Projecting Future Costs with Improvement Curves: Perils and Pitfalls

2018 ICEAA Professional Development & Training Workshop - Phoenix

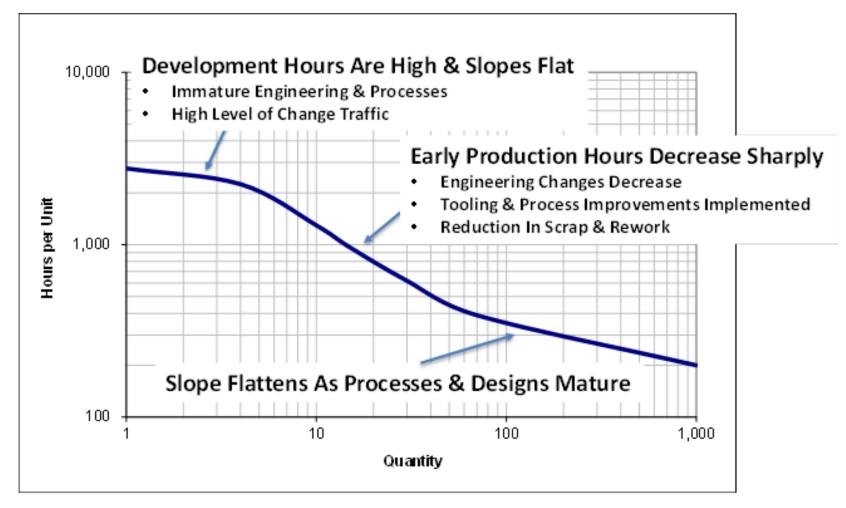
Brent M. Johnstone 13 June 2018

Perils of Improvement Curves

- Improvement curves (aka "learning curves) are one of the cost estimator's most utilized tools
- But their usage is filled with perils and pitfalls
 - Need to come with a warning label
- This presentation reviews some of the most dangerous traps analysts can fall into:
 - Straight-line projection
 - Failure to account for differences in development versus production
 - Dangers of recovery slopes
 - Carelessness about designating the first unit
 - Using learning curve slopes alone to measure production line efficiency

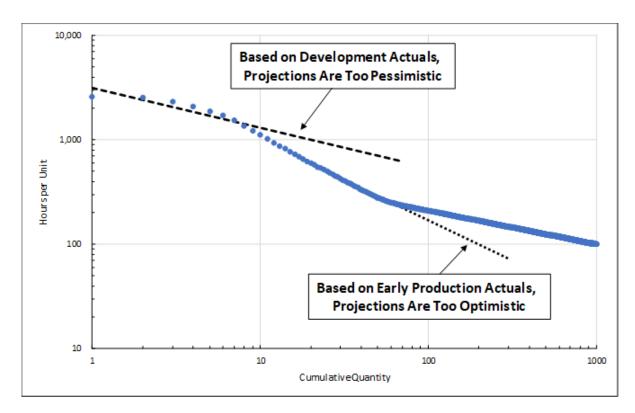
Straight-Line Projection

Straight-Line Projection

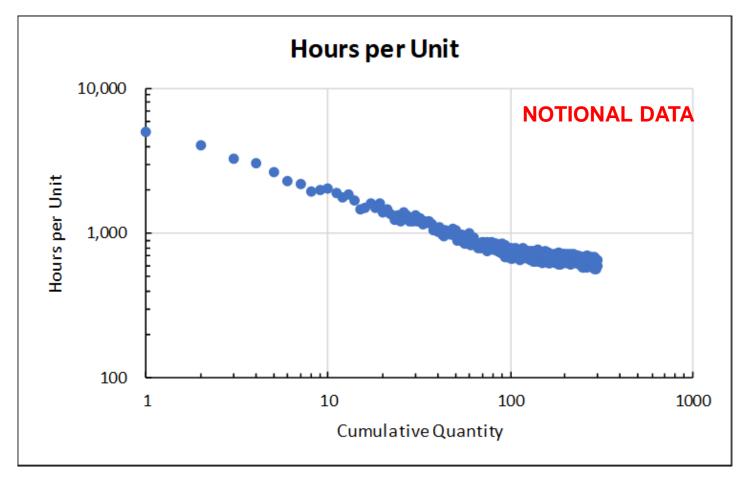

- Analysts commonly regress historical data, calculate curve slope and then assume same slope to project cost of future work
- Often justified by R² assumption being the higher the R² the "better" the model and more certain the future projection
- Can be referred to as the "straight edge and graph paper" school of estimating
 - Estimating the future is no more difficult than drawing a best fit on loglog paper and extending that line into the number of units being estimated
- What could be wrong with that?

Straight-Line Projection

- Quite a bit, in fact ... studies have shown projecting from historical data is not a guarantee of success
 - "Predicting future progress rates from past historical patterns has proved unreliable." (Dutton, Thomas, 1984)
 - "Even with both an excellent fit to historical data (as measured by metrics like R²), and meeting almost all of the theoretical requirements of cost improvement, there is no guarantee of accurate prediction of future costs." (RAND, 2008)
 - "...[E]ven projections based on producing an almost identical product over all lots, in a single facility, with large lot sizes, and no production break or design changes, do not necessarily yield reliable forecasts of labor hours. Out-of-sample forecasting using early lots to predict later lots has shown that, even under optimal conditions, labor improvement curve analyses have error rates of about +/- 25 percent." (RAND, 2008)


S-Curve

• The primary reason for this failure is the learning curve is not a straight line in log-log space over the product life cycle


Actual Hours & S-Curve

- Given reality of a S-curve, a straight-line projection based on actuals could overstate or understate the estimate depending on our sample
- Need to be aware of this when regressing data & be cognizant of what is really happening on the shop floor

Regressing Data With A Break

• What can we do when see an observed break in the learning curve slope in our actuals?

Two-Leg Segmented Learning Curve

- To create a two-leg segmented learning curve, introduce breakpoint unit K
- Where Ln x < Ln K, we use our typical improvement curve equation:

Ln y = Ln α_1 + β_1 Ln x

• Where Ln x > Ln K:

Ln y = Ln(α_1 + α_2) + β_2 Ln x

- Where:
 - y = Manufacturing Hours per Unit
 - x = Cumulative Unit (Effective Sequence)
 - $\alpha_1 = Y$ -Intercept for Leg #1, Equal to Theoretical First Unit Hours for Leg #1
 - α_2 = Intercept Adjustment for Leg #2, Such That $\alpha_1 + \alpha_2$ Equals the Y-Intercept for Leg #2
 - $-\beta_1$ = Rate of Learning for Leg #1, Such that 2^{β} Equals Learning Curve Slope #1
 - β₂ = Rate of Learning for Leg #2, Such that 2^β Equals Learning Curve Slope #2

Two-Leg Segmented Learning Curve

• Example of how to set up our data

					Dependent			
					Variable	Independent Variables		
Unit	HPU	LN(Unit)	К	LN(K)	LN(HPU)	LN(β1)	LN(α2)	LN(β2)
1	5,020	-	101	4.62	8.52	-	-	-
2	4,065	0.69	101	4.62	8.31	0.69	-	-
3	3,248	1.10	101	4.62	8.09	1.10	-	-
4	3,038	1.39	101	4.62	8.02	1.39	-	-
5	2,628	1.61	101	4.62	7.87	1.61	-	-
6	2,272	1.79	101	4.62	7.73	1.79	-	-
7	2,216	1.95	101	4.62	7.70	1.95	-	-
8	1,949	2.08	101	4.62	7.58	2.08	-	-
9	2,001	2.20	101	4.62	7.60	2.20	-	-
10	2,030	2.30	101	4.62	7.62	2.30	-	-
:	:	:	:	:	:	:	:	:
99	682	4.60	101	4.62	6.53	4.60	-	-
100	668	4.61	101	4.62	6.50	4.61	-	-
101	798	4.62	101	4.62	6.68	-	1	4.62
102	677	4.62	101	4.62	6.52	-	1	4.62
103	724	4.63	101	4.62	6.59	-	1	4.63
104	692	4.64	101	4.62	6.54	-	1	4.64
105	680	4.65	101	4.62	6.52	-	1	4.65
106	746	4.66	101	4.62	6.61	-	1	4.66
107	799	4.67	101	4.62	6.68	-	1	4.67
108	724	4.68	101	4.62	6.59	-	1	4.68
109	763	4.69	101	4.62	6.64	-	1	4.69

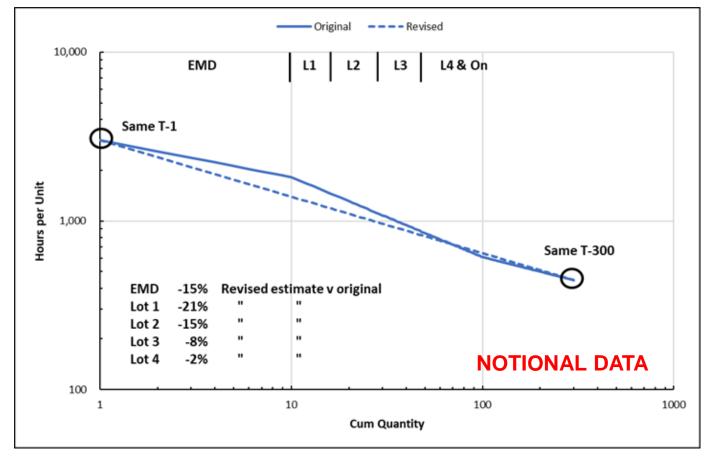
PARTIAL DATASET

Regression Results

SUMMARY OUTPUT Regression Statistics Multiple R 0.985 Also allows us to compare a single R² value R Square 0.971 0.970 Adjusted R Square for multi-leg slope versus single leg slope Standard Error 0.058 Observations 300 ANOVA ďf SS MS F ignificance F 32.35 Regression 3 10.78 3,249.08 0.00 Residual 296 0.98 0.00 Total 299 33.33 Coefficientstandard Err t Stat P-value Lower 95% Upper 95% ower 95.0% pper 95.0% Results: 8.55 0.02 365.37 8.51 8.60 8.51 8.60 5,167 TFU for Leg #1 Natural log - Intercept (In α₁) _ Natural log - Beta-1 (ln β₁) (0.43)0.01 (68.58) 0.00 (0.44)(0.42)(0.44)(0.42)74.2% Slope for Leg #1 Natural log - Alpha-2 (In α₂) (1.24)0.07 (16.88)0.00 (1.39)(1.10)(1.39)(1.10)1,495 TFU for Leg #2 Natural log - Beta-2 (ln β₂) 90.1% Slope for Leg #2 (0.15)0.01 (11.57)0.00 (0.18)(0.13)(0.18)(0.13)Hours per Unit 10,000.00 Gives us: Hours per Unit Unit 1-100 74.2% 1,000.00 Unit 101-on 90.1% **NOTIONAL DATA** 100.00 100 10 1000 1 **Cumulative Quantity**

Development vs Production

Development vs Production

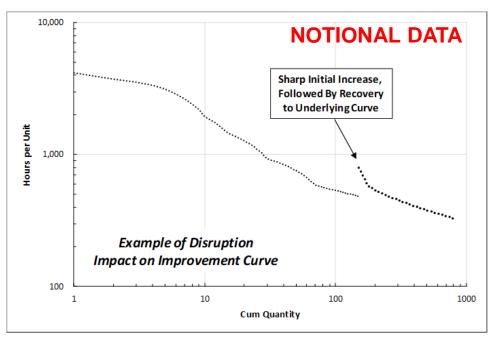

- S-curve theory tells us improvement curves during development phase should be relatively flat
 - High number of engineering changes
 - Late parts due to late engineering release
 - Tooling that requires rework
 - Engineering errors
 - Planned manufacturing processes and part flows don't always work on the shop floor
- Learning curve literature tends to gloss this over
 - Data from development units is excluded
 - Data limitations (lot data vs unit data) preclude analysis of development slopes

Development vs Production

- Does it really matter? Take a hypothetical example
- Estimator establishes cost of 300-unit program
 - Units 1-10: 86% (Development)
 - Units 11-100: 72%
 - Units 101-on: 82%
- Program manager objects:
 - "Shouldn't a learning curve be just one line?"
 - "A 3-leg slope is too complicated"
 - "A flat development curve will look uncompetitive to source selection committee"
- Suggests we use the same T-1 and T-300 costs but draw a single line in log-log space between the two
 - Recognizes development will be understated, but it's only 10 units

Development vs Production

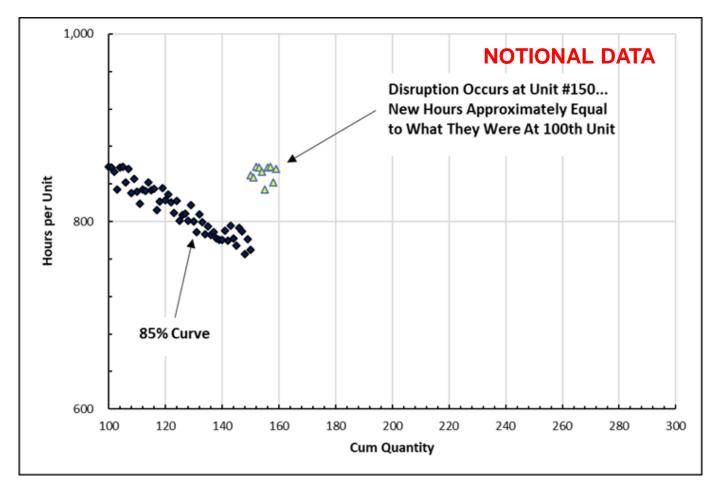
 Unfortunately, more than just the development program is impacted by the program manager's direction...

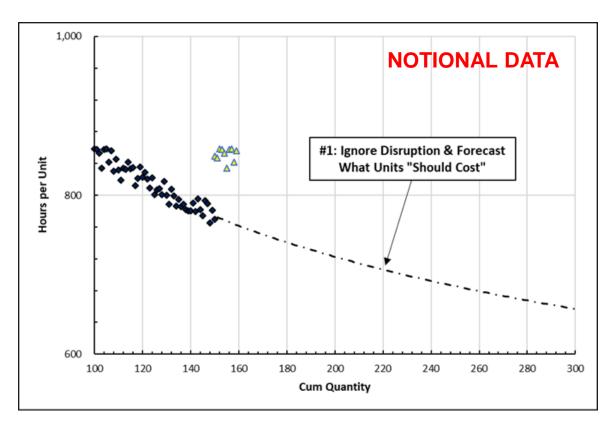


 Lots 1 & 2 are significantly understated as well – the program is likely to get a bad reputation for overrunning its costs

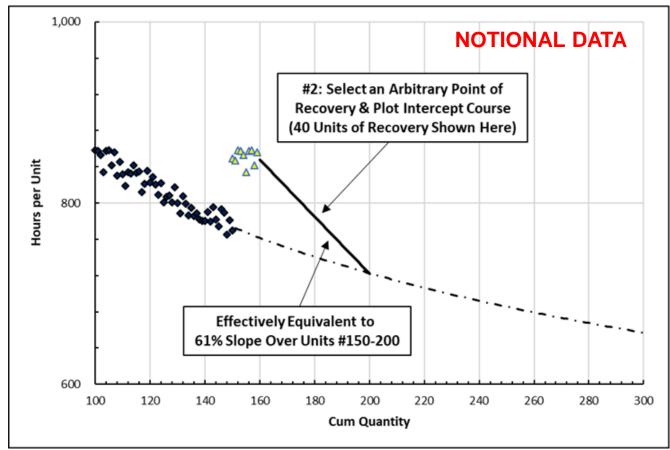
Recovery Slopes

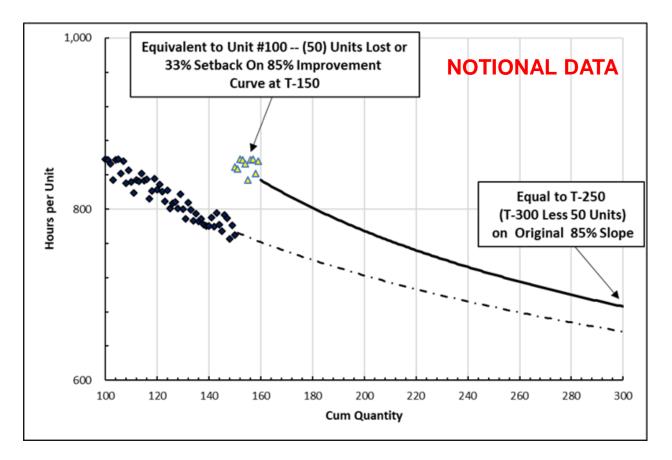
Recovery Slopes

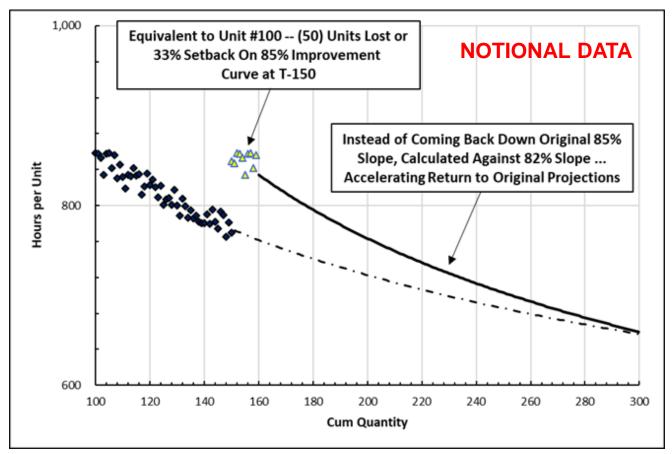

- One of the most difficult situations for an estimator is a sharp increase in unit cost which is expected to be mitigated over time
 - Major engineering changes
 - Production break
 - Work transfer between sites
 - Production issues, i.e., critical load part shortage which creates significant behind schedule or out of station costs


• Typically see a sharp increase, followed by eventual recovery to the underlying curve

Recovery Slopes - Example


- Ex ante we do not know how & when this recovery will occur
- Take a hypothetical example:


- Option 1: Ignore the disruption & project as if it never happened
- Often rationalized on "should cost" grounds
- Never justified the shop floor cannot deal with world as we wish it was, but must deal with it as it truly is


- Option 2: Select a point of recovery & plot intercept course
- Point of recovery is almost an arbitrary selection
- Often leads to unrealistically steep slopes that are not achieved

- Option 3: Apply setback on the learning curve using the original slope
- Will produce the most conservative answer

- Option: Apply setback on learning curve using an accelerated slope
- Riskier approach: How much acceleration should be applied? Might wind up with an answer that is unexecutable

Recovery Slopes – Observations

- Analysts sometimes resist setback approach if we are not dealing with a clear-cut change in personnel, i.e., production break
- Recall Anderlohr's 5 elements of learning
 - Operator learning
 - Supervisor learning
 - Tooling
 - Continuity of production
 - Manufacturing methods

Typically constitutes no more than 20% of total cost improvement

Production disruptions such as late parts or engineering changes can be successfully modeled by setback methods

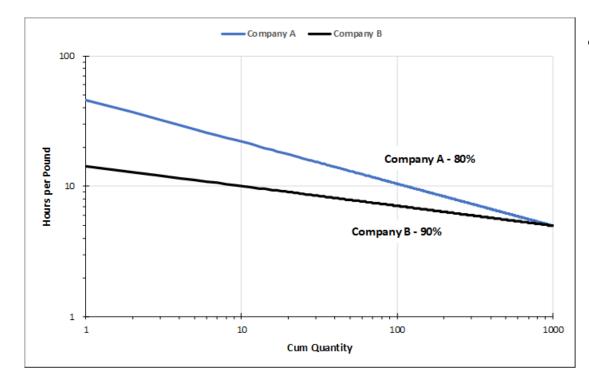
 Murphy's Law can destroy the best-laid plans of production managers – don't plan on perfection but leave some margin of safety

> Always Consult Shop Floor Management or SMEs To Insure Your Recovery Is Actually Achievable

First Units

When Is First Unit a First Unit?

- A small pylon requires subassembly work
 - For first 30 units, Special Projects group produced it on 84% learning curve
 - At Unit 31, task transferred from Special Projects to regular Production department, who will produce next 400 units
- Analyst proposed 1st Production unit would be produced at same hours per unit as the last Special Projects unit
 - But for learning curve purposes, he treated it as Unit 1 on 84% curve...not as Unit 31
- Consequences are dramatic: the 16% cost reduction that occurs every time the number of units double has been restarted...not the estimator's intention


When Is First Unit a First Unit?

Always Graph Your Results – This Error Would Have Been Caught Had the Analyst Done So

- Frequently asserted that a flat learning curve is proof of manufacturing inefficiency – and that steep learning curves prove how efficient a manufacturing operation is
- In fact, the slope by itself does not prove if a factory is efficient or inefficient
- Hypothetical example
 - Company A assembles widgets on a 80% slope over 1,000 units
 - Company B build similar but not identical product with a 90% learning curve over the same range
 - There is no transfer of manufacturing knowledge or personnel between the two companies
 - Which is more efficient?

- Have to ask <u>why</u> Company A has a steep curve. It's possible it has so for all the wrong reasons
 - High T-1 value driven by late engineering release, inadequate tooling, late material, oversizing of shop floor crews to recover schedule

- Company B may have a relatively flat slope for all the right reasons
 - Low T-1 accomplished by on-time engineering release, high quality tools, good supply chain performance and efficient crew sizing

- A steep curve can demonstrate strong dedication to cost reduction

 or it can indicate the need to recover from poor performance &
 mismanagement
 - "The more room there is for improvement, the more improvement there is to be expected." (Fowlkes, 1963)
- We cannot determine which is the case just by calculating a learning curve slope – we have to go down another layer and ask <u>why</u>

Conclusion

- Improvement curves are essential part of cost estimator's toolkit
- However, they are easy to misuse and not know that they are being misused
- Reviewed 5 traps analysts can fall into:
 - Straight-line projection
 - Failure to account for differences in development versus production
 - Dangers of recovery slopes
 - Carelessness about designating the first unit
 - Using learning curve slopes alone to measure production line efficiency

References

- Anderlohr, George (1969). "What Production Breaks Cost," Industrial Engineering, September 1969, pgs. 34-36.
- Asher, H. (1956). Cost-Quantity Relationships in the Airframe Industry. Santa Monica, California: RAND Corporation.
- Carr, G.W. (1946). "Peacetime Cost Estimating Requires New Learning Curves." Aviation, Vol. 45, April 1946, pp. 76-77.
- Cochran, E.B. (1960). "New Concepts of the Learning Curve." The Journal of Industrial Engineering, July-August 1960, pp. 317-327.
- Cochran, E.B. (1968). Planning Production Costs: Using the Improvement Curve. San Francisco: Chandler Publishing Company.
- Crawford, J. R. (1944). Learning Curve, Ship Curve, Ratios, Related Data. Burbank, California: Lockheed Aircraft Corporation.
- DCAA Contract Audit Manual (1996). DCAAM 7640.1, vol. 2. Washington: Government Printing Office.
- Dutton, J., Thomas, A. (1984). "Treating Progress Functions As a Managerial Opportunity." The Academy of Management Review, April 1984, pp. 235-247.
- Fowlkes, Tommie F. (1963) Aircraft Cost Curves. Fort Worth: General Dynamics/Convair Division.
- Fox, B., Brancato, K., Alkire, B. (2008). Guidelines and Metrics for Assessing Space System Cost Estimates. Santa Monica, California: RAND Corporation.

References

- Hess, R. W., Romanoff, H.P. (1987). Aircraft Airframe Cost Estimating Relationships: Bombers and Transports. RAND N-2283/3-AF. Santa Monica, California: RAND Corporation.
- Johnstone, Brent M. (2015) "Improvement Curves: An Early Production Methodology." International Cost Estimating and Analysis Association (ICEAA). URL
- Jones, Alan R. (2001). "Case Study: Applying Learning Curves in Aircraft Production Procedures and Experiences." Maynard's Industrial Engineering Handbook, 5th edition. New York: McGraw-Hill.
- Large, Joseph P.; Hoffmayer, Karl; Kontrovich, Frank (1974). "Production Rate and Production Cost." RAND, R-1609-PA&E, December 1974.
- Levinson, G. S.; Barro, S. M. (1966). Cost Estimating Relationships for Aircraft Airframes, RAND, Santa Monica, CA, 1966.
- Miller, F. D. (1971). "The Cubic Learning Curve A New Way to Estimate Production Costs." Manufacturing Engineering & Management, July 1971, pp. 14-15.
- Resetar, Susan A; Rogers, J. Curt; Hess, Ronald W. (1991). "Advanced Airframe Structural Materials: A Primer and Cost Estimating Methodology." RAND R-4016-AF. Santa Monica, California: RAND Corporation.
- Shumeli, Galit (2010). "To Explain or to Predict?" Statistical Science, Vol. 25, No. 3, pp. 289-310.
- Smith, Larry L. (1986). Cost Improvement Analysis (QMT-160). Dayton, Ohio: Air Force Institute of Technology.

References

- Stanford Research Institute (1949), "An Improved Rational and Mathematical Explanation of the Progress Curve in Airframe Production" (for USAF-AMC).
- Wright, T.P. (1936). "Factors Affecting the Cost of Airplanes." Journal of the Aeronautical Sciences, Vol. 3, February 1936, pp. 122-128.
- Younossi, Obaid; Kennedy, Michael; Graser, John C. (2001). Military Airframe Costs: The Effects of Advanced Materials and Manufacturing Processes, RAND, 2001.