UNCLASSIFIED

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

DESIGN LIFE STUDY

International Cost Estimating & Analysis Association

LEADING INTELLIGENCE INTEGRATION

Overall Classification of this briefing is: UNCLASSIFIED

Team members: Alex Wekluk (Presenter), Colleen Adamson, Dan Carbo, Joe McCormick, and Matt Reiley

12 JUNE 2018

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LEADING INTELLIGENCE INTEGRATION

Study Purpose

- Performed a study evaluating design life impact on the cost of satellite constellations
- Goals:
 - Determine optimal cost design life for a reference architecture
 - Examine the sensitivity of the results to diminishing future launch vehicle costs
 - Identify potential for technology insertion on satellites due to quicker replenishment
- Approach analyze how the optimal cost design life varies with:
 - Constellation size
 - Satellite complexity
 - Required development effort
 - Replenishment risk posture

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LEADING INTELLIGENCE INTEGRATION

Ground Rules and Assumptions

- Satellite technical performance is equivalent for all options, regardless of design life or other variables
- Architecture costs include space vehicles and launch
 - Excluded costs: Ground, Operations and Maintenance, Impacts to the Communication Architecture, System Integration, Other Government Costs
- Satellites will continue to live much longer than specified design life
 - Contractual design life requirements not changed
 - Change from the current replenishment risk posture
- Did not assess industrial base impacts or mission utility evolution
- Did not address specific vehicle type or architecture

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LEADING INTELLIGENCE INTEGRATION

Definitions

<u>Design Life</u> (DL): length of time specified in the contract through which the manufacturer provides a given probability of mission success for a single satellite

<u>Mean Life Estimates</u> (MLEs): expected remaining time that a single satellite will contribute to satisfying mission requirements based on current reliability estimates

Functional Availability (FA): probability of satisfying the <u>functional success criteria</u> for a given mission as a function of time

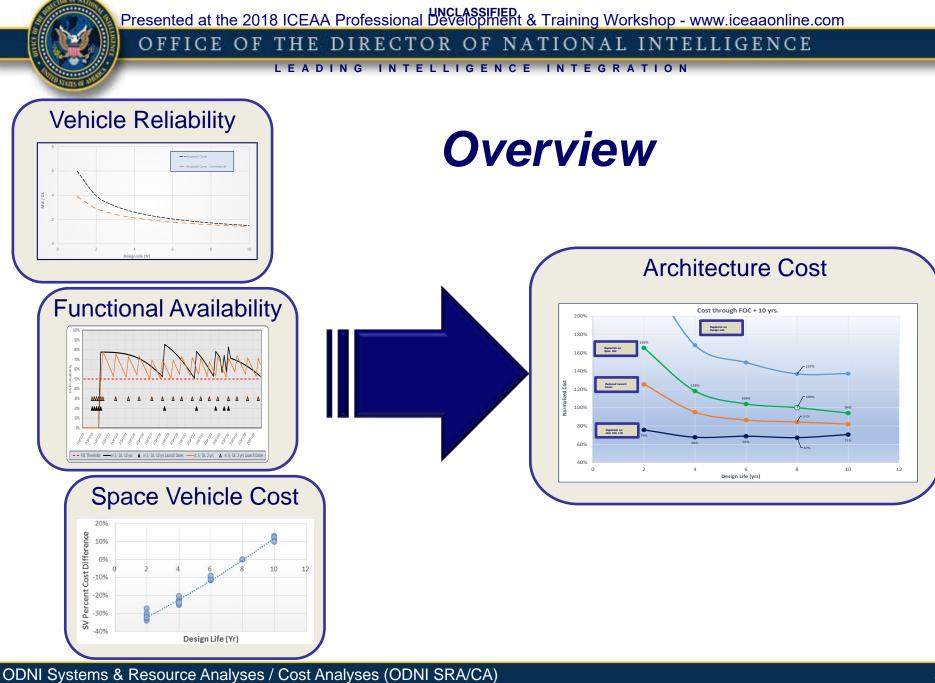
Functional Success Criteria (FSC): minimum satellite constellation performance required for mission success

<u>Probability of Success at DL (P_s)</u>: probability that a single satellite will perform its intended function at design life under stated conditions. P_s for this study is 0.85 at design life.

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LEADING INTELLIGENCE INTEGRATION

Trade Space and Reference Architecture

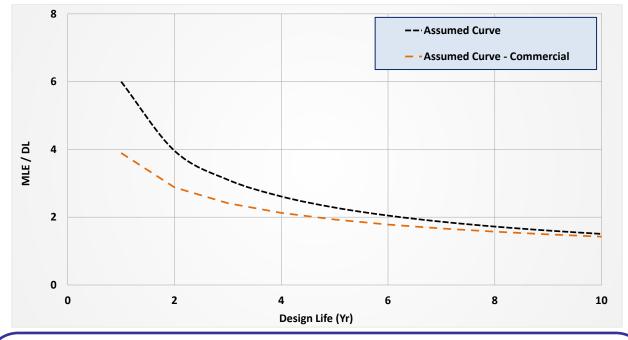

- Trade space
 - Constellation Size (2 10)
 - Satellite Size/Complexity (3,000 lb. 20,000 lb.)
 - New Design in 1st Block (50% 100%)
 - New Design in Follow-On Blocks (25% 75%)
 - Reliability and Infant Mortality (Operational, commercial-like, specification (spec.) curves)

Reference architecture

- 5 vehicle constellation
- 7,500 lb. satellite (dry)
- 75% New Design in 1st Block
- 50% New Design in Follow-On Blocks

All options estimated with:

- Design life of: 2, 4, 6, 8, 10 yrs.
- Current and Future Launch Costs



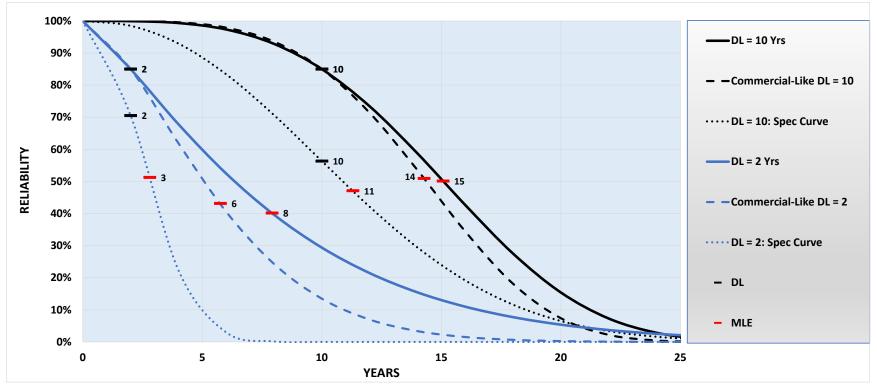
ODNI Systems & Resource Analyses / Cost Analyses (ODNI SRA/CA)

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LEADING INTELLIGENCE INTEGRATION

Space Vehicle: Expected Life vs. Design Life

- Examined ratio of actual satellite life to design life
 - Validated by OSD/CAPE study
- Historically, vehicles lasted much longer than design life
- Low design life vehicles have a much higher ratio of MLE to DL
- On average, commercial-like vehicles have a lower MLE to DL ratio



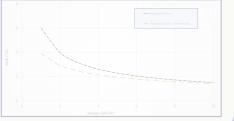
ODNI Systems & Resource Analyses / Cost Analyses (ODNI SRA/CA)

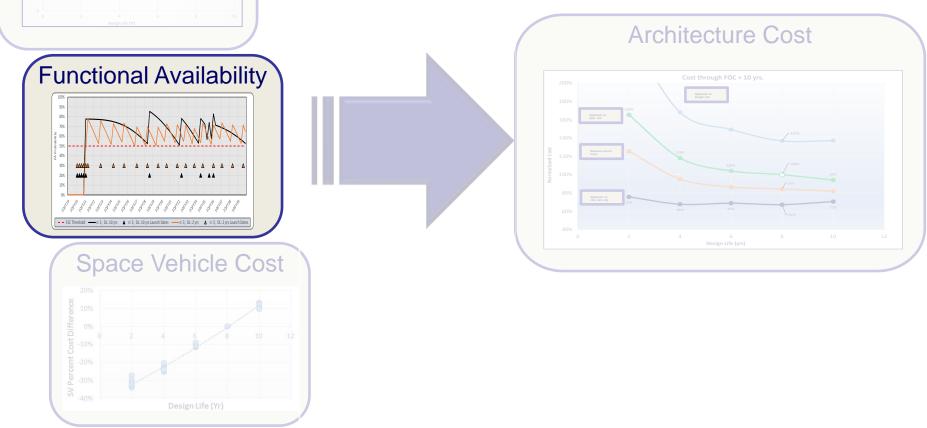
OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

Reliability Curves

Historically-Derived vs. Specification

- Reliability curve differences are more pronounced at lower design lives
- Results in large quantity difference to maintain constellation
 - Especially true for satellites with lower design lives



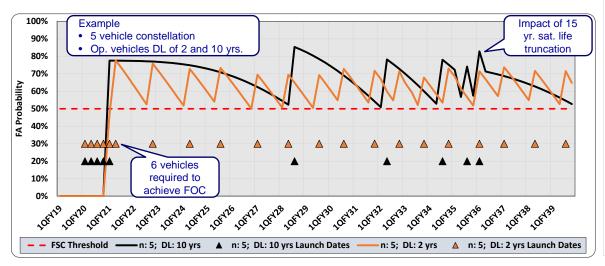

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

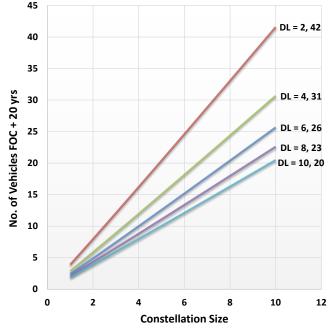
LEADING INTELLIGENCE INTEGRATION

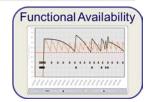
Vehicle Reliability

Architecture Functional Availability

ODNI Systems & Resource Analyses / Cost Analyses (ODNI SRA/CA)


OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE


LEADING INTELLIGENCE INTEGRATION


Functional Availability (FA) Analysis

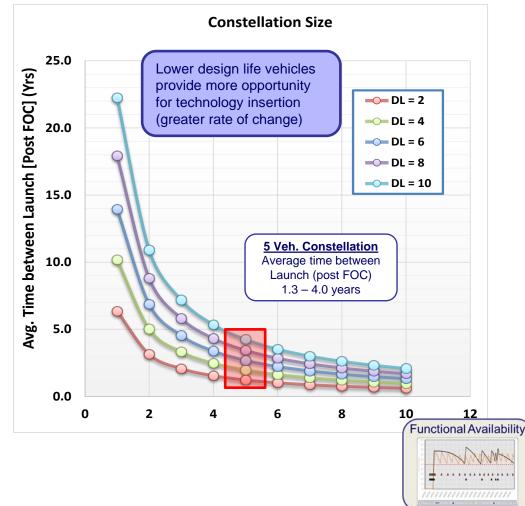
Utilized FA analysis to determine frequency of launches for all combinations of design life

Developed algorithm to predict total number of vehicles required to meet Full Operational Capability (FOC) for a given constellation size

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

INTEGRATION

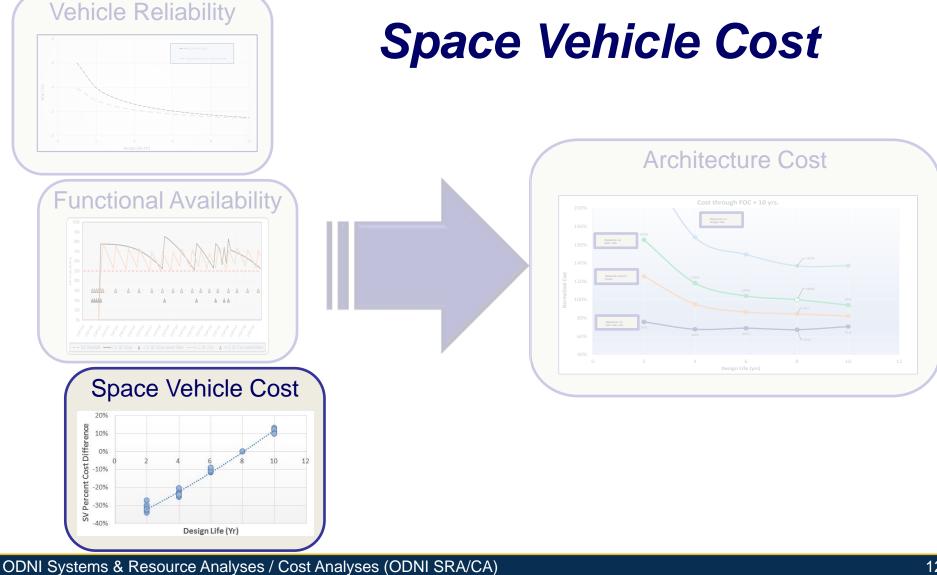
Functional Availability Results


INTELLIGENCE

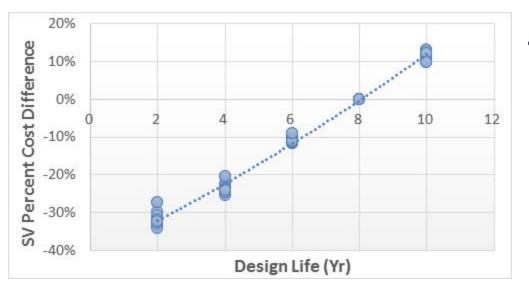
Analysis yielded curves for time between launch

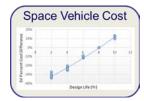
LEADING

Represents opportunities for technology insertion or resiliency


Costs of technology insertion addressed later in conclusion

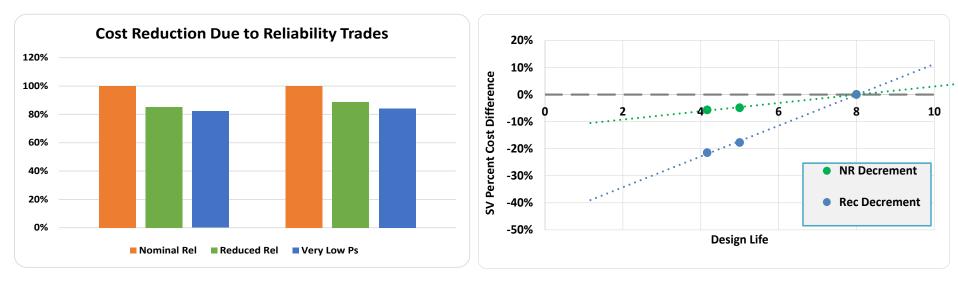
OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE


LEADING INTELLIGENCE INTEGRATION


OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LEADING INTELLIGENCE INTEGRATION

Space Vehicle Cost vs. Design Life

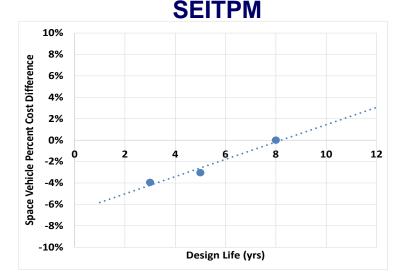

- Space vehicle costs scaled by design life
 - Affects Non-recurring and recurring costs
- Plot shows the net cost difference due to:
 - Redundancy
 - Space Vehicle Sizing
 - Mission Assurance
 - Integration & Testing
 - Systems Engineering & Program Management

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

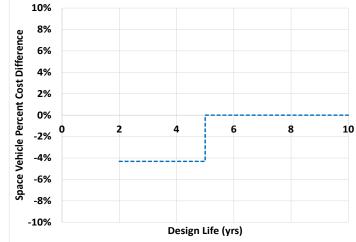
LEADING INTELLIGENCE INTEGRATION

Translating Redundancy to Cost

- Estimated cost of three vehicle redundancy postures for two NRO programs
- Performed estimates with redundancy reductions
- Redundancy accounted for largest reductions to cost
- Adjusted Weibull reliability curves based on adjustments to reliability model for single-string components



OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

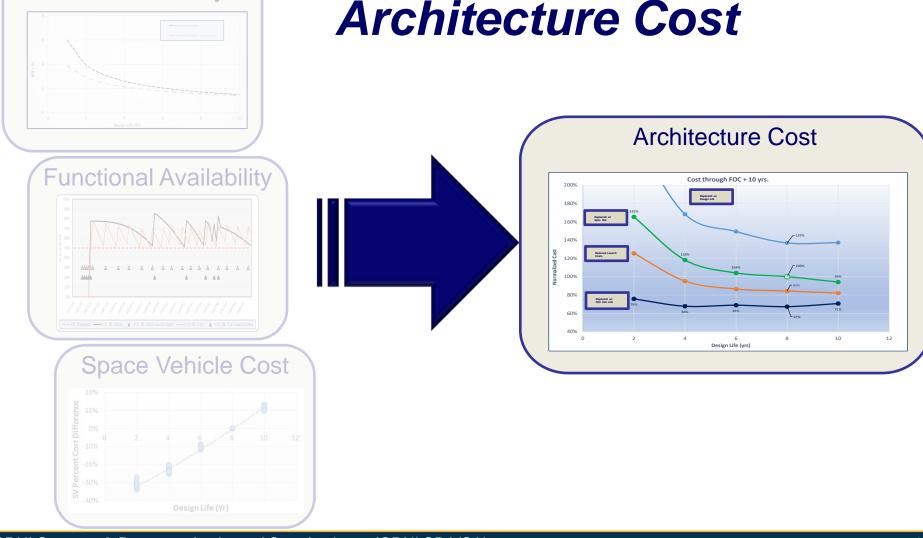

LEADING INTELLIGENCE INTEGRATION

Cost Reductions Due to Design Life

- Other adjustments to cost included mission assurance and SEITPM
- NRO CAAG performed studies on space vehicle testing and mission assurance
 - System Engineering, Integration and Test, Program Management (SEITPM):
 - I&T adjustment applies to bus and space vehicle levels
 - I&T adjustment does not apply to payload
 - SEPM scales linearly with box level costs and I&T
 - Mission assurance accounts for step increase around 5-year design life

Mission Assurance

ODNI Systems & Resource Analyses / Cost Analyses (ODNI SRA/CA)



Vehicle Reliability

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LEADING INTELLIGENCE INTEGRATION

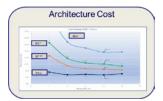
ODNI Systems & Resource Analyses / Cost Analyses (ODNI SRA/CA)

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LEADING INTELLIGENCE INTEGRATION

Architecture Cost Estimates

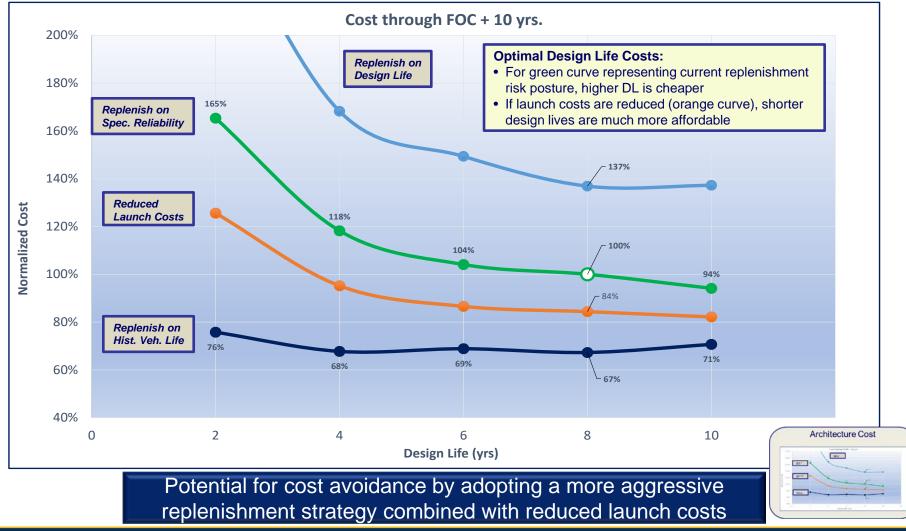
	Constellation	Reliability	SV Wt.	BLOCK 1 SV % New	BLOCK 2 SV % New	BLOCK 3 SV % New	BLOCK 4 SV % New
Family	Size	Assumptions	(lb.)	Design	Design	Design	Design
2 Veh Const	2	On-orbit data	7,500	75%	50%	50%	50%
3 Veh Const	3	On-orbit data	7,500	75%	50%	50%	50%
4 Veh Const	4	On-orbit data	7,500	75%	50%	50%	50%
Reference Arch	5	On-orbit data	7,500	75%	50%	50%	50%
6 Veh Const	6	On-orbit data	7,500	75%	50%	50%	50%
7 Veh Const	7	On-orbit data	7,500	75%	50%	50%	50%
8 Veh Const	8	On-orbit data	7,500	75%	50%	50%	50%
9 Veh Const	9	On-orbit data	7,500	75%	50%	50%	50%
10 Veh Const	10	On-orbit data	7,500	75%	50%	50%	50%
Spec Curves	5	Spec. Curves	7,500	75%	50%	50%	50%
Big Sat	5	On-orbit data	20,000	75%	50%	50%	50%
Small Sat	5	On-orbit data	3,000	75%	50%	50%	50%
New Design	5	On-orbit data	7,500	100%	50%	50%	50%
Existing Design	5	On-orbit data	7,500	50%	50%	50%	50%
Obsolescence	5	On-orbit data	7,500	75%	25%	25%	25%
Enhancement	5	On-orbit data	7,500	75%	75%	75%	75%
Baseline - 1 Veh	1	On-orbit data	7,500	75%	50%	50%	50%
Big Sat - 1 Veh	1	On-orbit data	20,000	75%	50%	50%	50%
Small Sat - 1 Veh	1	On-orbit data	3,000	75%	50%	50%	50%


Red depicts what changes from the reference architecture

Acquisition schedule derived

- Block 1: # of vehicles required to achieve FOC
- Block 2: # of vehicles launched form FOC to FOC+10 yrs
- Block 3: # of vehicles launched from FOC+10 to FOC+20 yrs
- Block 4: # of vehicles launched from FOC+20 yrs to FOC+30 yrs

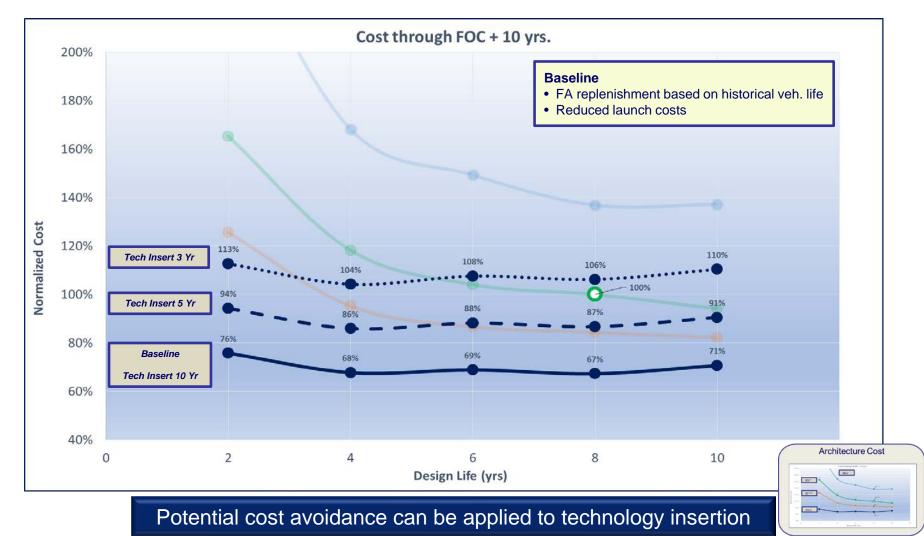
Space vehicle costs estimated by block


- Number of vehicles required to maintain constellation
- Complexity / size of the satellite
- Amount of new development effort
- Vehicle design life
- Recurring vehicle costs reset for each block (reset learning)
- Varied design life (2, 4, 6, 8, 10 year) for each option
- Varied launch cost
- Ran nearly 300 scenarios to generate curves

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LEADING INTELLIGENCE INTEGRATION

Architecture Costs vs. Design Life

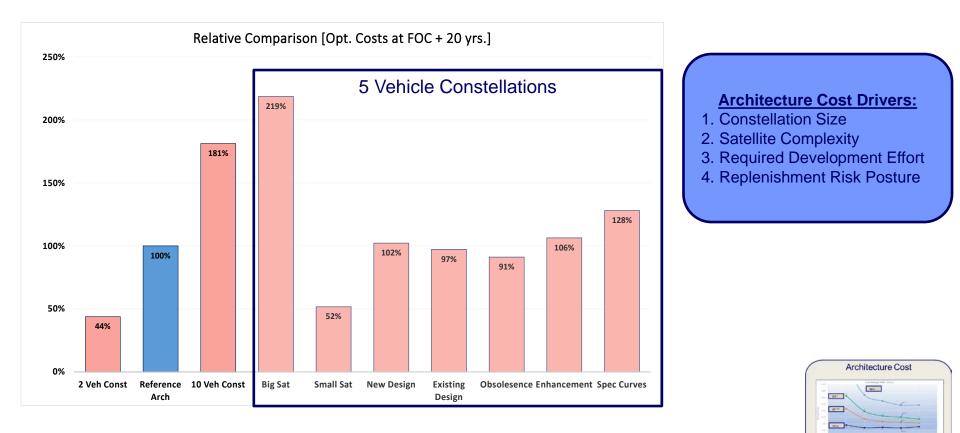


ODNI Systems & Resource Analyses / Cost Analyses (ODNI SRA/CA)

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LEADING INTELLIGENCE INTEGRATION

Technology Insertion


ODNI Systems & Resource Analyses / Cost Analyses (ODNI SRA/CA)

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LEADING INTELLIGENCE INTEGRATION

Architecture Cost Drivers

ODNI Systems & Resource Analyses / Cost Analyses (ODNI SRA/CA)

OFFICE OF THE DIRECTOR OF NATIONAL INTELLIGENCE

LEADING INTELLIGENCE INTEGRATION

Initial Findings and Observations

- Optimal cost design life decreases with decreasing launch costs
 - Current Launch Pricing: 6 10 yr. DL (cost neutral)
 - Future Launch Pricing: 4 8 yr. DL (cost neutral)
- Acquisition decisions for cost neutral architectures can be based on other factors such as operational concepts, technology insertions, mission utility
- Optimal cost design life decreases with increasing on-orbit vehicle life
- Replenishment risk posture (specification vs. empirical data) is a significant cost driver