = 𝝀 + 𝒆𝝁+𝟎.𝟓𝝈
𝟐

• Assume a coefficient of variation that is the ratio of 
the standard deviation to the mean

𝑪𝑽∗ =
𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏

𝑴𝒆𝒂𝒏
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Calibrating with MAIMS (2)

• Then the CV for the three-parameter lognormal is 
equal to 

𝑪𝑽 =
𝑪𝑽∗𝑴𝒆𝒂𝒏

𝑴𝒆𝒂𝒏 − 𝝀

• We can calculate the parameters in log space via the 
following equations:

𝝈 = 𝒍𝒏 𝟏 + 𝑪𝑽𝟐

𝝁 = 𝒍𝒏 𝑴𝒆𝒂𝒏 − 𝝀 − 𝟎. 𝟓𝝈𝟐
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Example

• PE = Location = $100 million

• Mean = 1.5*PE = $150 million

• Two-parameter CV = 50%

• Three-parameter CV is equal to

𝑪𝑽 =
𝟎. 𝟓 ∗ 𝟏𝟓𝟎

𝟏𝟓𝟎 − 𝟏𝟎𝟎
=
𝟕𝟓

𝟓𝟎
= 𝟏. 𝟓

• Then

𝝈 = 𝒍𝒏 𝟏 + 𝟏. 𝟓𝟐 ≈ 𝟏. 𝟎𝟖𝟓𝟕

𝝁 = 𝒍𝒏 𝟏𝟓𝟎 − 𝟏𝟎𝟎 − 𝟎. 𝟓 ∙ 𝟎. 𝟗𝟕𝟐≈ 𝟑. 𝟑𝟐𝟐𝟕
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Example (2)

• The linear space mean and standard deviation are

𝑴𝒆𝒂𝒏 = $𝟏𝟓𝟎. 𝟎 𝒎𝒊𝒍𝒍𝒊𝒐𝒏

𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅 𝑫𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏 = $𝟏𝟓𝟎. 𝟎 − $𝟏𝟎𝟎 ∗ 𝟏. 𝟓

≈ $𝟕𝟓𝒎𝒊𝒍𝒍𝒊𝒐𝒏
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Calibration Comparison

• All four calibrations are based on similar assumptions

• MAIMS, the mode, and 20th percentile calibrations are 
similar

• Calibration to the mean is the least conservative
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Mean Mode 20th Percentile MAIMS

Mean 100.0 154.9 150.4 150.0

Standard Deviation 50.0 84.9 75.6 75.0

Location 70.0 70.0 70.0 100.0
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Calibration Comparison (2)

• Comparison of S-curves:
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Summary

• Risk perception and risk reality are often out of 
alignment, especially early phases in a project

• This is not due to a lack of credible and sophisticated 
methods for estimating cost risk

• Program assumptions influence cost estimates, 
including the likelihood that cost will increase and the 
amount that cost will increase

• Optimistic assumptions and overconfidence early in a 
program’s lifecycle are reflected in the cost risk 
analysis 

• Calibration to empirical data is a way to correct for 
this
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Summary (2)

• Cost growth is cost risk in action – by examining 
historical cost growth we can calibrate cost risk to 
reality

• Calibration methods to date have focused mostly on 
two-parameter lognormal and normal distributions 

• Smart (2011a)

• Garvey et al. (2012)

• Normal distribution is not a good choice for modeling 
cost risk in most phases, particularly development 
(Smart 2011b)

• The two-parameter lognormal also has issues, since 
once a contract has been signed, there is a lower 
bound (possibly the contract value!)
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Summary (3)

• The three-parameter lognormal overcomes the 
limitation presented by the two-parameter lognormal

• Because of this it provides a better fit to historical 
cost growth data than a two-parameter lognormal 
distribution

• The three-parameter lognormal has been briefly 
discussed before (Smart 2011b) 

• This presentation provides more details and ways to 
calibrate a three-parameter lognormal using a variety 
of assumptions for the point estimate: percentile, 
mode, mean, and as the minimum in accordance with 
MAIMS
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Summary (4)

• Recommendation – calibrate to a percentile, such as 
the 20th percentile, unless:

• You are estimating via analogy and have high 
confidence that the analogy is very similar to your 
project; in this case calibrate to the mode

• You have enough data to calculate a mean, but not 
enough to develop a full-up probability distribution; in 
this case, calibrate to the mean

• Previous calibration methods have focused on the 
system level

• Most estimates are developed at the WBS level

• We have presented a method for calibrating at the 
WBS level – this method has been successfully used 
at the Missile Defense Agency for several years
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In Case You Are Interested…

• This material in this briefing was discussed in a 
webinar a few months ago that Dr. Joe Hamaker 
(Director of NASA Programs at Galorath Federal) and 
I conducted recently, titled “Meeting Today’s Cost 
Estimating Challenges”

• You can find an electronic copy of this presentation, a 
paper on this topic, as well as a trove of other papers 
and presentations by me and Joe Hamaker at the 
following link:

http://galorath.com/meeting-todays-cost-estimating-
challenges-resources/
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