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INTRODUCTION 

With the push in recent years to merge the cost and schedule analysis disciplines, there is an 

invigorating effort underway to create the most robust, accurate models possible. This need cuts 

across the customer base impacting defense, science, construction or any high cost project.   

There remains the unanswered question that has lingered for years, if not decades: What effect 

does the budget have on schedule analysis?   

Schedule analyses typically do not consider disparities among the cost estimate, the budget, and 

the schedule. This often causes unexplainable discrepancies between cost and schedule 

assessments (Figure 1). If an independent cost estimate results in a cost (i.e. effort required) that 

is significantly higher than the budget (i.e. resources available) for that item, the overall schedule 

duration for that item will surely grow unless additional budget (resources) becomes available 

within the planned duration. This casts a shadow of doubt on all schedule activities linked to that 

WBS item.  A reasonable approach to account for this discrepancy is to calculate the effect of a 

stretch or delay in the schedule until budget becomes available to complete the work. There are 

no generally accepted methods to adjust schedule durations in response to a constrained budget.                     

The community needs a cost and schedule assessment technique that can be used to adjust the 

schedule based on the assumption that work cannot be performed until funding is available to 

pay for it. This paper introduces a method to do this.  

 

Figure 1: Visualizing the Discrepancy 
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WHERE WE BEGIN                                               

Imagine you are developing a schedule model that incorporates cost in some fashion (either a 

cost-loaded schedule model or a cost estimate with detailed schedule relations). Yearly cost 

estimate results have been viewed. Potentially, although not necessarily, an uncertainty 

simulation was completed, generating uncertainty statistics. The report was created and the 

results of the analysis show the planned finish date and costs. Potentially an s-curve around the 

finish date and average yearly costs are projected. The program manager is comfortable with the 

results and then asks: 

“Okay, so how will my schedule be affected if the budget profile is a flat $10M across the 5 

years of the project?”  

Armed with as little as the schedule, the estimated yearly cost and the yearly budget, this paper 

provides the framework for a budget-analysis model to answer that question and more, such as:   

 “Given this budget, will I be able to finish the project with my schedule contingency?” 

 “Given this budget, what is the likelihood I can finish this project on schedule?”  

 “What budget profile would minimize my likelihood of overrun?” 

The ideal scenario is to use the framework presented in this paper to preemptively reconcile the 

discrepancy between the schedule’s cost estimate and the realities of the budget to minimize the 

delay caused by the funding shortfall.  
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LAYING THE GROUNDWORK 

GROUND RULES AND ASSUMPTIONS 

Since each project has its own unique challenges, goals, and management approach, the process 

for understanding how the budget affects the schedule necessarily contains assumptions about 

the environment of the project. The method described in this paper contains these: 

1. Work cannot be performed until funding is available 

2. The estimated cost resulting from the model represents the amount of effort needed to be 

completed; this work can be delayed but not ignored 

3. Each year’s budget cannot be exceeded, work slows or stops before the budget is exceeded 

4. The budget comes from a single source and covers all the activities modeled in the 

schedule 

THE CONCEPT 

The estimated cost calculated from the schedule model represents the effort to be completed 

before the next year’s work can start. The budget provided in that year, if less than the estimated 

cost, limits the amount of work that can be done in that year. If the budget is less than the cost, 

not all the individual activities can be completed in that time span. This implies that some 

activities planned in one year are inevitably pushed out into the next year, either by adjusting the 

schedule ahead of time or unexpectedly due to the lack of funding. 

When considering the results of the model, the estimated effort for a given time period, e.g., a 

year, is easily represented by a rectangle (Figure 2). The length of which represents the duration 

and the height represents the average rate of the effort being performed. While the actual rate of 

work fluctuates monthly, weekly, even daily, the average rate provides an accurate measurement 

of the project’s progression.    

                  

Figure 2: Rectangle of Estimated Cost 

The next step is to compare the cost of the project with the budget. There may be a discrepancy 

staring right at us: we have estimated a certain cost scheduled in a year, yet we do not have the 

funding to complete all the activities planned. With the assumption that more funding is not 

available, the project will not finish on schedule (Figure 3). There are a few ways to calculate 

exactly how the schedule is affected depending on the project environment and management 

options. 
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Figure 3: Rectangle of Estimated Cost and Budget  

The various methods of adjusting the schedule duration to fit the budget can be solved 

geometrically. The problem then becomes a matter of creating a spending profile where the area 

is equal to the budget, instead of the cost. This new profile can then be used to calculate the 

extended duration (Figure 4).  

                    

Figure 4: Rectangle of Estimated Cost and Budget with extension 
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THE SOLUTIONS 

This section contains a few different methods for calculating the schedule extension identified in 

the previous section. Each method provided below satisfies the various requirements of the 

problem but provides flexibility for various assumptions regarding the individual project. The 

“best” method is not necessarily the one that provides the shortest delay due to the budget 

shortfall, but rather the one that conforms to the reality of the project. Determining the amount of 

time that the schedule is delayed is the goal of the calculations, although the solution is based 

upon how the rate is adjusted. This rate is used to calculate the extended duration and also 

provides a tangible foundation for interpreting the calculations.  

THE RECTANGLE SOLUTION 

The most straightforward solution involves turning the original rectangular profile into a 

different rectangle with the same area but different parameters (Figure 5). 

 

Figure 5: Rectangle of Estimated Cost and Budget with extension and variables 

The original cost rectangle is simply flattened and extended, with the requirement that the area 

within the year equals the budget and the entire area equals the estimated cost.  

The calculations below describe the concept at a high level. Cases in which more information is 

provided, such as the Time Independent (TI)/ Time Dependent (TD) breakout, are discussed later 

in the paper, along with the full algorithm’s steps to implement these solutions.  

THE “SHRINK AND EXTEND” CALCULATIONS  

𝑮𝒊𝒗𝒆𝒏 𝑫𝒂𝒕𝒂: 

𝐶 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑦𝑒𝑎𝑟𝑙𝑦 𝑐𝑜𝑠𝑡 

𝐵 = 𝐵𝑢𝑑𝑔𝑒𝑡 𝑓𝑜𝑟 𝑔𝑖𝑣𝑒𝑛 𝑦𝑒𝑎𝑟  

𝐴𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝐶 > 𝐵 

𝑑 = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑤𝑜𝑟𝑘 (𝑒. 𝑔. , 𝑦𝑒𝑎𝑟) 

𝐿𝑒𝑡 𝑟 =
𝐶

𝑑
 𝑏𝑒 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑒 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 
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𝑹𝒆𝒒𝒖𝒊𝒓𝒆: 

Area of rectangles 

𝐵 = 𝑑𝑟′and 𝐶 = 𝑑′𝑟′ 

where 𝑑′and 𝑟′are the adjusted duration and rate (resp. )  

 

𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏: 

𝒅′ =
𝑪

𝒓′
= (

𝑪

𝑩
) 𝒅 

𝑤𝑖𝑡ℎ 𝑟′ =
𝐵

𝑑
 

The requirements stated above are the geometric and mathematical formulation of the 

assumptions regarding fitting the work into the year at budget while the cost is maintained by 

pushing out the duration. 

It may be necessary to add a user-defined minimum to the adjusted rate to prevent unrealistic 

results. 

The adjusted rate, r’, is a flat, average rate of work that results in the budget being met. This 

adjusted rate implies an explicit reduction in workforce to manage the budget or an implicit 

slowing down of the completion of activities due to lack of funding for them. Regardless, it is the 

extended duration that is the goal of the calculations. The important part of the adjusted rate 

calculation is ensuring it does not drop below an unrealistic level, thus negating the resulting 

extended duration.  

THE TRAPEZOID SOLUTION 

Another spending profile solution might be in the shape of a trapezoid. There is no geometric 

reason the spending profile needs to form a rectangle. The same requirements can be satisfied 

using other shapes, such as a trapezoid (Figure 6). This entails an adjusted rate that decreases 

over the duration of the year, providing a “ramp down” effect that might be more realistic in 

certain situations.  
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Figure 6: Trapezoid of Cost and Budget with extension and variables 

 

THE “START UP, END DOWN” CALCULATIONS  

𝑮𝒊𝒗𝒆𝒏 𝑫𝒂𝒕𝒂: 

𝐶 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑦𝑒𝑎𝑟𝑙𝑦 𝑐𝑜𝑠𝑡 

𝐵 = 𝐵𝑢𝑑𝑔𝑒𝑡 𝑓𝑜𝑟 𝑔𝑖𝑣𝑒𝑛 𝑦𝑒𝑎𝑟 

𝐴𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝐶 > 𝐵 

𝑑 = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑤𝑜𝑟𝑘 (𝑒. 𝑔. 𝑎 𝑦𝑒𝑎𝑟) 

𝐿𝑒𝑡 𝑟 =
𝐶

𝑑
 𝑏𝑒 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑒 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

 

𝑹𝒆𝒒𝒖𝒊𝒓𝒆: 

Area of trapezoids 

𝐵 = (
1

2
) 𝑑(r𝑠 + 𝑟𝐹𝑌) and 𝐶 = (

1

2
)𝑑′(r𝑠 + 𝑟′) 

𝑑′ is the adjusted duration 

r𝑠 is the rate at the 𝑏𝑒𝑔𝑖𝑛𝑖𝑛𝑔 of the time period, e. g. fiscal year (FY) 

r′is the rate at the end of the extension  

𝑟𝐹𝑌 is the rate at the end of the duration extension 

Equation of the line that defines the trapezoid’s “top” is needed to help solve the system 

𝑓(𝑥|𝐶, 𝐵, 𝑑) = 𝑚𝑥 + 𝑏 with endpoints 𝑓(0) =  𝑟𝑠and 𝑓(𝑑′) = 𝑟′ 

𝑓(𝑥) is the rate at any given point in time 

𝑥 is the duration 
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𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏: 

𝒅′ =
𝟐𝑪

𝐫𝒔 + √𝒓𝒔
𝟐 + 𝟒𝐂

(𝑩 − 𝒓𝒔𝒅)
𝒅𝟐

 

 

The solution for the extended duration, 𝑑’, is solved for as a function of the starting rate, r𝑠, 

because there are multiple dimensions the trapezoid can conform to given the geometric 

requirements of the two areas. By default, this r𝑠 could simply be set to the same value as the 

original rate 𝑟. This must be done with caution though. 

If the starting rate for the trapezoid is set to the original rate (if r𝑠 = 𝑟 ), there are situations in 

which the slope of the top of the trapezoid (i.e. the m in 𝑓(𝑥) = 𝑚𝑥 + 𝑏) would be so steep it 

would cause the rate to become negative (or unrealistically small) before the area requirements 

are met (Figure 7). To prevent this, r𝑠 must shrink in order to prevent unrealistic situations. 

To do this, a minimum for this end rate can be defined. We also know using the equation of the 

line that 𝑓(𝑑’) = 𝑟’ > 0 (or other specified minimum greater than zero). An inequality can be 

derived that calculates the value that r𝑠 must be less than or equal to in order for this minimum to 

be maintained. If this inequality is violated, then r𝑠 can be set to the required minimum value 

calculated by the inequality. 

In addition to the geometric restriction on the minimum value the ending rate can be, the analyst 

will likely desire to set the minimum to be well above the mathematical limitation. This would 

ensure that extended durations are not calculated based upon unrealistic project rates. 

 

Figure 7: Example of slope too steep 
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𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝒂𝒅𝒅𝒆𝒏𝒅𝒖𝒎: 

If 𝑟 ≤  
2𝐶

𝑑
− (

1

2
) √

16

𝑑2
(𝑐2 − 𝐶𝐵) + 4(𝑚𝑖𝑛𝑖𝑚𝑢𝑚)2 

Then the trapezoid cannot be formed due to the slope being too steep 

Then r𝑠 cannot be set to r 

Instead set r𝑠 to the value on the right side of the above inequality 

 

THE TRAPEZOID SOLUTION WITH AN UPTICK 

Once funding becomes available at the start of the next year, it is feasible that work can pick 

back up again. Instead of maintaining the rate of the previous year as funds become available 

again, it is possible to recalculate the trapezoid’s shape so that it increases at the start of the next 

year. This represents the rate slowly increasing once funding becomes available again (Figure 

8). The calculations are almost the same as the previous section, what changes is the slope of the 

line at the end of the year, i.e. at 𝑑, the slope is flipped from a negative to a positive and the line 

it forms can be recalculated (Figure 9). 

 

Figure 8: Trapezoid with Uptick 
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  THE “START UP, END UP” CALCULATIONS  

𝑮𝒊𝒗𝒆𝒏 𝑫𝒂𝒕𝒂: 

𝐶 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑦𝑒𝑎𝑟𝑙𝑦 𝑐𝑜𝑠𝑡 

𝐵 = 𝐵𝑢𝑑𝑔𝑒𝑡 𝑓𝑜𝑟 𝑔𝑖𝑣𝑒𝑛 𝑦𝑒𝑎𝑟 

𝐴𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝐶 > 𝐵 

𝑑 = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑤𝑜𝑟𝑘 (𝑒. 𝑔. , 𝑎 𝑦𝑒𝑎𝑟) 

𝐿𝑒𝑡 𝑟 =
𝐶

𝑑
 𝑏𝑒 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑒 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

 

𝑹𝒆𝒒𝒖𝒊𝒓𝒆: 

Area of trapezoids 

𝐵 = (
1

2
) 𝑑(r𝑠 + 𝑟𝐹𝑌) and 𝐶 = (

1

2
)𝑑′(r𝑠 + 𝑟′) 

With the added requirement of the “ramp up” trapezoid portion 

𝐶 − 𝐵 = (
1

2
) (𝑑’ − 𝑑)(𝑟𝐹𝑌 + 𝑟′) 

𝑑′ is the adjusted duration 

r𝑠 is the rate at the 𝑏𝑒𝑔𝑖𝑛𝑖𝑛𝑔 of the time period, e. g. fiscal year (FY) 

r′is the rate at the end of the extension  

𝑟𝐹𝑌 is the rate at the end of the duration extension 

Equation of the line that defines the trapezoid’s “top” is needed to help solve the system 

𝑓1(𝑥|𝐶, 𝐵, 𝑑) = 𝑚𝑥 + 𝑏1 with endpoints 𝑓(0) =  𝑟𝑠and 𝑓(𝑑) = 𝑟𝐹𝑌  

A second equation for the “ramp up” portion at the end of the year with the opposite slope 

𝑓2(𝑥|𝐶, 𝐵, 𝑑) = −𝑚𝑥 + 𝑏2 with endpoints 𝑓(𝑑) =  𝑟𝐹𝑌 and 𝑓(𝑑′) = r′ 

𝑓(𝑥) is the rate at any given point in time 

𝑥 is the duration 
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𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏: 

𝒅′ =
−𝒃 + √𝒃𝟐 − 𝟒𝒂𝒄

𝟐𝐚
 

𝑤𝑖𝑡ℎ 

𝒂 = −𝒎 

𝒃 = 𝒓𝑭𝒀 + 𝟑𝒎𝒅 + 𝒓𝒔 

𝒄 = 𝟐𝑩 − 𝟐𝑪 − 𝒓𝑭𝒀𝒅 − 𝟐𝒎𝒅𝟐 − 𝒓𝒔𝒅  

𝑎𝑛𝑑 

𝒎 =
𝟐(𝑩 − 𝒓𝒔𝒅)

𝐝𝟐
 

𝒓𝑭𝒀 = 𝒇𝟐(𝒅) = 𝒎𝒅 + 𝒓𝒔 

 

 

 

Figure 9: Trapezoid Uptick with variables 

GENERALIZED SOLUTION 

The solutions provided thus far are some variations of a line. It is possible to generalize the 

solution so that the rate can take nearly any shape, while still conforming to the geometric 

requirements of the cost and budget areas. This allows the management team to have full control 

over this budget analysis process. 

The generalized solution uses the same assumptions discussed in previous methods, but does not 

stipulate the shape of the spending profile. Instead, this solution provides the framework for the 

analyst to work within the specific environment of their project. 
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GENERALIZED SOLUTION 

∫ 𝒇(𝒙) 𝒅𝒙 =
𝒅

𝟎

𝑩 

∫ 𝒇(𝒙) 𝒅𝒙 =
𝒅′

𝟎

𝑪 

Based upon the number of degrees of freedom left by 𝑓(𝑥), another objective function may be 

utilized to solve for the unknown variables. For example, adding a specific plot point the 

spending profile needs pass through. Figure 10 shows how a generalized solution provides a 

variety of rate curves. Any function is possible as long as the area up to the end of the time 

period, 𝑑, (e.g., a year) equals the budget and the area up to the extension, 𝑑’, is the estimated 

cost (𝑑’ is the variable being solved) 

 

Figure 10: Examples of generic spending curves that satisfy requirements 

 

PROOF OF CONCEPT 

To ensure the generalized solution holds, we can take another look at the trapezoid method to 

adjust the schedule. That method was solved using the geometry for the area of a trapezoid. Now 

we can take the same problem and use calculus to derive a formula that describes the exact same 

spending profile. If the generalized solution is valid, it should provide the same results as the 

trapezoid method (Figure 11).  
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Figure 11: Proving Generalized and Trapezoid Method Equivalence 

To recreate the trapezoid setup, we simply use an equation of a line to generate the rate, rather 

than solving the equations for the area of two trapezoids. Also as with the trapezoid setup, we 

want to solve for 𝑑’ as a function of a given starting rate (in the simplest example we assumed 

this starting rate was the same as the original rate, i.e. 𝑟𝑠 = 𝑟 

To keep the calculations simple, we assume this same condition. 

Require 𝑓(0) = 𝑟𝑠 = 𝑟  

Let 𝑓(𝑥) = 𝑚𝑥 + 𝑏 

The 𝑓(0) = 𝑟 requirement forces 𝑏 = 𝑟  

∫ (𝑚𝑥 + 𝑟) 𝑑𝑥 = (
1

2
) 𝑚𝑑2 + 𝑟𝑑

𝑑

0

= 𝐵 

∫ (𝑚𝑥 + 𝑟) 𝑑𝑥 = (
1

2
) 𝑚𝑑′2 + 𝑟𝑑′

𝑑′

0

= 𝐶 

Leaving two equations with unknown values for 𝑚 and 𝑑’, we are still given 𝐶, 𝐵, 𝑑, and 𝑟 

Rearranging the first integral to solve for 𝑚 and then plugging that into the second to solve for 𝑑’ 

yields: 

𝑚 =
2(𝐵 − 𝑟𝑑)

𝑑2
 

(
1

2
)

2(𝐵 − 𝑟𝑑)

𝑑2
𝑑′2 + 𝑟𝑑′ = 𝐶 
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(𝐵 − 𝑟𝑑)

𝑑2
𝑑′2 + 𝑟𝑑′ − 𝐶 = 0 

𝒅′ =
−𝒓 ± √𝒓𝟐 + 𝟒𝐂

(𝑩 − 𝒓𝒅)
𝒅𝟐

𝟐
(𝑩 − 𝒓𝒅)

𝒅𝟐

 

CONCEPT PROVED 

The goal of the previous section was to derive the same solution for d’ by using two different 

approaches. Indeed the two solutions look different at first glance but with some algebra, they 

can be shown to be equal to each other, thus proving the generalized solution is the only set of 

equations necessary to derive any adjusted rate calculations, linear or otherwise. 

Trapezoid (geometric) method with 𝒓𝒔 = 𝒓: 

𝑑′ =
2𝐶

𝑟 + √𝑟2 + 4C
(𝐵 − 𝑟𝑑)

𝑑2

 

 

Generalized (calculus) method using a linear formula: 

𝑑′ =
−𝑟 + √𝑟2 + 4C

(𝐵 − 𝑟𝑑)
𝑑2

2
(𝐵 − 𝑟𝑑)

𝑑2

 

Setting both equations equal to each other: 

2𝐶

𝑟 + √𝑟2 + 4C
(𝐵 − 𝑟𝑑)

𝑑2

=
−𝑟 + √𝑟2 + 4C

(𝐵 − 𝑟𝑑)
𝑑2

2
(𝐵 − 𝑟𝑑)

𝑑2

 

Getting rid of the fractions by moving the denominators of each side to the opposite side: 

2𝐶 (2
(𝐵 − 𝑟𝑑)

𝑑2
) = (−𝑟 + √𝑟2 + 4C

(𝐵 − 𝑟𝑑)

𝑑2
) (𝑟 + √𝑟2 + 4C

(𝐵 − 𝑟𝑑)

𝑑2
) 

Factoring the left side and distributing the right side: 

4𝐶 (
(𝐵 − 𝑟𝑑)

𝑑2
) = (−𝑟2 + 𝑟2 + 4C

(𝐵 − 𝑟𝑑)

𝑑2
) 
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Leaving this equality and proving both methods lead to the exact same solution: 

4𝐶 (
(𝐵 − 𝑟𝑑)

𝑑2
) = 4C (

(𝐵 − 𝑟𝑑)

𝑑2
) 

 

EXAMPLE USING A SECOND-DEGREE POLYNOMIAL 

If it was desired to use a rate curve rather than a rate line to generate the results, a second-degree 

polynomial can be used as 𝑓(𝑥) in the generalized solution of the rate function. 

To keep the calculations simple, we assume that the starting value of the adjusted rate be the 

same as the original starting rate. Additionally we decide that the rate at the start of the year is at 

its peak and will start to decrease from there. These requirements can be translated as points on 

𝑓(𝑥). 

Require: 𝑓(0) = 𝑟𝑠 and 𝑓’(0) = 0 

Let 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 

The first requirement forces 𝑐 = 𝑟𝑠 = 𝐶/𝑑 

The second requirement forces 𝑏 = 0 

Resulting in 𝑓(𝑥) = 𝑎𝑥2 + 𝑟𝑠 

The first integral is used to solve for 𝑎: 

∫ 𝑎𝑥2 + 𝑟𝑠 𝑑𝑥 = (
1

3
) 𝑎𝑑3 + 𝑟𝑠𝑑

𝑑

0

= 𝐵 

𝑎 =
3(𝐵 − 𝐶)

𝑑3
 

Providing us the equation for the rate as a function of any duration: 

𝑓(𝑥) =
3(𝐵 − 𝐶)

𝑑3
𝑥2 + 

𝐶

𝑑
 

The second integral is used to solve for the exact extended duration, 𝑑’ 

∫ 𝑎𝑥2 + 𝑟𝑠 𝑑𝑥 = (
1

3
) 𝑎𝑑′3 + 𝑟𝑠𝑑′ =

(𝐵 − 𝐶)

𝑑3
𝑑′3 + 𝑟𝑠𝑑′

𝑑′

0

= 𝐶 

To find the specific extended duration value 𝑑’, solve the cubic function for 𝑑’: 

(𝐵 − 𝐶)

𝑑3
𝒅′3 +  

𝐶

𝑑
𝒅′ − 𝐶 = 0 
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Unfortunately, there is no easy way to solve for a cubic since it depends on the exact structure of 

the equation, but this method does provide a value for 𝑑′as long as the cubic is solvable. 

If we did not have one of the restrictions on 𝑓(𝑥) as stated above, then there would be one extra 

variable that would be able to control an aspect of the results. For example, if we did not require 

the starting adjusted rate 𝑓(0) to be the same as the original starting rate 𝑟𝑠, then we could have 

solved for 𝑑’ as a function of 𝑟𝑠 and maintained more flexibility in the results. 
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WHAT TO DO WITH THE RATE 

Regardless of the chosen method for calculating the extended duration by way of adjusting the 

rate, the next step is performing this process repeatedly for each year. At each step in this process 

there are a series of checks and adjustments needed. 

ADJUSTING FOR THE TYPE OF COST IN THE MODEL 

The solutions discussed consider “cost” as a singular entity. In some models, costs are often split 

into TI and TD components to account for the different ways costs behave. Often there are level-

of-effort (LOE) activities whose costs are separate from individual tasks. 

Before the adjusted spending profile is calculated, these types of costs should be considered 

(Figure 12). 

TI costs may occur on a fixed date regardless of the progress of the schedule; other times the TI 

costs may be dependent upon other tasks completing prior to incurring the TI cost. These 

scenarios should be addressed. One method to incorporate the TI cost into this budget algorithm 

is to mark its amount and date. When the budget adjustments are made during the year specified, 

it can subtract the TI cost from the budget prior to the adjustment calculation.  

LOE costs may or may not be adjustable. If they are fixed, they can be marked and always taken 

out of the year’s budget prior to the calculation. If the LOE activity is something that may be 

modified, e.g. a 10% fixed reduction for all LOE for a given year, this can also be calculated and 

removed from that year’s budget prior to the adjustment calculation. For example, this would 

amount to reducing the project management staff, or reducing overhead costs.  

 

Figure 12: Example Cost Setup Prior to Budget Adjustments 
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THE BUDGET-ADJUSTMENT ALGORITHM 

For the algorithm to initiate, the total cost must be greater than the total budget, for either the 

deterministic scenario or for a given iteration result. The basic steps of the process are outlined 

below; a detailed example follows. 

Before step 1, choose a rate-adjustment method, specify any LOE adjustments and mark when TI 

costs occur. 

OUTLINE OF ADJUSTMENT ALGORITHM 

1. Calculate the extended duration 

2. Check that there are enough funds in the following year to cover this extension 

a. If there are enough funds, subtract from that next year’s budget 

b. If there are not enough funds, re-calculate the rate to reduce it even further so that 

there are enough funds 

3. Move to the next year and start from Step 1 
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DETAILED EXAMPLE OF ADJUSTMENT ALGORITHM 
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Once completed, the sum of the yearly estimated cost and given yearly budget match. This also 

results in an extended duration beyond the original plan with some extra cost associated with the 

extension (Figure 13).  
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Figure 13: Visualizing the Reconciliation 
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THE SOLUTION IS JUST THE BEGINNING 

ACCOUNT FOR UNCERTATAINTY 

For a model that provides simulation data, these methods can be applied to each iteration, thus 

forming a robust view of the uncertainty around the budget adjustments. Once the algorithm is 

implemented, applying it to thousands of iterations would not be computationally expensive. 

Each step of the process is a deterministic calculation, as opposed to having to use regression or 

linear/nonlinear programming method. 

The simulation data would look something like the scatter in Figure 14, providing an extremely 

powerful set of statistics to the schedule analysis. 

 

Figure 14: Cost vs Schedule Scatter of Budget-Adjusted Results 

A budget uncertainty analysis answers questions such as: 

 What is the average delay caused by my budget? 

 What is the probability I exceed my schedule reserve due to a funding shortfall? 

 What is the probability of my planned finish date in the current model and what is the 

probability of my planned finish date when I consider the budget? 

 How does adding an additional $10M to my FY2019 budget affect the probability of my 

estimated finish date?  

WHAT IF I DON’T HAVE A BUDGET YET? 

The formulas laid out in this framework can all be solved for any variable of interest, most 

notably if the budget is not known but excursions want to be run on the effect of any budget 

profile.  

The current formulation shows the variable 𝑑’ written as a function of the average starting rate, 

using the estimated cost, budget, and duration as given inputs to the formula. The same formula 

can be rearranged to solve for the budget. This would provide information on what the budget 

needed to be given an acceptable delay.  
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For example, if there was a known schedule reserve for a given year that was taken out before 

the simulation, defining d’ as the year’s duration plus reserve would provide the budget needed 

to ensure the schedule reserve was funded.  

This allows answers to questions like: 

 Is my schedule reserve covered by the budget provided? 

 How many days does my schedule save by increasing the budget by $10M each year? 

 If I don’t want to be delayed by more than 100 days, what budget profile do I need? 

 How can I reallocate the given budget into the years to minimize my delay? 
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SUMMARY 

It does not take a lot of complex data to facilitate a powerful analysis. Although the analysis is 

made more precise with more information (TI/TD breakout, uncertainty simulation, etc.) these 

calculations do not require complex models and thus should not be considered beyond the scope 

of any model used to predict cost and schedule results.  

At the heart of the algorithm is the idea that the rate of work over a period of time needs to be 

adjusted so that the cost of the work performed over that period of time does not exceed a given 

budget. The adjusted rate provides a new spending profile that is used to calculate the extended 

duration of the schedule.  

This extension can be achieved a number of ways: 1) by doing the work slower, 2) delaying the 

start of various efforts, 3) reducing the scope (e.g. ordering less units or testing less prototypes), 

or 4) recalibrating the workforce when funds deplete. The calculations presented here do not 

assume exactly how the project will cut back when funds become low, it simply provides the 

mathematical reality that work is not completed as estimated and thus a schedule delay is 

inevitable. 

The example detailing how to use the selected rate-adjustment method is comprehensive, but can 

be modified based upon the exact capabilities of the management team. In addition, any 

uncertainty analysis run on the schedule model provides immensely useful capabilities when 

used in conjunction with the methods discusses in this paper.  

CONCLUSION 

The need to understand how a budget affects a schedule is a persistent and important facet of the 

cost/schedule community. As our capability to create robust models evolves, our ability to derive 

vital, relevant intelligence from those models needs to keep up. The most accurate model to 

estimate the cost of a project is ineffective if the realities of the budget are omitted. The 

estimated results hold no weight if the model exists in purely a theoretical state.  

The methods introduced in this paper ground the schedule model in reality. The adjustment 

algorithm and rate formulas presented in this paper provide a framework that the estimating 

community can use to tackle the next relevant frontier in the evolving cost/schedule universe. 
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APPENDIX – FORMULA DERIVATIONS 

TRAPEZOID – “START UP, END DOWN”  

𝑮𝒊𝒗𝒆𝒏 𝑫𝒂𝒕𝒂: 

𝐶 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑦𝑒𝑎𝑟𝑙𝑦 𝑐𝑜𝑠𝑡 

𝐵 = 𝐵𝑢𝑑𝑔𝑒𝑡 𝑓𝑜𝑟 𝑔𝑖𝑣𝑒𝑛 𝑦𝑒𝑎𝑟 

𝐴𝑠𝑠𝑢𝑚𝑖𝑛𝑔 𝐶 > 𝐵 

𝑑 = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑤𝑜𝑟𝑘 (𝑒. 𝑔. 𝑎 𝑦𝑒𝑎𝑟) 

𝐿𝑒𝑡 𝑟 =
𝐶

𝑑
 𝑏𝑒 𝑡ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑟𝑎𝑡𝑒 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 

 

𝑹𝒆𝒒𝒖𝒊𝒓𝒆: 

Area of a budget trapezoid: 

𝐵 = (
1

2
) 𝑑(r𝑠 + 𝑟𝐹𝑌) 

Area of cost trapezoid: 

 𝐶 = (
1

2
)𝑑′(r𝑠 + 𝑟′) 

Line defining the rate: 

𝑓(𝑥|𝐶, 𝐵, 𝑑) = 𝑚𝑥 + 𝑏 = 𝑦  

with endpoints 𝑓(0) =  𝑟𝑠and 𝑓(𝑑) = 𝑟𝐹𝑌 

 

𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝑺𝒕𝒆𝒑𝒔: 

1. Solve the area equation of the cost, 𝐶, for 𝑑’ 

2. Solve the area equation of the budget, B, for 𝑟𝐹𝑌 

3. Solve for the slope, 𝑚, and intercept, 𝑏, for 𝑓(𝑥) = 𝑦 

4. Plug the equations for d’ and 𝑟𝐹𝑌 into f(x)=y, then solve for 𝑟′ as a function of 𝑟𝑠 

5. Plug the equation for 𝑟’ into the equation for 𝑑’ to find the extended duration 

 

Step1: 

𝐶 = (
1

2
)𝑑′(r𝑠 + 𝑟′) ⟹ 𝑑′ =

2𝐶

r𝑠 + 𝑟′
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Step 2: 

𝐵 = (
1

2
) 𝑑(r𝑠 + 𝑟𝐹𝑌) ⟹ 𝑟𝐹𝑌 =

2𝐵

𝑑
− r𝑠 

Step 3: 

𝑓(𝑥) = 𝑚𝑥 + 𝑏 

𝑓(0) =  𝑟𝑠  ⟹ 𝑏 = 𝑟𝑠 

𝑓(𝑑) = 𝑟𝐹𝑌 ⟹ 𝑚 =
𝑟𝐹𝑌 − 𝑟𝑠

𝑑
 

Thus 𝑓(𝑥) = (
𝑟𝐹𝑌−𝑟𝑠

𝑑
) 𝑥 + 𝑟𝑠 

Plug in the equation for 𝑟𝐹𝑌 (derived in step 2) into 𝑓(𝑥): 

𝑓(𝑥) = (

2𝐵
𝑑

− 2𝑟𝑠

𝑑
) 𝑥 + 𝑟𝑠 

This defines the “top” of the trapezoid, we are interested in the “end”, the rate 𝑓(𝑑’) 

 

Step 4: 

We are interested in finding the rate 𝑓(𝑑’) (defined as 𝑓(𝑑’) = 𝑟′) to then use to find 𝑑’.  

We can use the equation for 𝑑’ from step 1 to solve for 𝑟′as a function of the variables we know, 

namely: (𝐶, 𝐵, 𝑑, 𝑟𝑠) 

𝑓(𝑑’) = 𝑟′ = (

2𝐵
𝑑

− 2𝑟𝑠

𝑑
) 𝑑′ + 𝑟𝑠 

𝑟′ = (

2𝐵
𝑑

− 2𝑟𝑠

𝑑
)

2𝐶

r𝑠 + 𝑟′
+ 𝑟𝑠 = (

2𝐵 − 2d𝑟𝑠

𝑑2
)

2𝐶

r𝑠 + 𝑟′
+ 𝑟𝑠  

Multiply both sides by (r𝑠 + 𝑟′) to clear the denominator: 

(r𝑠 + 𝑟′)𝑟′ = [(
2𝐵 − 2d𝑟𝑠

𝑑2
)

2𝐶

r𝑠 + 𝑟′
+ 𝑟𝑠] (r𝑠 + 𝑟′) 

r𝑠𝑟′ + 𝑟′2 = 4 (
𝐵𝐶 − 𝐶d𝑟𝑠

𝑑2
) + 𝑟𝑠

2 + r𝑠𝑟′ 
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𝑟′ = √4 (
𝐵𝐶 − 𝐶d𝑟𝑠

𝑑2
) + 𝑟𝑠

2  

This formulation serves three purposes. 

1) It leaves the ending rate 𝑟′ as a function of known variables, as long as we assume the value 

of 𝑟𝑠is the original starting rate 𝑟 =
𝐶

𝑑
. 

2) It allows flexibility for management to choose a lesser rate to being the year if they believe 

it is possible to reduce the rate upfront. 

3) It provides a mathematical minimum for 𝑟′ to prevent the slope from becoming so steep 

that the rate becomes negative before the area requirements are met. If the square root is 

less than 0, it forces 𝑟𝑠to be adjusted so that the square root is not violated. 

Step 5:  

From step 1: 𝑑′ =
2𝐶

r𝑠+𝑟′ 

From step 4: 𝑟′ = √4 (
𝐵𝐶−𝐶d𝑟𝑠

𝑑2 ) + 𝑟𝑠
2  

Therefore: 𝒅′ =
𝟐𝑪

𝐫𝒔+√𝟒(
𝑩𝑪−𝑪𝐝𝒓𝒔

𝒅𝟐 )+𝒓𝒔
𝟐
 

 

SOLUTION ADDENDUM - STEEP SLOPE VIOLATION 

The initial assumption states that the original rate, 𝑟 =
𝐶

𝑑
, is used to define the initial rate of the 

trapezoid, 𝑟𝑠. In order to ensure there are no mathematical inconsistencies: 

𝑟′ = √4 (
𝐵𝐶 − 𝐶d𝑟

𝑑2
) + 𝑟2 ≥ 0 

If 𝑟′ = 0 or close to 0, it would imply the project is progressing at an impossibly low 

unachievable rate, thus a minimum, 𝑚, can be defined and solved for as a function of the rate, 𝑟, 

allowing the violation to be checked before any other calculations are performed. This also 

provides a value for  𝑟𝑠 when the value for 𝑟 cannot (or should not) be used. 

Given a user-defined minimum, 𝑚𝑖𝑛 for the ending rate 𝑟′: 

√4 (
𝐵𝐶 − 𝐶d𝑟

𝑑2
) + 𝑟2 ≥ 𝑚𝑖𝑛 

4𝐵𝐶

𝑑2
−

4𝐶𝑟

𝑑
+ 𝑟2 ≥ (𝑚𝑖𝑛)2 
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Preparing for the quadratic formula to solve for 𝑟𝑠: 

𝑟2 + (−
4𝐶

𝑑
)𝑟 + (

4𝐵𝐶

𝑑2
− (𝑚𝑖𝑛)2) ≥ 0 

Using 𝑟𝑠 =
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 

With: 

𝑎 = 1 

𝑏 = −
4𝐶

𝑑
 

𝑐 =
4𝐵𝐶

𝑑2
− 𝑚𝑖𝑛2 

𝑟 ≥  

4𝐶
𝑑

± √16𝐶2

𝑑2 −
16𝐵𝐶

𝑑2 + 4(𝑚𝑖𝑛)2

2
 

𝑟 ≥  
2𝐶

𝑑
− (

1

2
) √

16

𝑑2
(𝐶2 − 𝐵𝐶) + 4(𝑚𝑖𝑛)2 

Use the inequality to check the assumption that 𝑟𝑠 = 𝑟 is possible, and if necessary, to adjust, 𝑟𝑠. 

If 𝑟 ≤  
2𝐶

𝑑
− (

1

2
) √

16

𝑑2
(𝐶2 − 𝐶𝐵) + 4(𝑚𝑖𝑛)2 

Then 𝑟𝑠 =  
2𝐶

𝑑
− (

1

2
) √

16

𝑑2
(𝐶2 − 𝐶𝐵) + 4(𝑚𝑖𝑛)2 

BUDGET-TO-COST RATIO THAT CAUSES STEEP SLOPE VIOLATION 

Alternatively, a geometric interpretation can be used that requires only the budget and cost. It is 

left to the user to convince themselves that when 𝐵/𝐶 <  (3/4) the rate must be adjusted.  
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TRAPEZOID WITH UPTICK 

The same variables from the previous calculations still all apply in this modified version of the 

trapezoid method.  

𝑹𝒆𝒒𝒖𝒊𝒓𝒆: 

Area of trapezoids 

𝐵 = (
1

2
) 𝑑(r𝑠 + 𝑟𝐹𝑌) and 𝐶 = (

1

2
)𝑑′(r𝑠 + 𝑟′) 

With the added requirement of the “ramp up” portion at the start of the next year, when funds 

presumably become available and work can pick up. 

𝐶 − 𝐵 = (
1

2
) (𝑑’ − 𝑑)(𝑟𝐹𝑌 + 𝑟′) 

Equation of the line that defines the trapezoid’s “top” is needed to help solve the system 

𝑓1(𝑥|𝐶, 𝐵, 𝑑) = 𝑚𝑥 + 𝑏1 with endpoints 𝑓(0) =  𝑟𝑠 and 𝑓(𝑑) = 𝑟𝐹𝑌  

A second equation for the “ramp up” portion at the end of the year with the opposite slope 

𝑓2(𝑥|𝐶, 𝐵, 𝑑) = −𝑚𝑥 + 𝑏2 with endpoints 𝑓(𝑑) =  𝑟𝐹𝑌 and 𝑓(𝑑′) = r′ 

The assumption here being that at the end of the year, the rate that was declining in order to fit 

into the budget will begin to increase when the next year’s funds become available. This is 

modeled using 𝑓2. 

The goal in the solution steps is to solve for the slope and intercept of the function 𝑓2 so it can be 

used to calculate the extended duration. 

𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝑺𝒕𝒆𝒑𝒔: 

1. Solve for the intercept 𝑏2 using 𝑓1and 𝑓2 (we already have the equation for the slope, 𝑚) 

2. Place 𝑓2(𝑑′) = 𝑟′ in the equation for the extended area 𝐶 − 𝐵 

3. Use the equation for the extended area 𝐶 − 𝐵 to solve for 𝑑’ 

 

Step 1:   

𝑓1(0) = 𝑏1 = 𝑟𝑠 

𝑓1(𝑑) = 𝑚𝑑 + 𝑏1 = 𝑟𝐹𝑌 

𝑓2(𝑑) = −𝑚𝑑 + 𝑏2=𝑟𝐹𝑌 

𝑚𝑑 + 𝑏1 = −𝑚𝑑 + 𝑏2 

𝑏2 = 2𝑚𝑑 + 𝑏1 

Thus 𝑓2(𝑥) = −𝑚𝑥 + 2𝑚𝑑 + 𝑟𝑠 
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Step 2: 

𝑓2(𝑑′) = −𝑚𝑑′ + 2𝑚𝑑 + 𝑟𝑠 = 𝑟′ 

𝐶 − 𝐵 = (
1

2
) (𝑑’ − 𝑑)(𝑟𝐹𝑌 + 𝑟′) 

𝐶 − 𝐵 = (
1

2
) (𝑑’ − 𝑑)(𝑟𝐹𝑌 + (−𝑚𝑑′ + 2𝑚𝑑 + 𝑟𝑠)) 

2(𝐶 − 𝐵) = 𝑟𝐹𝑌𝑑’ − 𝑚𝑑′2
+ 2𝑚𝑑𝑑’ + 𝑟𝑠𝑑’ − 𝑟𝐹𝑌𝑑 + 𝑚𝑑𝑑′ − 2𝑚𝑑2 − 𝑟𝑠𝑑 

Group by the unknown variable 𝑑’ to arrive at the setup for the quadratic formula: 

−𝑚𝑑′2 + (𝑟𝐹𝑌 + 3𝑚𝑑+𝑟𝑠)𝑑′ + (2𝐵 − 2𝐶 − 𝑟𝐹𝑌𝑑 − 2𝑚𝑑2 − 𝑟𝑠𝑑) = 0 

𝑺𝒐𝒍𝒖𝒕𝒊𝒐𝒏: 

𝑑′ =
−𝑏 + √𝑏2 − 4𝑎𝑐

2a
 

𝑤𝑖𝑡ℎ 

𝑎 = −𝑚 

𝑏 = 𝑟𝐹𝑌 + 3𝑚𝑑 + 𝑟𝑠 

𝑐 = 2𝐵 − 2𝐶 − 𝑟𝐹𝑌𝑑 − 2𝑚𝑑2 − 𝑟𝑠𝑑  

𝑎𝑛𝑑 

𝑚 =
2(𝐵 − 𝑟𝑠𝑑)

d2
 

𝑟𝐹𝑌 = 𝑓2(𝑑) = 𝑚𝑑 + 𝑟𝑠 
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