
Building Dynamic Cost Estimating Models

Miranda Jones, Spirit AeroSystems

June 2018

WHERE FLIGHT BEGINS

Presented at the 2018 ICEAA Professional Development & Training Workshop, www.iceaaonline.com What are Dynamic Cost Estimating Models?

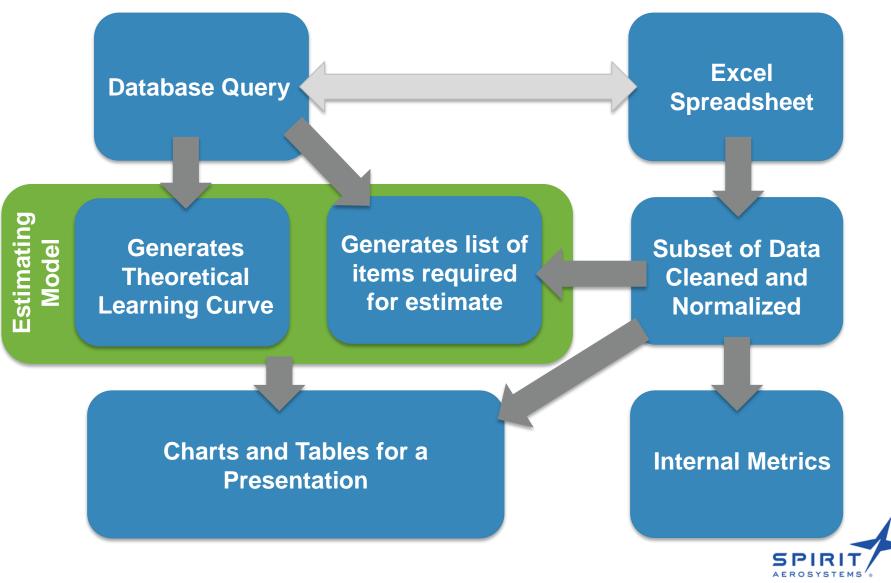
Dynamic: *adjective* (a process or system) characterized by constant change, activity or progress

- Dynamic Cost Estimating Models can
 - Adapt to a variety of inputs
 - Quantity and Arrangement
 - Accommodate changes to model assumptions
 - End user input
 - Fundamental formulas used
 - Provide flexibility and transparency to user
 - End user understands how data is transformed or summarized
 - End user acknowledges data form and organization

Reduce time and effort to create more detailed estimates or analysis reports

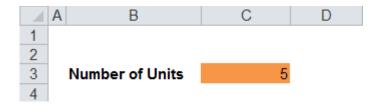
Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com **Determine Model Requirements**

- Think through some questions before creating model
 - Who is the end user of the model?
 - What aids do they need?
 - What background do they have?
 - What does the input data look like?
 - How does the format vary?
 - Is the data coming from a software package or free-form files?
 - What type of output is required?
 - Does the information need to be viewed in various ways?
 - Who is viewing the output?
 - Will the output of this model need to interact with any other models?

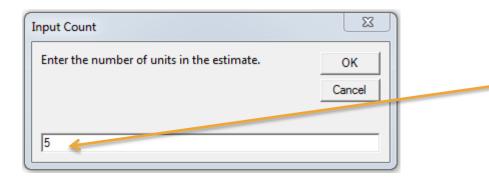

Where did the data come from and where is it going?

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com **Determine Model Requirements**

- How is the data being transformed?
 - Analogy
 - Parametric Model
 - Build-up
 - Extrapolation from Actuals
 - Learning Curves
 - Slicing/Dicing of Data
- How can the manipulation of the data be generalized?

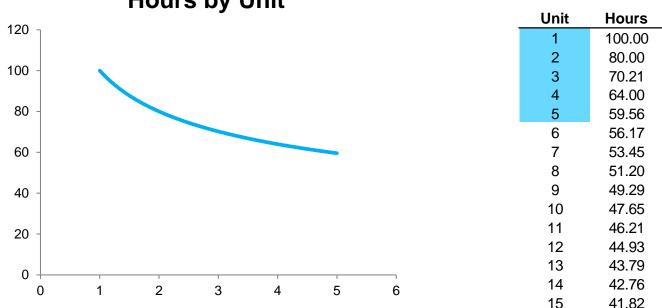


Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com **Determine Model Requirements**


Adapting to a Variety of Inputs – Quantity

Excel Spreadsheet:

Excel VBA:


input_count = InputBox("Enter the number of units in the estimate.", "Input Count")

Input box could be pre-populated based on a counting criteria, but user interaction may be more desirable.

Adapting to a Variety of Inputs – Quantity

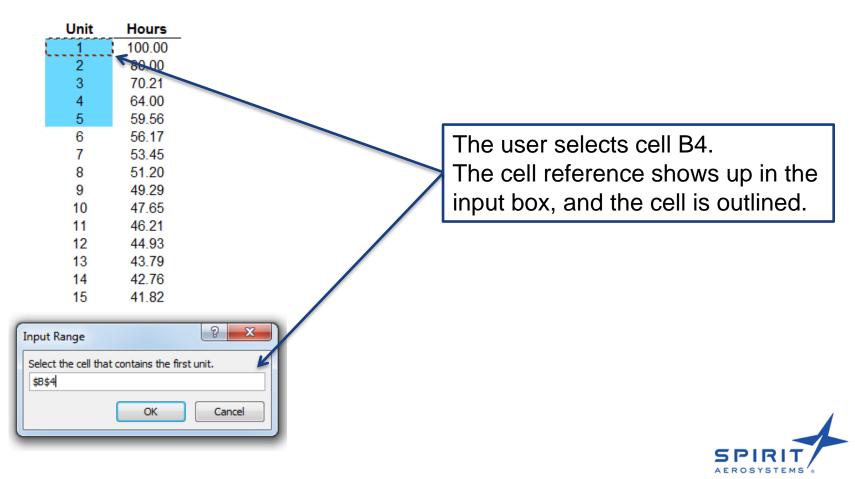
Hours by Unit

Excel Spreadsheet:

Create a Named Range – Unit_Count

=OFFSET('Learning Curve Data'!\$B\$4,0,0,Inputs!\$C\$3,1)

Reference Sheet Name and Named Range in Chart Series X Values


='ICEAA 2018 Presentation.xlsm'!Unit Count

Adapting to a Variety of Inputs – Arrangement

Excel VBA:

data_range = Application.InputBox("Select the cell that contains the first unit.", "Input Range", Type:=8)

Adapting to a Variety of Inputs – Arrangement

Create a dynamic list of tab names

Import Tab	22					
Select the tab that contains the data to import.						
Incumbent Hours Supplier 1 Hours Supplier 2 Hours Supplier 3 Hours	ок					
Supplier 4 Hours	Cancel					

Excel VBA:

Private Sub UserForm_Initialize()

Dim i As Integer

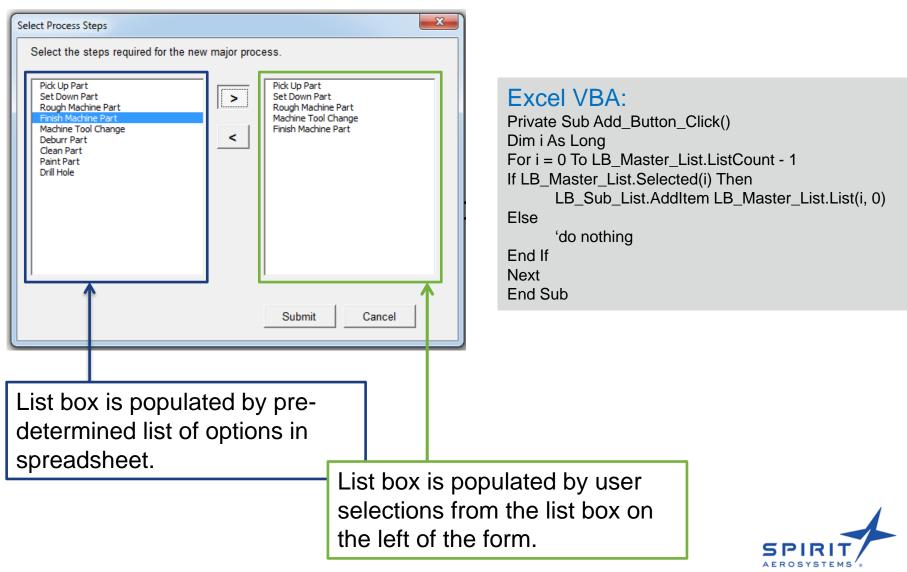
For i = 1 To ActiveWorkbook.Sheets.Count 'counts number of sheets in the active workbook If ActiveWorkbook.Sheets(i).Tab.Color = RGB(247, 150, 70) Then

'adds sheet name to list if it is colored this shade of orange

LB_Tabs.AddItem ActiveWorkbook.Sheets(i).Name

Else

'do nothing (don't add it to the list)


End If

Next i

End Sub

Adapting to Changes in Model Assumptions – End User Input

Adapting to Changes in Model Assumptions – End User Input

List box returns selected values to the estimating template in Excel

	А	В	С	D	E	F	G
1	Process Name	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6
2	Test 1	Pick Up Part	Set Down Part	Rough Machine Part	Machine Tool Change	Drill Hole	Machine Tool Change
3	Test 2	Pick Up Part	Set Down Part	Rough Machine Part	Finish Machine Part	Machine Tool Change	Finish Machine Part
4	New Process 1	Pick Up Part	Set Down Part	Rough Machine Part	Machine Tool Change	Finish Machine Part	
5							

 New Process 1 is now a process type that the user can utilize in future estimates

Adapting to Changes in Model Assumptions – Fundamental Formulas Used

Suite of Multivariate Parametric Models

$$\hat{y} = \hat{a} + \hat{b}_1 x_1 + \hat{b}_2 x_2 + \dots + \hat{b}_n x_n$$

Generalize application of models using the Excel SUMPRODUCT function

	Model Type	Intercept (Coefficient 1	Coefficient 2	Coefficient 3	Coefficient 4	Coefficient 5	Coefficient 6
Model 1	Linear	0.83	0.39	0.73	-0.85	0.00	0.00	0.00
Model 2	Linear	0.99	-0.15	0.26	0.10	0.17	-0.70	0.72
Model 3	Linear	0.93	0.44	0.00	0.64	0.00	0.00	0.03
ltem	Model Rec	uired Interc	ept Input 1	Input 2	Input 3	Input 4	Input 5	Input 6
ltem 1	Model 1	1	3.88	1	1.24	0.00	0.00	0.00
ltem 2	Model 2	1	1.46	0	2.05	9.57	1	10.80
ltem 3	Model 3	1	4.37	0.00	19.09	0.00	0.00	2.48
ltem 4	Model 2	1	0.08	0.12	0.70	0.71	0.39	0.96
					/			

V							
ltem	Model Used	Hours					
ltem 1	Model 1	2.018					
ltem 2	Model 2	9.671					
ltem 3	Model 3	15.056					
ltem 4	Model 2	1.619					

Adapting to Changes in Model Assumptions – Fundamental Formulas Used

Parametric Models

Excel VBA:

```
Dim j as Integer

Dim Inputs() As Double 'Creates inputs array, but does not specify dimension

j=1

While Sheets("Model Inputs").Cells(2,j) <> ""

If Sheets("Model Inputs").Cells(2,j) <> ""

Redim Inputs(j-1) As Double 'adds another dimension to array

j = j+1

Else

'do nothing

End If

Wend
```

Dynamically build array so the VBA script does not have to be adjusted as more models are added to the template.

```
Dim Coefficients(j-1) As Double 'sets dimension to array j-1
```

For A = 1 To j-1

Coefficients(A) = Application.WorksheetFunction.VLookup(Model, Sheets("Model Coefficients").Range("ModCoef"), A + 1, False) Next A

For A = 1 To j-1 Inputs(A) = Application.WorksheetFunction.VLookup(Model, Sheets("Model Inputs").Range("ModInputs"), A + 1, False) Next A

Sheets("Sheet1").Range("A1") = Application.WorksheetFunction.SumProduct(Coefficients,Inputs)

Adapting to Changes in Model Assumptions – Fundamental Formulas Used

Parametric Models

R:

#This function applies a parametric model to the input data and varies a specified input to show the sensitivity of the input on the estimate

#a = An m x n matrix that contains input data for the parametric model, 1st column contains item name #b = An m x (n-1) matrix that contains the coefficients of the parametric model to be applied in each rows

Apply_Models <- function(a,b){ #change a into a data frame Model_Inputs_DF <-data.frame(a)	Model Inputs =	$\begin{bmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{m1} \end{bmatrix}$	X ₁₂ X ₂₂ : X _{m2}	···· ····	X _{1n} X _{2n} : X _{mn}]
#change b into a data frame					
Model_Coefficients_DF <-data.frame(b)					
<pre>#first column in the input data Model_Ouptuts <- data.frame(a[,1]) for(j in 2:e) {Model_Outputs[,j] <- a[,j]*b[,j-1]} }</pre>	Model Coefficients =	X ₁₁ X ₂₁ : x _{m1}	x ₁₂ x ₂₂ : x _{m2}	 	$\begin{bmatrix} \mathbf{X}_{1n-1} \\ \mathbf{X}_{2n-1} \\ \vdots \\ \mathbf{X}_{mn-1} \end{bmatrix}$

}

R data frame entries can be indexed by row and/or column Model_Outputs[i,j]

Adapting to Changes in Model Assumptions – Fundamental Formulas Used

Parametric Models

R:

#Read in external data and create variables Model_Inputs <- read.xlsx("ICEAA 2018 Conference", sheetName = "Model Inputs")</pre>

#Read in external data and create variables Model_Coefficients <- read.xlsx("ICEAA 2018 Conference", sheetName = "Model Coefficients")</pre>

#Apply function Apply_Model(Model_Inputs,Model_Coefficients)

#Create an excel file with the output Write.xlsx(Model_Outputs, file = "ICEAA 2018 Conference – Output", sheetName="Model Outputs",row.names = FALSE)

- Significant reduction in flow time to create internal wrap rate reports
 - Before 1 week to create tables for Wichita site
 - After 2 days to create tables for all Spirit sites
- Development of new estimated wrap rates streamlined and consistently documented
 - Before set up scenarios to run overnight
 - After run scenarios real-time in reviews, if necessary
- Timely development of pricing and business cases for internal review
 - Inputs, outputs, and transformation of the data documented in a consistent manner
 - Internal leaders have high level of trust in models
 - Fewer reviews or go-backs due to miscommunication of assumptions and methodology

Questions

WHERE FLIGHT BEGINS"