

Demand, Recurring Costs, And Profitability

Doug Howarth, CEO, MEE Inc.

www.meevaluators.com

(661) 713-7531

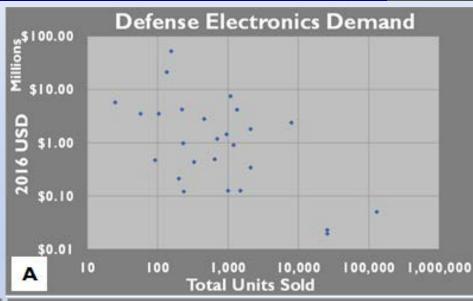
"So it is said that if you know your enemies and know yourself, you can win a hundred battles without a single loss. If you only know yourself, but not your opponent, you may win or may lose. If you know neither yourself nor your enemy, you will always endanger yourself."

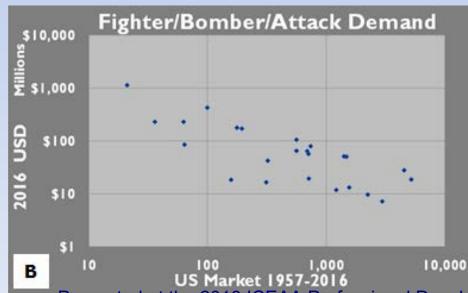
Presented at the 2018 ICEAA Professional Development & Training Workshop A www.iceaaonline.com

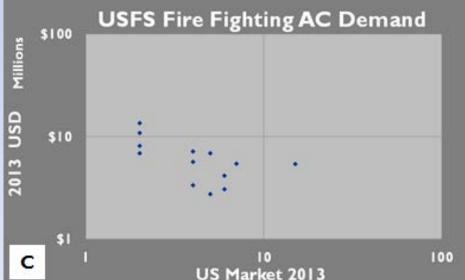
Outline

- Fuzzy demand
- Market limits
 - Demand Frontier
 - Market Aggregate Demand
- Price responsiveness & limit enforcement
- Working with the Demand Frontier

In This Section

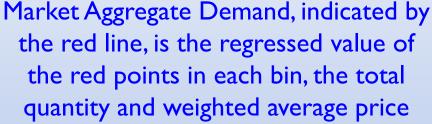



Fuzzy Demand

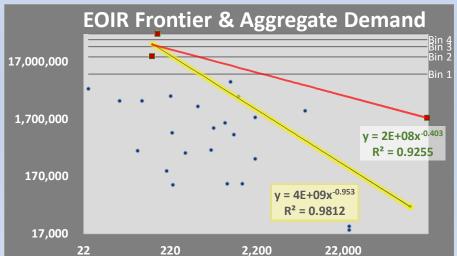

Fuzzy Demand: Here Are The Quantity-Price Points For Three Markets

Simply regressing the data will not provide much insight – What will?

In This Section



Market Limits


Let's Examine Defense Electronics By **Evenly Binning Models By Price**

We begin by dividing the models into bins evenly spaced by price; note that the lowermost bin has most of the data

The Demand Frontier is defined by the outermost points in the data, selected as the rightmost and next rightmost points in each bin – this is good but not great

Instead Of Even Binning, Here We Use Bins Based On A Geometric Series

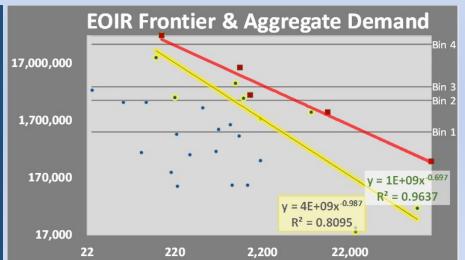
Bin 4

Bin 5

Geometrically based binning provides a more regular pattern to the analysis

Points Per Bin

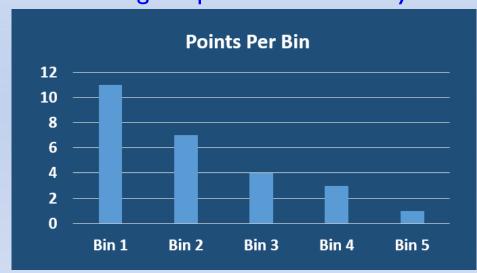
15

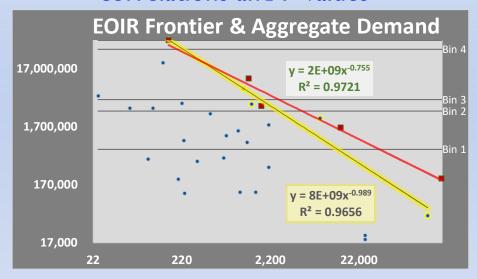

10

Bin 3

Bin 1

Bin 2


This has improved Market Aggregate Demand correlation, but we've made no attempt to improve our Demand Frontier Analysis here

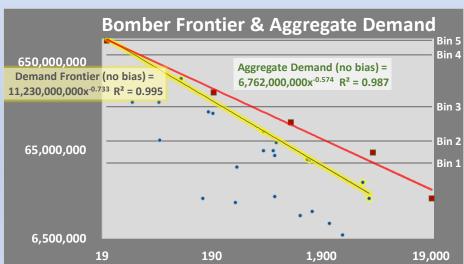

Now We Will Try Binning Based On the Fibonacci Series

Fibonacci based binning provides an even more regular pattern to the analysis

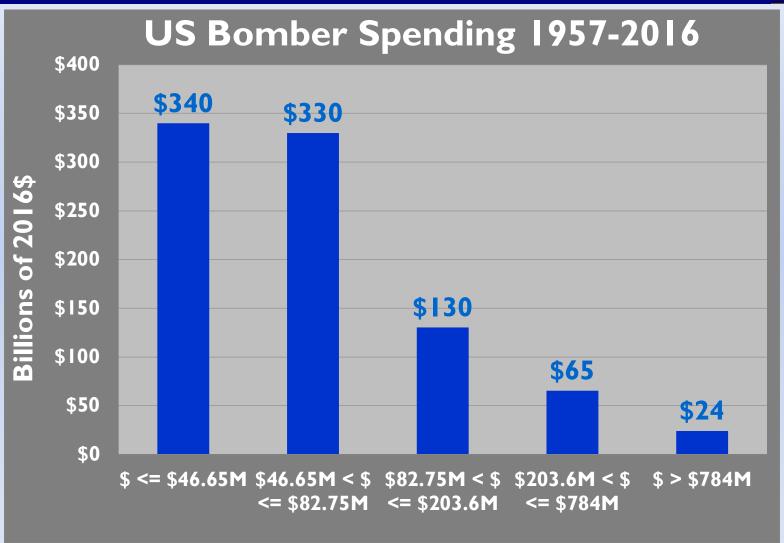
In this case, we now have our best Market Aggregate Demand and Demand Frontier correlations and P-values



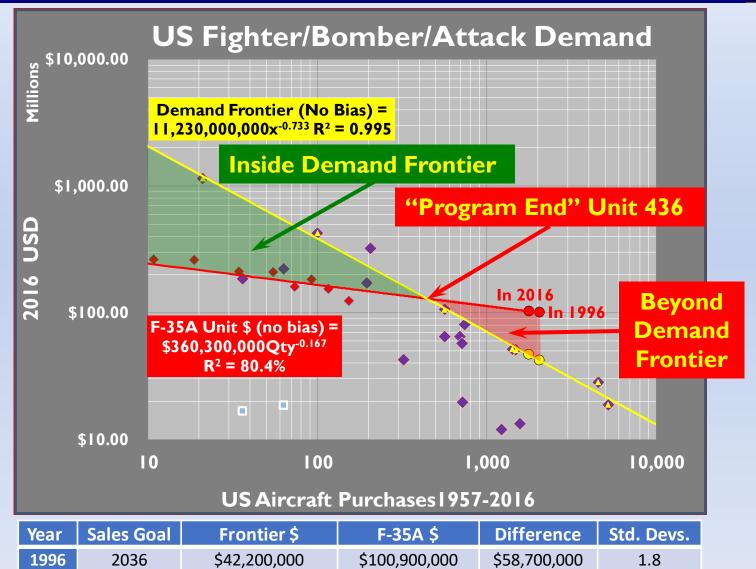
Price Responsiveness & Limit Enforcement


Let's Consider Market For Fighters, **Bombers And Attack Aircraft**

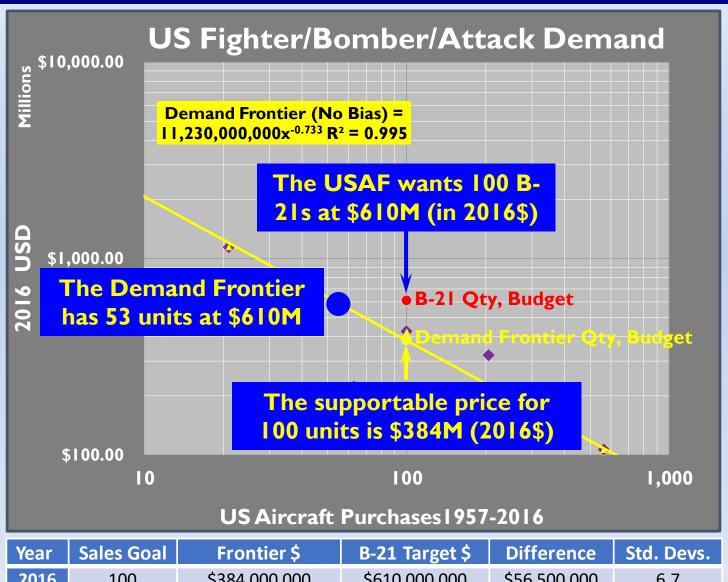
Fibonacci based binning again provides a regular pattern to the analysis


The Demand Frontier and Aggregate Demand Curves are well-correlated

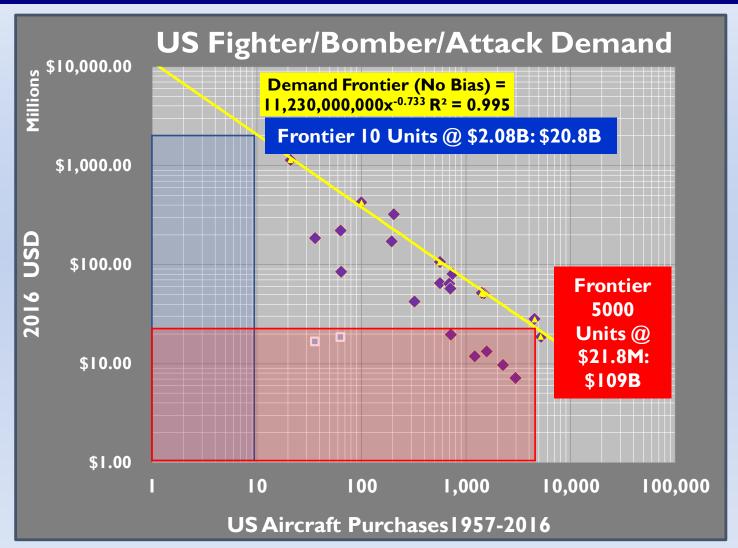
Curve	Pearson's ²	P-Value	Standard Error
Demand Frontier	99.7%	6.79E-09	\$33.5M
Aggregate Demand	99.9%	0.07%	\$28.7M


First, We Might Want To Know Where All Of The Money Goes

What Does This Mean For Ongoing Models, Such As The F-35A?



Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com


What About The B-21?

What Does The Demand Frontier Show Us About Unit And Revenue Potential?

Working with the Demand Frontier

The United States Fores

\$2,725,000

\$3,331,000

\$5,640,000

\$10,780,000

\$5,365,000

\$6,831,000

\$7,126,000

CV580

CL415

MD87

RJ85

S64

CL215 piston

CL215 turbine

S	Service (U	SFS) Firefi	ghting Op	erations	M	上人	
	Model	\$/season/unit	Gallons/drop	Drops/hr from 10	Ave. Age (Years)	2013 Qty	
	Bae 146	\$6,855,000	3,000	3.4	20	5	
	P2V	\$3,050,000	1,600	3.1	55	6	
	P3	\$4,134,000	2,550	3.4	45	6	
	C27J	\$5,432,000	2,000	3.4	4	7	
	C130XJ	\$8,078,000	3,000	3.4	0.1	2	
	DC10	\$13,500,000	10,800	3.4	35	2	

2,000

1,400

1,440

1,620

2,500

4,000

3,110

3.3

5.1

5.1

5.8

2.9

3.4

3.4

60

30

30

10

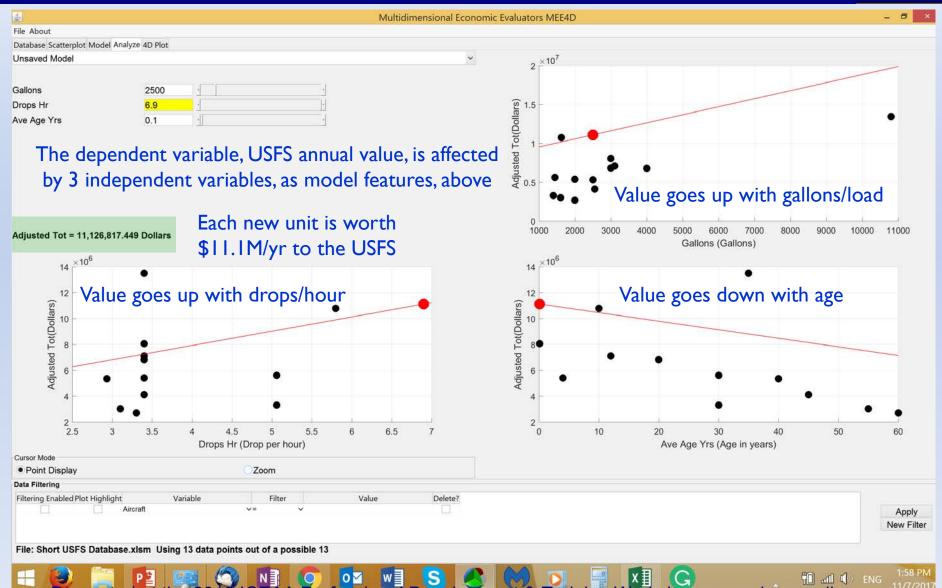
40

20

12

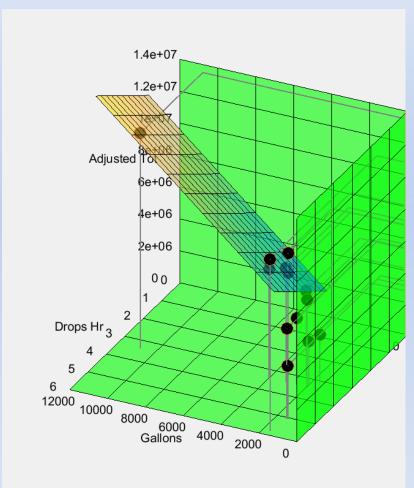
15

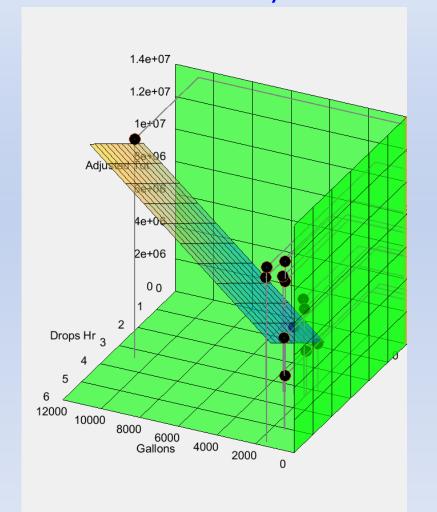
4

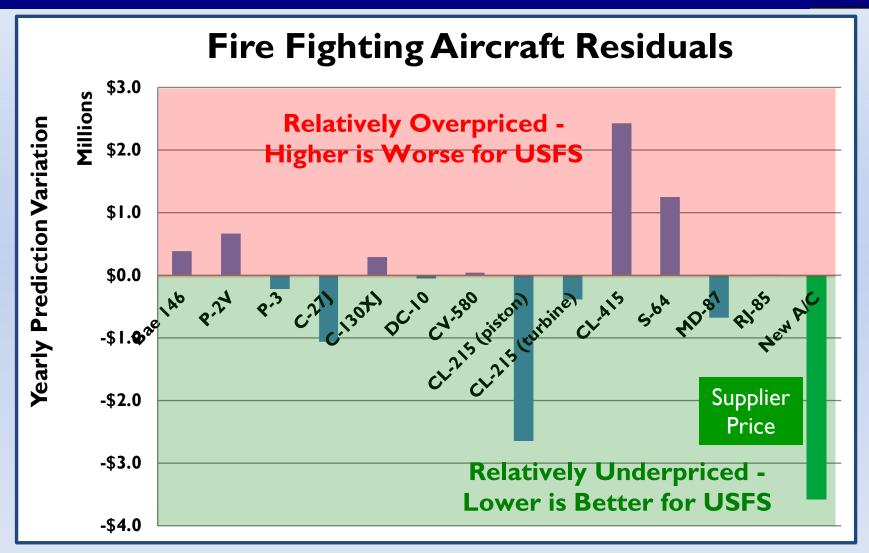

Firefighting Aircraft Value Is A Function Of Capacity, Speed And Age

				Mul	idimensional Eco	nomic Evaluat	tors MFF4D						_ 6
le About				ividi	idimensional Lee	HOTHIC Evalua	IOIS IVILLAD						
atabase Scatterplot Model Analyze 4D Plo	ot												
Saved Equations						IDEP VAR CH						R SELECTIO	
	Delete Current Eqn			V	ar Name	4.20	DV Corr	el		Variable Name			DV Correl
	Doloto Guirent Egii			0.01	2016 Qty *Aircraft -Not			0		Gall Drops			<i>'</i>
Unsaved Model				~						Ave Age	Yrs -48%		
Dependent Variable Selection									>				
Adjusted Tot				~									
Regression Type													
Linear [Y = mX + b]				~				v					
2.1.521 [1.1.1.5.2]					CLEAR SELEC	TIONS	SAVE E	QUATION		VIEW	FULL REGRE	SSION RESU	LTS
	~\$1	IM/dra	op/hr	~\$1	M to sta	rt							
Sneak Peek			•										
Equation: Adjusted Tot =	+1034.3 *Gallons+110												Copy Equation
Equation Statistics ~\$	000/gallor	n ~	- \$66l	< age/	year								
D2. 05.00/ Adi D2	100												
R*: 85.3% Adi R*	: 80.4%	Pears	ons 2:	85.3%		CV: 2	1.5%		MAPE:	15.4%		F-Test: o	k
R ² : 85.3% Adj R ²		Pears	ions 2:	85.3%		CV: 2	1.5%		MAPE:	15.4%		F-Test: o	k
Regression Term P-Value Test Res	ults					CV: 2	1.5%		MAPE:	15.4%		F-Test: o	k
Regression Term P-Value Test Resi Gallons: ok Ave	ults				related	CV: 2	1.5%		MAPE:	15.4%		F-Test: o	k
Regression Term P-Value Test Res	ults				related	CV: 2	1.5%		MAPE:	15.4%		F-Test: o	k
Regression Term P-Value Test Resi Gallons: ok Ave Drops Hr: ok	ults	This is			related	CV: 2		idual Degree				F-Test: of	k
Regression Term P-Value Test Resi Gallons: ok Ave Drops Hr: ok	ults Age Yr: ok	This is			related	CV: 2		idual Degree				F-Test: o	k
Regression Term P-Value Test Resi Gallons: ok Ave Drops Hr: ok	ults Age Yr: ok Num Observations:	This is			related	CV: 2	Res	idual Degre o	es of Freedo			F-Test: ol	k
Regression Term P-Value Test Resi Gallons: ok Ave Drops Hr: ok	ults Age Yr: ok Num Observations: ✓ Unit Space	This is	s we	ll-cor			Res □St	andardized R	e s of Freed d	om: 9		F-Test: ol	k
Regression Term P-Value Test Resi Gallons: ok Ave Drops Hr: ok	ults Age Yr: ok Num Observations:	This is	s we	ll-cor	o ¢	0	Res	andardized R	es of Freedo	om: 9		F-Test: ol	k
Regression Term P-Value Test Resi Gallons: ok Ave Drops Hr: ok	ults Age Yr: ok Num Observations: ☑ Unit Spac	This is	s we	ll-cor		0	Res	andardized R	e s of Freed d	om: 9	14	F-Test: ol	k
Regression Term P-Value Test Resi Gallons: ok Ave Drops Hr: ok	ults Age Yr: ok Num Observations: ✓ Unit Space 5000000	This is	s we	ll-cor	o ¢	0	Res	andardized R	e s of Freed d	om: 9	14	F-Test: ol	k
Regression Term P-Value Test Resi Gallons: ok Ave Drops Hr: ok Residuals	ults Age Yr: ok Num Observations: ✓ Unit Space 5000000 0	This is	s we	o o	• ¢	0	Res	andardized R	e s of Freed d	om: 9	14	F-Test: ol	k
Regression Term P-Value Test Resi Gallons: ok Ave Drops Hr: ok	ults Age Yr: ok Num Observations: ✓ Unit Space 5000000 0	This is	s we	ll-cor	o ¢	0	Res	andardized R	e s of Freed d	om: 9	14	F-Test: ol	
Regression Term P-Value Test Resi Gallons: ok Ave Drops Hr: ok Residuals ata Filtering iltering Enabled Plot Highlight	ults Age Yr: ok Num Observations: ✓ Unit Space 5000000 0	This is	s we	o o	• ¢	0	Res	andardized R	e s of Freed d	om: 9	14	F-Test: ol	Apply New Filter
Regression Term P-Value Test Resi Gallons: ok Ave Drops Hr: ok Residuals ata Filtering iltering Enabled Plot Highlight	ults Age Yr: ok Num Observations: ✓ Unit Space 5000000 0	This is	s we	o o	• ¢	0	Res	andardized R	e s of Freed d	om: 9	14	F-Test: ol	Apply
Regression Term P-Value Test Resi Gallons: ok Ave Drops Hr: ok Residuals ata Filtering iltering Enabled Plot Highlight	ults Age Yr: ok Num Observations: ✓ Unit Space 5000000 0 Variable	This is	s we	o o	• ¢	0	Res	andardized R	e s of Freed d	om: 9	14	F-Test: ol	Apply
Regression Term P-Value Test Resi Gallons: ok Ave Drops Hr: ok Residuals ata Filtering iltering Enabled Plot Highlight Aircraft	ults Age Yr: ok Num Observations: ✓ Unit Space 5000000 0 Variable	This is	s we	O o d	O 6	0	Res	andardized F	es of Freedo	om: 9 0 12			Apply New Filter
Regression Term P-Value Test Resi Gallons: ok Ave Drops Hr: ok Residuals ata Filtering iltering Enabled Plot Highlight Aircraft	ults Age Yr: ok Num Observations: ✓ Unit Space 5000000 0 Variable	This is	s we	O o d	• ¢	0	Res	andardized F	es of Freedo	om: 9 0 12			Apply New Filte

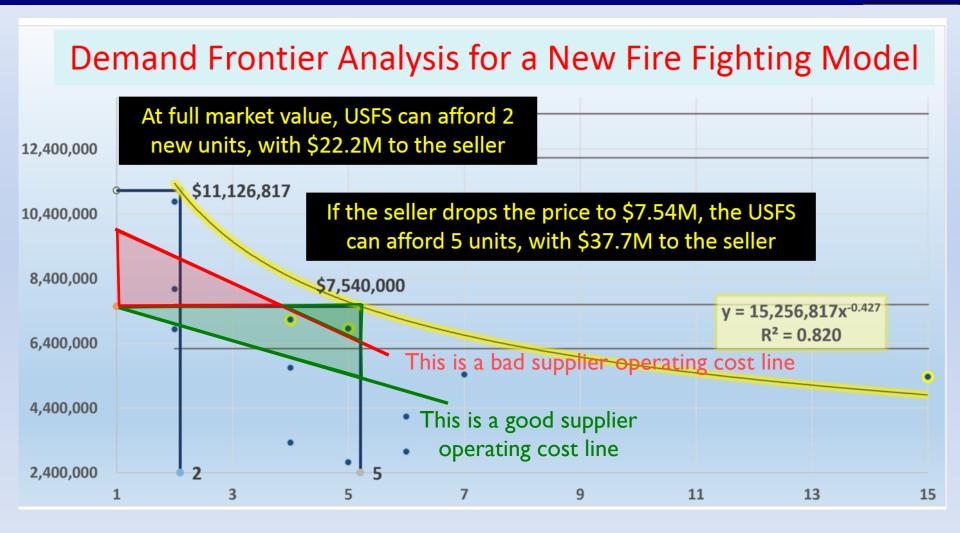
A New Plane Enters The Market: 2,500 Gallons, 6.9 Drops/Hr, 0.1 Yrs Old




Here Are A Pair Of 3D Views Of USFS Firefighting Aircraft Value

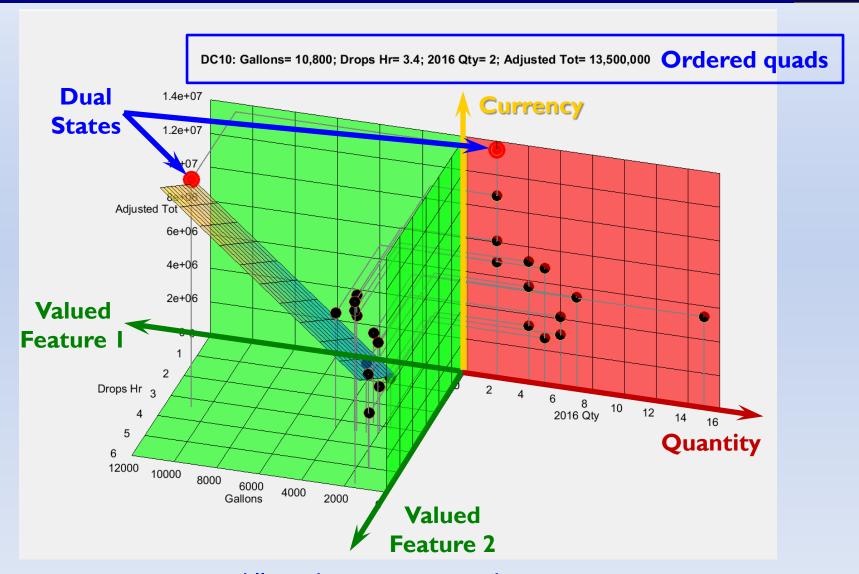

This is the value of a new model

Here's the value of a 40 yr old model


Suppose A Supplier Sells Services To The MEE USFS For Less Than The Going Rate

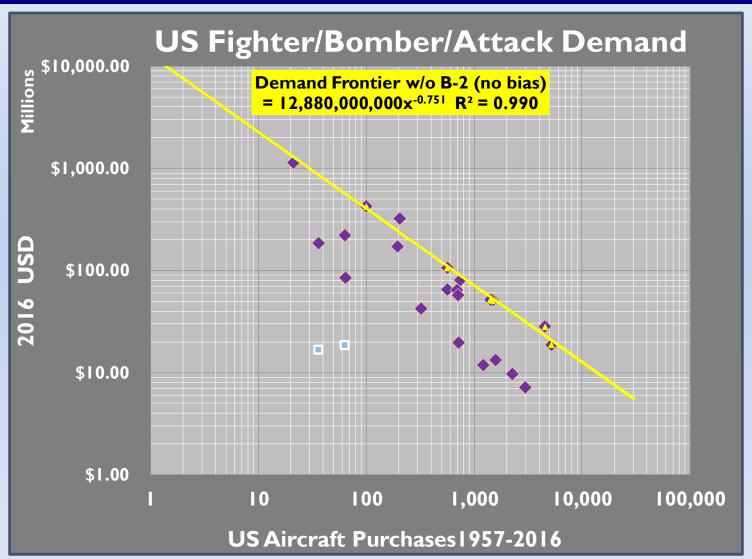
In this case, this becomes a great deal for the USFS

What Does The Lower Price Mean To The Supplier?



Clearly, the supplier must know his value, demand and cost

The 3D Value Space and 2D Demand Plane Join to Form 4D Markets


Summary

- Demand appears fuzzy but may be characterized by
 - Demand Frontiers
 - Market Aggregate Demands
- Markets limit sales about their Demand Frontiers according to their slope and standard deviations
 - Broad variations to the Demand Frontiers are rare
 - Estimators, program managers and engineers should take these limits into account as they begin programs
- It is possible to plan in advance to
 - Maximize capacity (as for a service branch)
 - Maximize profits (as for a for-profit company)

Removing B-2 From The Set Still Produces A Highly Significant Curve

