

Estimating Software Sustainment Costs

Arlene Minkiewicz

ICEAA Conference, June 2018

Agenda

- Introduction
- Software Sustainment
- Data Collection and Analysis Data Mining
- Data Collection Journey to Date
- Lessons Learned and Next Steps
- Conclusions

Introduction

- Estimating software sustainment costs continues to be an issues for organizations that deploy software intensive systems and the contractors that support these systems
 - Software isn't like hardware more 'malleable'
 - Software developers are often asked to stretch and mold to accommodate for limitations in hardware or other software in a system
- For the purpose of this research, software sustainment covers costs of all activities necessary to keep a system up, running, and meeting all functional and non-functional requirements
 - Some of these activities can be estimated with traditional software metrics
 - Some cannot
- This presentation discusses an on-going data mining projects intended to address better ways to estimate comprehensive software sustainment costs

About this data mining project....

- Collection from actual software sustainment efforts of...
 - Costs and Effort
 - Technical Data
 - Programmatic Data
- Progress on actual data collection has been slower than anticipated
 - Not surprising given the nature of data collection as we know it
- This is not a report on a failed data mining project....
- But rather a report on progress toward success
- In other words... we haven't found the Holy Grail but there is 'A path! A path! A path'

Software Sustainment

- More and more systems are reliant on software for successful operation
- Budget constraints and available money for Research and Development has led to ...
 - Less new software being developed
 - Legacy applications being enhanced, adapted and modernized to meet new threats, mission requirements, coalition configurations, etc.
- Software changes are easier to deploy than hardware changes
- Software sustainment consumes 60-90% of program budget for many software intensive programs

Software Sustainment

- "Software sustainment involves orchestrating the processes, practices, technical resources, information and workforce competencies for systems and software engineering, to enable system to continue mission operations and also to be able to be enhanced to meet evolving threat and capability needs."
 - According to the Software Engineering Institute Carnegie Mellon University (SEI CMU)
- Software maintenance is "the process of modifying a software system after delivery to correct faults, improve performance and adapt to changing environments"
 - According to the Institute of Electronics and Electrical Engineers (IEEE) Standard 12207

What's Software Sustainment Include?

- Software changes software requirements, design, code and test for items such as.....
 - Bug fixes
 - Enhancements
 - Addressing IAVAs or other security issues
- Project and Technical Management oversight activities for sustainment period such as...
 - Planning
 - Execution
 - Configuration Management
 - Release Management
 - Measurement
 - Contracting
- Software Licenses
- Certifications and Accreditations

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

What's Software Sustainment Include?

- Facilities
- Sustaining Engineering including activities such as ...
 - Investigations
 - Test Support
 - Training
 - Help Desk
- Field Support including on-site activities such as ...
 - Technical Support
 - Troubleshooting
 - Installation Support
 - On-site Training
- Operational Management for non-system related resources needed to sustain a particular system

Data Mining

- Doing data collection and analysis right is not easy
- "Data Mining is the process of discovering patterns in large data sets involving methods at the intersection of machine learning, statistics, and database systems."
 - According to Wikipedia
- In 1999, several large businesses collaborated on a proscribed methodology for successful data mining
 - Cross Industry Standard for Data Mining (CRISP-DM)
 - Applies structure to the data mining process
 - Sensible roadmap to help keep data junkies on track and focused

CRISP-DM

- This methodology divides the data mining space into six phases
 - Business Understanding What's the question?
 - Data Understanding What's the data, how are we going to get it, how is it going to be collected?
 - Data Preparation How do we make the data useful for analysis?
 - Modelling How do we figure out what the data tells us towards answering the question?
 - Evaluation How well does our model work?
 - Deployment How do we convince others to believe our model, how do we help others to be successful using our model?

Data Collection Journey

- In context of CRISP-DM methodology this project is just starting to get interesting
- Several iterations of 'test case' modeling and evaluations, quantity and expansiveness of data collected so far is not adequate to support quality models
- Significant progress on the first three phases

Business Understanding

- 'How can the organization do a better job of predicting software sustainment costs throughout their portfolio?'
 - Question that is pervasive in many organizations
- In many organizations sustainment costs are handled as a level of effort
 - Highest priority items that emerge throughout the budget cycle get the funding
 - To be fair all organizations (whether they plan or not) will apply needed funds to divert from tragedy (software issues that will cause financial disaster, loss of life, loss of critical customers)
- Not an excuse for an organization to not have a sustainment plan that allows for funds to be allocated to the projects with the highest business value
- 'How can the organization do a better job of predicting sustainment costs across their portfolio in order to achieve maximum value for dollars spent?'
- Business and data mining team also addressed the necessity for the business to get buy in from contractors required to support data collection through contractual means

Data Understanding

- Important to determine data to collect and periodicity of data collection
 - Traditional software development projects generally have natural points for data collection
 - Milestone reviews when an waterfall like approach is employed
 - Iteration, increments and release when an agile or incremental approach is employed
 - Software sustainment projects generally make releases using a different scenario
 - Regularly schedule releases with enhancements, bug corrections and adaptations
 - On demand releases to address serious defects, security issues or other show stopping issues
 - Most sustainment projects are a hybrid of the two scenarios listed above
- Data collection targets were determined through interviews with Subject Matter Experts (SMEs) within the business and their contractor community
- Data collection for this project was done on two levels
 - Monthly data collections

- Data collections aligned with each release Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

Data Understanding

Monthly data collection to include

- Program level data to include

- Field Support Hours by specific support activity and labor category, and cost by Contractor by System
- Program Support Hours by specific support activity and labor category, and cost by Contractor by System
- Infrastructure Support Hours by specific support activity and labor category, and cost by Contractor by System
- Other Direct Cost (ODC) Costs by Contract by Vendor by System
- Travel Costs by System by Trip
- Engineering Level data to include hours by specific activity and labor category and Cost by Contractor by System
- Release data to include:
 - System Level context data such as Domain, Operating Environment, CMMI Level, Development Process, Schedule Information
 - Software Size information by Requirement such as New Size, Deleted Size, Modified Size, Reused Size, Functionality, Development Technology

Data Collection

- Data collection was sluggish in the beginning
- Data collection is costly and time consuming and is often viewed with skepticism by those being 'measured'
- Measures to enforce participation through contract were thwarted by the fact that many on-going sustainment efforts were already on contract
- Data mining team was forced to start work with data from previous collection exercises
 - Subset of the data originally outlined
 - Seen as a starting place
- Patience and flexibility are important data collection tools

- Data provided was of insufficient quantity and quality to support modeling and evaluation
- It was however sufficient to support data preparation
- Tool selected for automation of the data preparation processes was RapidMiner
 - Open source software (available for free from https://rapidminer.com/)
 - Powerful data mining capability
 - Easy to use drag and drop operations for building and maintaining data preparation and analysis processes

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

- Data collected was consolidated into a single MS Excel[®]spread sheet
- Spread sheet was imported into RapidMiner
- Snap shot of what the imported data looked like (not the real numbers):

0	936.7609631	2753.426	1202.251	2.694	Usknown	0	9	235230 3764	170064.701	12. V.	19343.060	Dest Quess	0
2	1188319805	1370.050	2725.292	3.530	Usenown	0	7	62169.01590_	500447.058	3110).	18764 110	BestGuess	0
0	unknown	3000.607	7187.161	8.504	urknown	0		3156607.944	2915061.812	2347668.7	*8891343	0	D
0	unknown	518.640	288,790	3.067	urknown	0	9	91498 20328	283726 /	10.000	1656	0	0
0	unknown	252.700	1070.768	3.270	unknown	0	9	1045227208	15337 -+4	. 10	+0058.025	0	0
2	unknown	831.374	207.950	2.336	unknown	0	2	155487 5488	25108	2799.	71922.747	œ	D
D	unknown	88.458	1368.998	0.980	urknown	0	9	125624.9*	\$8313.243	A 188	279374.801	0	0
5	unknown	1043 323	1198.058	0.335	urknown	0	9	201119 652	1 218	.148.377	46279 190	0	0
5	unknown	004.704	1095.621	2.410	unknown	0	ę	·	10.	270364.059	104119731	0	D
2	unknown	47.999	1373.936	3.311	urknown	0	.9	57919.	103020	78403.754	134691935	0	0
0	unionawn	1490.551	104.470	2.457	urknown	0	2	4008.412.	05.600	99181.387	97088.984	0	0
5	unknown	1163.077	1008.643	1.260	unknown	0		10162	34150.065	138491.264	60034.751	0	0
0	unknown	1700.790	173889	2.209	unknown	•		77. 0736_	150998.348	277856.958	297514.337	0	0
2	unknown	42.905	808.027	0.413	urknown	0	2	4577 _18754_	178023.180	130765.756	118728.090	0	D
562.665	5463,260666	8614.135	16805.488	3.750	112680.510	12 35.502	159.878	1939535.465	2109652.516	1298955.112	629834798	0	The contract
1008.976	20565.05533	88409.375	38157.941	57.908	100566.314	126.770	407	58198.96055	1340084.988	8976920.952	7276664,213	0	The contract
1349.309	38,400 Hr	6342.272	100023.142	54.964	903.071035.	227	214	3940230.523	931706.000	204712.005	10375340.045	0	The contract
514.237	24672.Htt	31987.020	80970.021	20.292	\$50	34.	148957.064	\$33268	6416213.250	2928915.203	10096876.040	Datafrom PMR	C-SR Book
7240 074	56160 He	103074.670	39708.390	15.082	6533k	424494.	1290039.271	\$6583k	1743393.946	7917160.681	19422575.036	Datafrom PMR	1) C- Sr. Sa
5309.067	57600Hr	13264.226	100035.187	16.070	w.	3555.097	050707.347	7451K	0050000.464	13311249.472	12121450.023	From PMR D	1. CIB mail
0	Unknown	0	0	.0	-			Unknown	0	7	7	0	NA
0	Unknown	0	0	0	Us.	0	9	Unknown	0	2	2	0	NA
0	Unknown	0			Usknown	0	9	Unknown	0	7	7	0	NA
0	Unknown	0	0	Ų	'eknown	0	9	Unknown	0	7	7	0	NA
0	Unknown	0	0	0	Uskrigem	0	.9	Unknown	0	7	,	0	NA
2	Unknown	0	0	0	Usknown	0	2	Unknown	0	7	7	0	NA

Lots of missing data in many of the columns

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

- RapidMiner offers a very powerful feature in that it prepares meta-data for each data attribute to provide an window into the strengths and weaknesses of a data set
- This meta-data include
 - Data Type Polynominal, Binominal, Numeric, Date
 - Number of attributes for which this data attribute is missing
 - Statistics around the data attribute min, max, average, least, most, value, earliest, latest, duration, etc.
 - Option to view visualization of each data attributes statistics

 Meta-data provides a roadmap to areas where preparation should focus:

	- Туре	Missing	Statistics		Filter (116 / 116 attributes): Search for Attributes			
	Date time 0		Earliest date Dec 2, 2011 12:00 AM	Labest date Aug 1, 2015 12:00 AM	Duration 1337d 23h 0m 0s			
	Date time	0	Earliest date Oct 31, 2012 12:00 AM	Latest data Jan 30, 2016 12:00 AM	Duration 1186d 1h 0m 0s			
	Real	0	0.115	Max 56.060	Average 7.447			
	Polynominal	0	Least Schedule [] ice. (1)	Most 0 (24)	Values 0 (24), Best Gue [] ems' PMRs (19),[8 more]			
Attribute 5	Polynominal	0	Lexit 7992 Hr (1)	Most Unknown (37)	Values Unknown (37), unknown (12),[9 more]			
	Real	0	Min O	Max 33667.525	Average 1358.365			
Attribute 7	Polynominal	4	Least NA (1)	Most Unknown (12)	Values Unknown (12), unknown (12), [30 more]			
Attribute 8	Real	0	00 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Min O	Max Average Deviation 87264.782 8455.493 18962.168			
	Real	0	blin 0	Max 78603.010	Average 9437.501			
	Real	0	Min O	Max 83.138	Average 8.946			
	Polynominal	0	Least 94649.121277107843 (1)	Most Unknown (37)	Values Unknown (37), unknown (12), [9 more]			

 RapidMiner has hundreds of operators to handle various kinds of filtering and cleansing necessary to prepare data for analysis

 Using RapidMiner a basic data preparation process was developed

<u>PRICE</u>.

- The steps in this process are....
- **Step 0** The Raw Data Set is identified as the example set (example set is RapidMiner terminology for the data set to be prepared)
- Step 1 All instances of the term 'Unknown' for a selected subset of attributes are set to 0
- Step 2 All instances of the term 'unknown' for a selected subset of attributes are set to 0
- Step 3 All instances of the term 'N/A' for a selected subset of attributes are set to 0
- **Step 4** Selected attributes of type nominal have their data types changed to numeric
- Step 5 Missing values are replaced with 0 for all size related inputs (since size can be new, modified, reused, deleted, etc. empty spaces are likely to indicate 0 for that category)
- **Step 6** Software lines of code (LOC) that are entered in physical size units are translated to Logical lines of code via conversion factors collected in the data set
- Step 7 In cases where LOC>0 in one or more of the above categories, but no ESLOC is calculated, this calculation is performed for this data attribute.
- Step 8 Useless attributes are removed RapidMiner removes attributes which meet certain user specified criteria (such as where all entry values are the same, or all or most values are missing, etc.)
- Step 9 Removes from the data set a selected subset of attributes that have nominal values (text), were used in calculations and thus are already represented, or have missing values

- Snapshot of resulting data view (numbers not real)
- Many fewer data attributes but more complete data set with no missing or useless attributes

16.756	57600	62040	7466226.358	7844491.144
13.503	56160	62606.880	6654199.939	7192964.723
11.959	52241.600	66801.600	4384729.607	5086235.722
11.959	51763.200	63723.200	3325580, F	3974384.560
11.959	43142	44707.250	2847476.233	930534.374
3.515	38400	41952	38717 (0.5	4 5853.097
7.885	34560	35448	1046295. 30	4151420.196
20.435	24672	32664	341 3 836	4010881.840
6.867	14373	14373	\$682.278	1214682.278
16.427	10272	12048	1484447.182	1597371.933
15.080	7430.530	7430	1196919.234	1196919.234
2.957	2870	870	307754.978	307754.978
2.957	287(2870	323597.058	323597.058
2.990	2370	2870	310217.152	310217.152
2.661	2010	2870	331431.282	331431.282
2.891	2870	2870	357392.915	357392.915
2.891	2662	2662	285017.689	285017.689
2.990	2444.962	2444.962	289617.912	289617.912
2.661	2357.442	2357.442	254428.384	254428.384
2.661	1639.024	1639.024	176892.752	176892.752

- Using this as a base, other processes were created to do such analysis as
 - Design tree analysis for context data
 - Filter the data set by super domain and perform correlation and regression analyses
 - Filter the data set by operating environment and perform correlation and regression analyses
 - Prepare data from the monthly support data reports and perform analysis on these example sets as well

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

Conclusions

- The focus of this project up to this point has involved ...
 - Understanding the question to be answered and gaining consensus
 - Understanding the data needed to answer the question and the data available to answer the question
 - Creating processes to prepare and analyze the data
- The actual data collection part of the project has been disappointing – data miners need to be patient and flexible

Next steps

- Data will be run through the existing processes as it is received
- The processes will be refined as the team learns more about the data
- Additional avenues for data collection are being identified and will be pursued
- Data collection processes will be institutionalized as new contracts are issued which require data collection
- Data analysis processes will be institutionalized as best practices are spread throughout the business

