
1 | P a g e  
 

Agile Software Development Risk 
Assessment 
2018 ICEAA Annual Conference 

By John McCrillis 

 

INTRODUCTION 
Agile software development for Information Technology (IT) programs has challenged 

traditional cost estimating with its claim that cost and schedule are fixed and scope is variable.  If 
true, then Agile programs are level of effort--it will produce whatever it can for the cost and 
schedule provided.  But experience suggests few programs have been given such latitude.  There 
just aren’t many examples of people willing to fund projects that can’t describe what they intend 
to deliver.  But if a program can define its delivery then scope isn’t variable as claimed and there 
is a risk of not getting what was defined for the cost and time agreed.  Thus, Agile risk is no 
different any other software development1 even though it claims fixed cost. 

But messaging cost risk to a program that claims its fixed is not received well and is a 
distraction to discussing requirements and productivity.  Instead of capturing risk in a classic 
cost S-curve, a capability S-curve is more effective communicating risk to Agile programs.   

This paper investigates the Agile claim of fixed cost by discussing the two methods for 
estimating cost and the associated risk with each.  It concludes that individual increments may be 
fixed cost but what is unknown is the number of increments it will take to deliver the intended 
capability.  For assessing development risk, it is irrelevant the process used, be it Agile, 
Waterfall or any other method as long as a program capability is defined and captured in a 
metric. 

CAPABILITY S-CURVE; A BETTER WAY OF ASSESSING RISK 
FOR AGILE PROGRAMS 

Similar to a cost risk curve, a capability S-curve plots the confidence level for a 
capability as captured in a sizing metric2.  A sizing metric like lines of code, function points, or 
other relates directly to cost; more capability equates to more cost.  Agile programs that fix their 
cost to the point estimate will indeed have variable scope.  The traditional cost S-curve can be 
inverted to a capability S-curve as shown in the notional confidence curve figure below.   

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



2 | P a g e  
 

 
Figure 1  Capability S-Curve 

Although it looks different than a cost S-curve, it has the same outcome – more capability 
equates to more cost.  The same risk assessment in terms of cost is shown below.  Converting 
cost to capability is tailoring the message to the user and has been more successful 
communicating risk than cost.  Decision makers are receptive to this approach as well because it 
is aligned with the Agile objective of fixed cost and schedule.  

 
Figure 2  Traditional Cost S-Curve 

BACKGROUND 
Agile has adopted the “project management triangle” theory from the 1950s.  Today, it is 

known as the “iron triangle” and consists of three legs; time, cost, and scope.  The iron triangle, 
as implemented by Agile, can best be described as a theory that project management can only 

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



3 | P a g e  
 

control two of the three legs leaving the third leg to accommodate the unknown.  Traditionally, 
programs fixed scope and varied time and cost.  Agile contends that cost and schedule are fixed 
and scope varies as shown in the diagram below.  Contractually, Agile programs are defining 
themselves as Time and Materials (T&M), yet few are.  So what’s going on?  

 
Figure 3  Agile software development “Iron Triangle” boundaries 

Agile programs are producing requirements documents prior to, or shortly after kick-off 
that encompasses final delivery.  They are producing Mission Needs Statement (MNS), Test and 
Evaluation Master Plan (TEMP), Concept of Operations (CONOPS), Operational Requirements 
Document (ORD) and other documents that specify what the final product “looks” like.  Detailed 
planning is deferred to the development cycle but the end objective is fairly well defined in these 
various documents.  The apparent inconstancy with the iron triangle is resolved by allowing for 
an undefined number of development cycles.  In other words, what’s really variable is not 
program scope but the number of development cycles to get to a fixed scope.  This concept is 
shown in the figure below. 

 
Figure 4 Reconciling scope to unknown development cycles 

Agile has some great features; user involvement, early delivery of capability, and 
evolving solutions (how it’s done, not what’s done).  But these features can be detractors as well.  
Successful programs produce the intended capability by controlling requirements, not allowing 

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



4 | P a g e  
 

them to float.  How a program achieves the objective can certainly vary, but what it delivers 
should stay relatively constant.  In traditional terms, the Material Design Solution (MDS) 
specifies the final solution for the desired function and this is what cost estimators are used to 
working with to produce a cost estimate. 

Agile programs are not defining the MDS, but they are likely defining program 
functionally.  For example, if the objective is to increase throughput of loan applications at a 
bank, one MDS might be hiring more people to process loans.  Another MDS might be buying 
more printers while another could be developing software to automatically pull credit scores.  
Each MDS will have a unique cost and thus the desire for its specification.  Agile programs 
likely don’t know the MDS, but they mostly know the functionality.  While improving 
throughput is a quality requirement, and the MDS is a technical requirement, identifying an 
applicant’s credit score is a functional requirement.  A cost estimate can be done using functional 
requirements as much as a MDS, however the variance will be higher to account for the 
variability in how the functionality is achieved.  The same functionality can be achieved by 
multiple MDSs as depicted in the figure below that shows four paths to the same functional 
outcome.  Using a functional description instead of a MDS is a paradigm shift for many in the 
cost estimating community that needs to be made to accommodate Agile development.    

 
Figure 5  Functional Capability vs Material Design Solution 

GOVERNING EQUATIONS 
The cost estimating community uses one of two methods for costing software Design, 

Code, and Test (DCT) cost3: capability-based or staffing-based equations as shown below. 

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



5 | P a g e  
 

 

 
Figure 6  Software Development Governing Equations 

How the software is produced, waterfall, agile, or other is independent of the governing 
equations.  Data may show differences in productivity by development method, but it doesn’t 
change the governing equations.  Which equation is used is dependent on the size and 
productivity being estimated up front.   If size and productivity can be estimated, then the 
capability-based equation is used and the program has a defined completion.  Risk is estimated in 
a standard Monte Carlo simulation.  If scope is variable, then the staffing-based equation must be 
used and the program is T&M with little or no risk.  Whether Agile programs are estimated by 
capability or staffing is based on the availability of a sizing metric derived from the program’s 
final functionality. 

WHAT SHOULD A SIZING METRIC LOOK LIKE? 
A sizing metric should be independent of the implementation method, measurable by a 

third party from existing program documentation, and be consistent, repeatable, and verifiable.  
Additionally, it is desirable that size is auto-counted from delivered code4 to establish an 
“actual” that could be used to verify the size estimation process and calculate actual productivity. 

There are two types of numbers, ordinal (sequential; like small, medium, or large) and 
cardinal (measurable and repeatable).   Ordinal numbers are problematic for measuring size 
because they can’t be used to compare different programs nor should you make calculations with 
them like regressions.  When used consistently in a program, they are reasonable predictors of 
future work, but offer no insight until an historical record has been established.  This means 
ordinal numbers are less useful at program kick off because the metric has not been calibrated to 
the program’s actual.  This is the case for story points, feature points, releases, epics and many 
other metrics used in Agile.   

There are many different sizing metrics5 from which to choose and the table below 
summarizes some of the different criteria for selecting an appropriate metric.  The reason for 
using one over another will be dependent on program specifics.  What’s important is not so much 
the metric but that size is quantified; without this, capability can’t be costed and risk cannot be 
assessed. 

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



6 | P a g e  
 

 
Figure 7 Sizing Metrics Comparison 

STORY POINTS 
Story points6 are time estimates for completing a feature.  One story point represents a 

standard unit of effort for one development team, but only that team.  Other teams will have 
different levels of effort associated with the same value.  Story points are ordinal numbers and 
cannot be equated with capability.  Story points are really just a different form of the staffing-
based equation and not representative capability.  

SOURCE LINES OF CODE (SLOC) 
Source Lines of Code (SLOC) and its cousin Equivalent SLOC (ESLOC) have been used 

extensively as a sizing metric for many years.  Although SLOC is a cardinal number (ESLOC is 
not), it can only be measured after it is delivered (ESLOC can never be measured).  SLOC 
estimates at program kickoff come from Subject Matter Experts (SMEs) based on analogies.  
There is no reliable predictor of SLOC based on design documents.  This is partly true because 
SLOC is not deterministic; it is dependent on how a feature is coded.  One software feature 
coded by two developers will likely produce two different SLOC counts even when using the 
same language.  Change the language and the difference will be even greater.  But SLOC was 
used extensively because it is perceived as unambiguous; just like counting the lines of text in a 
book.  But there are many issues with using SLOC or ESLOC as a sizing metric; paramount is an 
inability to accurately predict final SLOC at the beginning of the program. 

IF
PU

G 
FP

M
k 

II
 F

P

Si
m

pl
e 

FP

FP
 P

at
te

rn
 M

at
ch

in
g

N
ES

M
A

 F
P

Fi
SM

A
 F

P

CO
SM

IC
 F

P

IF
PU

G 
SN

A
P 

FP

RI
CE

 o
bj

ec
ts

Go
al

 Q
ue

st
io

n 
FP

Li
ne

s 
of

 C
od

e

Lo
gi

ca
l S

ta
te

m
en

ts

Ba
ck

fi
ri

ng

Fe
ta

ur
e 

Po
in

ts

St
or

y 
Po

in
ts

U
se

-C
as

e

Cl
as

se
s/

O
bj

ec
ts

Criteria 12 10 10 9 9 9 9 8 7 7 7 6 6 5 4 4 4
Derived from final software, auto count x x
Large body of published data x x x x
ISO Standard x x x x x
Formal users groups x x x x x x
Cost-effective and fast to apply x x x x x x x
Conversion rules to other metrics x x x x x x x x
Unambiguous implentation method x x x x x x x x x
Derived from final software, manual count x x x x x x x x x
Standardized counting method available x x x x x x x x x x
Derived from requirments doc x x x x x x x x x x x x
Support all sizes of applications x x x x x x x x x x x x x x
Support new & reused applications x x x x x x x x x x x x
Supports all languages x x x x x x x x x x x x x
Supports all types of domain x x x x x x x x x x x x x x x

Comparison of Software Metrics for Agile Development

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



7 | P a g e  
 

FUNCTION POINTS (FP) 
Function Points (FP) were first developed by engineers at IBM back in the 1970s.  They 

use standardized rules to count transactions within elementary processes from a user’s 
perspective.  It is a count of inputs, outputs, outputs that need calculation, data internal and data 
external as shown in the figure below.  The count is adjusted for complexity based on the number 
of each type of transactions, making this an ordinal number.  The expected accuracy of a FP 
count is on the order of 5-10% even though it is ordinal.  A function point count can be made at 
any time during the development cycle.  It can also be used to “measure” a programs size using 
design documents at program kickoff and is independent how the feature is implemented be it 
waterfall, Agile or other.  And FPs are independent of coding language; the FP count stays the 
same for Java, FORTRAN, C or any other language.  Productivity may vary for different 
languages, but the sizing metric stays the same.  This makes FPs an excellent choice for sizing 
the effort even with its limitation as an ordinal number.   

 
Figure 8 Function Point Transactions 

FP counts can be performed by qualified FP counters independent the program at virtually any 
time in the development life cycle7.  Separating the count from program management oversight 
removes the risk of a bias towards some program goal that has not been brought to light.  But this 
doesn’t mean the program shouldn’t participate in the count, quit the contrary.  The programs 
buy-in to the FP count is critical to the success of the program since it is the basis of the cost 
estimate.  It is recommended that FP counts be conducted by independent third parties 
throughout the life of the program. 

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



8 | P a g e  
 

FUNCTION POINT ACCURACY 
To test the premise of using FPs for sizing programs, FP counts from completed 

programs were compared to the initial estimates.  Assuming the requirements stay constant, the 
accuracy of the estimate can be measured by dividing the final by the initial.  This was done 
using commercially available FP data from the International Software Benchmarking Standards 
Group (ISBSG) as shown in the figure below.  The growth is modest, something less than 14%, 
suggesting FPs are a viable sizing metric.  However, the ISBSG data set is biased towards small 
programs which are easier to size than large complex programs.  Whether the accuracy holds true 
for larger programs has not been established.  Accepting the data as representative sizing growth, 
the histogram and variance can readily be implemented in a Monte Carlo risk assessment using 
Probability Density Function (PDF).   

 
Figure 9  Function Point Growth 

For comparison, ESLOC size estimates are notoriously inaccurate as shown in DoD 
Software Resources Data Report (SRDR) data below.  This implies FPs are more precise at 
estimating size than SLOC estimates.  Interestingly, there are significant number of programs 
that delivered less ESLOC than initially planned unlike the FP data.  This variance is likely a 
manifestation of relying on SME opinion to identify analogies and the subsequent padding that 
comes with these estimates. 

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



9 | P a g e  
 

 
Figure 10 ESLOC Growth 

WHAT DOCUMENTATION CAN BE USED FOR FUNCTION 
POINT SIZING? 

There are three fundamental requirement types; functional, technical, and quality.  Only 
functional requirements can be counted with FP methods.  In general, design documents need to 
be specific and measurable.  Quality requirements like “improve” or “faster” are not useful.  The 
fundamental concept that needs to be captured in the documentation used for function point 
counting is the identification of Elementary Processes (EPs)89.  An EP is an end user task that 
after completion, a “save” is executed or the user moves on to another EP.  Some EPs are simply 
requesting a display of data while others might be updating existing data.  An EP may also be 
identified as a “feature” or “what” the application is intended to do.  In terms of software coding, 
an EP is something that needs to be tested for acceptance.   

In practical terms, an EP is identified with a verb-object pair like in the following 
example; “the analyst uploads the arrest record into the central database.”  In this situation, the 
action is “upload” and the object is “arrest record”.  Assuming this feature is being done in 
software, this would count as an EP.  There are certainly details below this task, like adding meta 
data and associating it with a court case, but there won’t be an EP within it.  Any program 
documentation that provides user scenarios tends to be written with verb-object phrases that can 
be used to identify EPs.  Within the DoD framework this is the scenario section of the 
CONOPS1011.  There are other details necessary for conducting a FP count which are left to the 
standard selected.  But the conclusion is the same, whether Agile or other development method, 
size can be measured from functional descriptions.  The remaining challenge before generating a 
capability S-curve is identifying productivity. 

PRODUCTIVITY CONSIDERATIONS 
The data used to estimate productivity will depend on when the estimate is being 

developed within the program’s development life cycle.  There are three general classes of data; 
program, organization, and commercial12.  Program data is collected throughout the life of the 

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



10 | P a g e  
 

program.  Typically, program productivity starts out higher than it ends because of integration, 
which mostly occur at the end and takes effort without adding code.  Because of this, in-process 
program productivity is an unreliable predictor of final productivity and it is better to use 
organization data.  Program data becomes organization data at completion of the program.  As an 
organization matures, its collection of actual productivity becomes the best source for estimating 
what is expected of a new program.  Until an organization has its own data to establish initial 
estimates, there are commercial data sets available to identify benchmarks.   

As an example, the ISBSG data set previously discussed was analyzed for programs with 
more than 30 FTEs.  The scatter plot and histogram are shown below: 

 

 
Figure 11 ISBSG Productivity Data for Programs with More than 30 FTEs 

The hours represent only Design, Code, and Test (DCT).  There is a significant variance 
with 9 programs having productivity greater than 140 hours/FP skewing the mean right and 
making it unrepresentative.  The scatter plot regression should not be used either, as evidenced 
by the negative R2.  As a result, the median at 46 hours/FP is more representative the data than 
the average or regression.  This is significantly lower productivity than all the ISBSG data which 
is on the order of 10 hours/FP.  Intuitively, this makes sense because bigger programs need more 
coordination between more teams and this reduces overall productivity. 

No relationships were identified between language, measurement methods, size, or other 
Meta data and productivity including development method.  The latter is an interesting result -- 
productivity is insensitive to the development process.  This supports the premise the FPs can be 
used to size Agile or any other development method used by a program. 

Like size, productivity was assessed for growth, which can be used in the Monte Carlo 
risk assessment for a productivity PDF.  The results are shown in the figure below.  As expected, 
the initial productivity estimate is higher than the actual with a 11% median.  This is acceptable 
growth for most initial estimates. 

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



11 | P a g e  
 

 
Figure 12  FP Productivity Growth 

As a cross-check to productivity growth, hours growth which is the result of size and 
productivity growth was analyzed as shown in the figure below.  The median, at 16% is 
comparable the product of the size and productivity growth. 

 
Figure 13  Hours Growth Cross Check 

Agile hours growth was assessed individually as shown below and found to be 
comparable to the larger data set for all development types shown above.  With only 14 data 
points, it is still too early to draw conclusions, but it would appear that Agile is not going to be 
significantly different in terms of hours growth than waterfall programs. 

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



12 | P a g e  
 

 
Figure 14 Agile Only Hours Growth 

AGILE ACQUISTION STRATEGY 
The Agile acquisition strategy begins with program planning and specification for the intended 
functionality.  The functionality is used to create an Estimate at Completion (EAC) for cost and 
capability as previously discussed.  The total cost and functionality are “chunked” into 
Minimally Viable Products (MVP) per increment of fixed cost and schedule. Each increment has 
its own detailed planning and oversight before it is released for development.  Since the 
increment is a viable product by itself, the oversight process can cancel the program at any time 
or even incrementally fund the program.  Cost for the increment is “fixed” and any content that 
can’t be produced is pushed to the next increment.  Thus the increment scope is variable and the 
time and schedule fixed like in the “Iron Triangle” concept.  After development of an increment 
is complete, it is deployed and actual cost and final requirements are used to update the program 
plan as shown in the figure below.  The number of increments it takes to deliver the program 
capability is dependent the actual productivity achieved. 

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



13 | P a g e  
 

 
Figure 15 Agile Acquisition Process 

Adopting an Agile acquisition strategy like the one described facilitates using a progress chart 
like the one below.  Planned versus actual cost and capability are compared and earned value 
analysis techniques applied to predict completion.  The target EAC for cost and capability are 
revised based on increment feedback.  The progress chart is one of the few tools available to 
assess progress towards completion13.  It also documents requirements change over time14 which 
is useful for explaining cost growth should a program have this issue.   

 
Figure 16  Program Progress Chart 

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



14 | P a g e  
 

PUTTING IT ALL TOGETHER AND THE CONE OF 
UNCERTAINTY 

With size and productivity identified, it’s possible to estimate the program cost using 
traditional methods.  The Prime Mission Product (PMP) is the DCT estimated using the 
capability governing equation.  Size is derived from functional descriptions and productivity 
organizational or program data.  Other cost like integration, independent testing, systems 
engineering, program management, and training development may be estimated as a factor of 
DCT cost in many instances.  Other cost like hardware and software purchases are added to 
generate a total program estimate.  Risk is specified with a PDF for each element as appropriate. 

As a program matures, the variance on both scope and productivity narrows, as notionally 
shown in the cone of uncertainty figure below.  Similarly, requirements and their corresponding 
documents also become more refined as the product is better understood.  Sometime during the 
“approved product” phase or “requirement specification” phase a reasonable first estimate can be 
produced because the functional description is available.  During the “initial concept” phase a 
Rough Order of Magnitude (ROM) is the best that can be expected and will likely be based on 
analogies.  

 
Figure 17  Cone of Uncertainty 

WHERE'S THE RISK IN AGILE SOFTWARE DEVELOPMENT? 
Assuming program scope has been specified in a sizing metric, the cost risk for Agile 

software development is the same as any other program; not delivering what was intended for the 
agreed upon cost and schedule.  Risk makes no distinction about the development method.  
Using the capability equation, there is variance in both the sizing and productivity variables as 
previously shown and captured in PDFs. 

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



15 | P a g e  
 

There are only two variables to assess for PMP risk: size and productivity.  There are two 
primary reasons why the size may not be known initially: poor requirements definition and poor 
sizing metric measurement.  There are numerous sources of error for productivity: unskilled 
labor, inefficient use of labor, poor requirements definition, poor communication, churn, 
personnel turnover, delayed start, slow spool-up, new language learning curve effect, and a host 
of other reasons.  Depending on the details, PDFs can be used to model the error for any one or 
all of these sources. 

HOW TO CONVEY COST RISK TO AN AGILE PROGRAM WITH 
FIXED COST 

For cost estimators working with Agile programs, conveying the issues surrounding cost 
risk can be challenging.  The Agile principle that scope is variable is an opportunity to convey 
cost risk in terms of capability.  To accomplish this, the cost s-curve, which was calculated from 
equation 1 below, can be readily reformatted from cost to scope using equations 2 and 3. 

 
Figure 18  Equations for Converting Cost CDF to Size 

Equation 1 summarizes the detailed cost estimate for the program using a Monte Carlo 
simulation.  Variables with known risk are modeled using PDFs to generate a cost Cumulative 
Distribution Function (CDF).  Using the capability governing equation, the cost CDF is 
converted to a productivity CDF using the fixed size estimate as shown in equation 2.  Similarly, 
a size CDF is back calculated from the productivity CDF using the fixed cost EAC of equation 3.  
Applying the programs cost EAC to productivity as a function of CDF reveals size as a function 
of CDF.  As shown below, when the resulting s-curve is flipped, the probability decreases as the 
number of FP increases.  This plot visualizes what is intuitive-- that getting more capability for a 

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



16 | P a g e  
 

fixed cost is less likely than getting less capability for that same cost.  Or said differently, you are 
more likely to get less capability, not more for a fixed cost. 

 
Figure 19  Risk Distribution on Scope 

Like a traditional S-curve, a scope-based S-curve, can be an invaluable tool to facilitate 
discussion and informed decision-making.  Its primary purpose is to focus management attention 
on requirements growth and productivity variance.  Avoiding an Agile programs dismissal of 
cost growth, estimators and program managers can now have data-driven discussions on a wide 
variety of risk topics, including: 

• How much risk is the program willing to assume? 
• What are the implications of delivering less than the desired full scope? 
• What mitigation strategies can be used to reduce the uncertainty in the underlying 

variables? 
• What cost elements are most contributing to the overall program risk? 

Perhaps most importantly, a scope-based S-curve conveys the concept that agile programs 
carry just as much risk as traditional software development.  The way in which this risk 
manifests itself may differ, as does the terminology but the underlying risk remains.  This 
understanding, and the data surrounding the analysis, is critical to giving program managers the 
best opportunity to manage and mitigate risk. 

CONCLUSIONS AND RECOMMENDATIONS 
There are only two governing equations to choose from when estimating software 

development cost: capability-based or staffing-based.  The development method is independent 
the governing equations.  Selecting which equation to use depends on whether the size of the 
scope is known.  To estimate capability, the scope must be described sufficiently such that a 
sizing metric, like Function Points (FP), can be measured.  Whether it’s Agile, waterfall or any 

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



17 | P a g e  
 

other method, size is required for a capability-based estimates.  With a sizing estimate, the Agile 
development cost and risk assessment are no different any other software development method. 

Historically, cost estimators required programs to provide the sizing metric based on a 
MDS.  It was believed that only the program could accurately define size, and that the software 
size wasn’t deterministic from requirements.  Function Point counting breaks this paradigm and 
has been shown to be applicable Agile programs as well as any other development method.  
Function Points have been shown to be more accurate for IT programs than SLOC even though it 
is based on functional requirements and not the MDS.  It is recommended that function point 
counts be used to estimate the DCT size and that those counts be conducted by a third party to 
remove any potential for a bias.  Having a sizing estimate, a capability cost estimate can be 
performed and the risk assessed with a traditional s-curve.  Without a size estimate, cost can only 
be estimated using the less preferred time and material (T&M) methodology, which has little or 
no risk.  

The true risk for an Agile program is similar any other program--not achieving the 
anticipated capability for the agreed upon time and cost.  Agile’s claim that cost is fixed is only 
true for a given iteration; the risk is in the number of iterations it will take to achieve the 
intended capability.   Using the traditional S-curve for cost, the data can be reformatted into 
Agile terminology by plotting the confidence of achieving the intended capability.  Presenting 
risk in terms of capability breaks the communication barrier with Agile programs into terms a 
program is more likely to relate.  

GLOSSARY OF TERMS 
Agile Method A software development process that evolves a product in a series of rapid 

iterations 
Application A set of software instructions that comprise a logical grouping of 

capabilities, features, or capabilities. 
Capability In terms of software it is the function performed by the application 
EAC Estimate at Completion is the best guess estimate of the final value in terms 

of a single number.  EAC can be for cost, size or other measures. 
Effort The what that needs to be achieved by the development team as measured in 

terms of labor, i.e. story points, hours, teams, or other 
Feature A prominent characteristic or capability 
Functionality The purpose or range of operations that the application was designed to 

fulfill 
S-Curve The cumulative probability of the likelihood that the independent parameter 

occurs 
Scope The application range; the functions performed by the application 
Size Refers to how big the software is as measured by some metric like lines of 

code, function points, or other. 
 

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com



18 | P a g e  
 

1 “Agile Estimating: Straightforward and Simple”, by Donald J. Reifer, Reifer Consultants LLC,October 2014 
2 “Software Sizing, Estimation, and Risk Management; When Performance is Measured Performance Improves” by 
Daniel Galorath and Michael Evans, Auerbach Publications 2006 
3 “Estimating Software Costs; Bringing Realism to Estimating” second edition, by Capers Jones, McGraw-Hill 2007 
4  “Automated Function Points, A Game-Changer in Software Sizing” by David Herron, DCG, Consortium for IT 
Software Quality, November 2017   
5 “Function Point Counting Practices Manual, release 4.3.1”, The International Function Point User Group, 2010 
6 “Agile and Earned Value Management: A Program Manger’s Desk Guide” by John McGregor, OUSD AT&L 
(PARCA), 3 March 2016 
7  “A Cost Model for Early Cost Calculation of Agile Deliveries”, Eric van der Vliet, ICEAA Workshop 2017 
8 “Early & Quick Function Point Method, An Empirical Validation Experiment” by Roberto Meli, Data Processing 
Organization Srl, April 2015 
9 “Simple Function Point Functional Size Measurement Method, Reference Manual” Simple Function Point 
Association, SiFP-01.00-RM-EN-01.01, March 2014 
10 “How Should We Estimate Agile Software Development Projects and What Data Do We Need?” by Glen 
Alleman and Thomas Coonce, ICEAA 2017 
11 “Integrating Agile with EVM”, by Glen Alleman, Niwot Ridge Consulting, LLC, September 2013 
12 “Heuristic Risk Assessment Using Cost Factor” by Raymond J. Madachy, Litton Data Systems and University of 
Southern California, 1997 IEEE Software 0740-7459/97 
13 “Guide to Earned Value Management for Agile Projects: Industry Best Practice”, National Defense Industrial 
Association Integrated Program Management Division, 7 December 2015 
14 “Fundamental of Function Point Analysis” by David Longstreet 

                                                 

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com


	introduction
	Capability S-Curve; a Better Way of Assessing Risk for Agile Programs
	Background
	Governing Equations
	What Should a Sizing Metric Look Like?
	Story Points
	Source Lines of Code (SLOC)
	Function Points (FP)
	Function Point Accuracy
	What Documentation Can Be Used for Function Point Sizing?
	Productivity Considerations
	agile acquistion strategy
	Putting it All Together and the Cone of Uncertainty
	Where's the Risk in Agile Software Development?
	How to Convey Cost Risk to an Agile Program with Fixed Cost
	Conclusions and Recommendations
	Glossary of Terms



