

AGILE DEVELOPMENT COST FACTORS CASE STUDY

Blaze Smallwood, CCE/A ICEAA Conference 2018

JUNE 2018

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

AGENDA

INTRODUCTION

METRICS DETAILS

PURPOSE

- Explore cost, schedule, performance metrics for a small collection of DoD agile software projects
- Determine if any trends exist and any rules of thumb can be derived
- Highlight major takeaways

CASE STUDY PROJECTS

 Completed DoD Automated Information System (AIS) software development/integration projects

Project / Marker		ACAT	Performer (GOV/KTR)	ALM Tool Used	Cost (\$M) ***	Schedule (Months)
Α	A	Ш	KTR	Forge	\$5.6	20
В	В	Ш	KTR	Jira	\$4.0	21
С	C	1	GOV	Jira	\$21.2	18
D	D	Ш	KTR	TFS	\$10.2	19
Е	E	N/A**	KTR	Jira	\$1.3	14
F*	F	N/A**	GOV	Jira	\$7.4	11

^{*} Project had no specific end date; schedule indicates # of months data was collected

Acronyms: ACAT = Acquisition Category; ALM = Application Lifecycle Management; TFS = Team Foundation Server

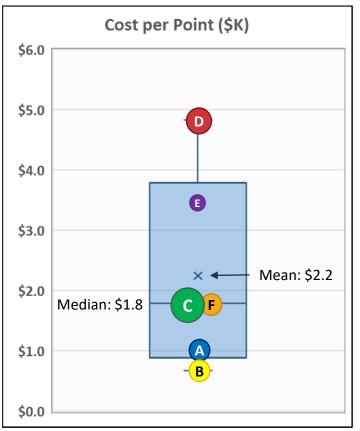
^{**} Pre-Acquisition risk reduction projects

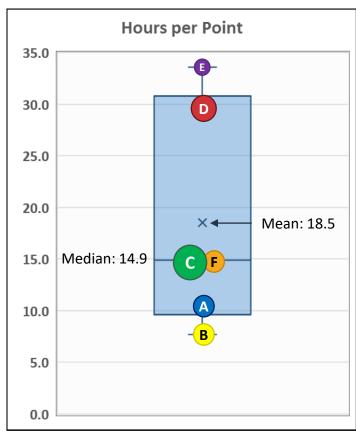
^{***} Full cost of the software development/integration project; excludes non-PMP costs, like PMO costs

PROJECT DATA SUMMARY

Projects had varying levels of data available

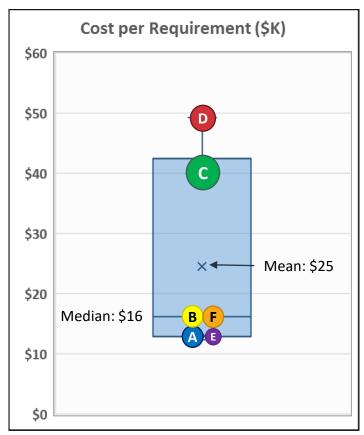
Metric	A	В	C	D	E	F
Cost per Point	X	Χ	X	X	X	Χ
Hours per Point	Χ	Χ	X	Χ	X	Χ
Cost per Requirement	X	Χ	X	Χ	X	X
Hours per Requirement	Χ	Χ	X	Χ	X	X
Cost Variance	X	Χ	X	Χ	X	
Schedule Variance	Χ	Χ	X	Χ	X	
Scope Variance	X	Χ	X	Χ	X	
Team Composition			X	Χ		
Buffering Percentages	X	Χ	X	Χ	X	Χ

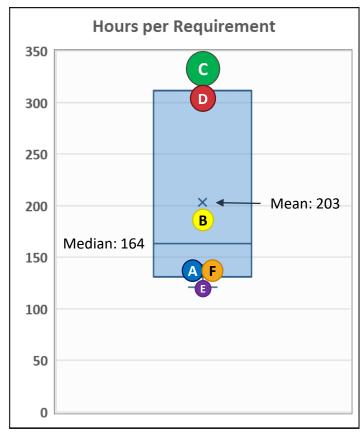

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com


AGENDA

INTRODUCTION

METRICS DETAILS


RESOURCES PER POINT

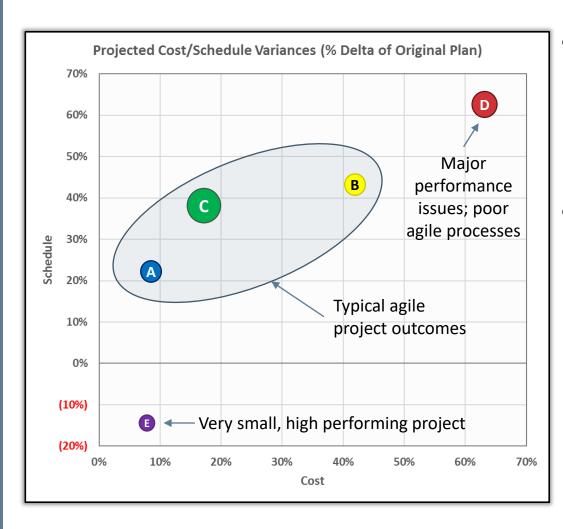


- Most projects defined a planned point as 8 developer hours
- Actuals indicate more cost/effort per point due to overhead and points taking more effort than expected to finish

RESOURCES PER REQUIREMENT

 Smaller projects (<\$10M) tended to spend less resources per requirement – their requirements were generally less complex and defined at a more granular level

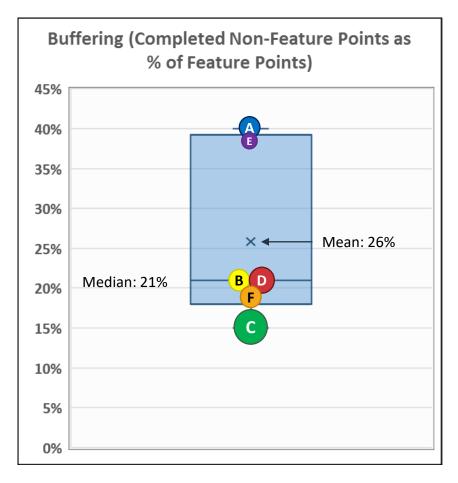
VARIANCES AT PROJECT END


Project		Cost (% Delta – Plan minus Actual)	Schedule (% Delta – Plan minus Actual)	Scope (% of Planned Scope Not Completed)	
Project A	A	0%	(11%)	8%	
Project B	B	1%	0%	30%	
Project C	C	27%	0%	41%	
Project D	D	(2%)	(17%)	32%	
Project E	E	1%	21%	2%	

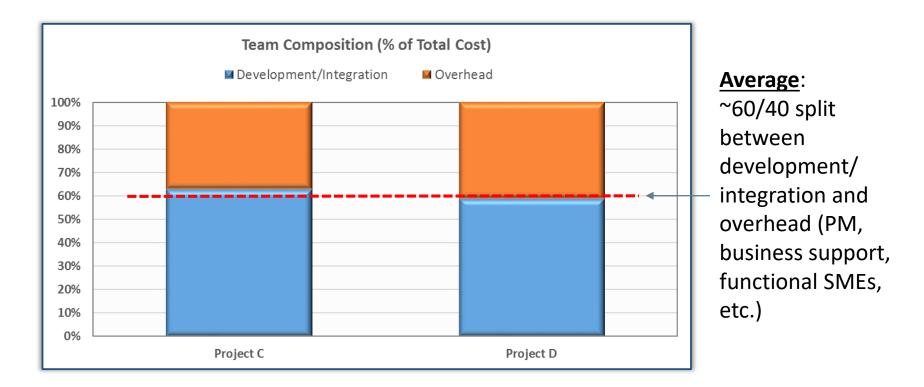
Negative numbers indicate cost/schedule overruns

All projects deferred at least some scope to later releases

- Project D had major performance issues, while Project E had atypically good performance; Projects A-C were fairly typical
- Most agile projects treat scope as variable with mostly fixed cost and schedule
 - Most finish at planned cost and schedule, but defer some scope to future releases, likely impacting future cost/schedule


PROJECTED VARIANCES TO COMPLETE ALL REQUIREMENTS

- Projected to-complete cost/schedule overruns of 20-40% seem to be typical for agile projects
- Projected overruns caused by a combination of performance issues and prioritizing scope from agile activities
 - In-process testing
 - User evaluations
 - Requirements discovery


BUFFERING

 % of completed non-feature scope (bugs, usability, etc.) of completed feature scope (defined by functional requirements)

- Expected part of agile software development process, and should be included in estimates
 - Major component of expected cost/schedule overruns
- All projects in this case study between 15% and 40%
- Good rule of thumb: 20-30%

TEAM COMPOSITION

- Two larger projects collected data needed for this metric
- Qualitative observation on other, smaller projects: they had more developers as % of total (less overhead), likely ~70-80%

Presented at the 2018 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

AGENDA

INTRODUCTION

METRICS DETAILS

TAKEAWAYS

- Monetizing points or requirement counts is difficult and entails large uncertainty ranges
- For most agile projects, scope is the variable
 - Most finish at planned cost and schedule, but defer some scope to future releases, possibly impacting future cost/schedule
 - Without scope deferral, our "normal" case study data points projected cost/schedule overruns at ~20-40% of original plan
- Good rule of thumb for buffering: Add 20-30% to requirements/feature-driven estimates for bugs, etc.
- Rules of thumb for team composition:
 - <u>Project Cost > \$10M</u>: 60% development/integration; 40% overhead
 - Project Cost < \$10M: 75% development/integration; 25% overhead

NEXT STEPS

- Further analyze existing data for other useful metrics
 - Impacts of team size changes on productivity
 - Correlation between cost/schedule/scope variances
 - Metric correlation to high-level project aspects (size, performer, etc.)
 - EVM-like metrics
- Collect/organize additional data points

- Agile projects can be planned and measured
- Data analysis can yield useful metrics for cost estimating
- As usual, more data collection and analysis is needed

THANK YOU

For more information, contact . . .

Blaze Smallwood

Lead Associate

Booz | Allen | Hamilton

Booz Allen Hamilton Inc. Office 309.359.3160 Mobile 619.850.6123 smallwood_blaze@bah.com

BOOZALLEN.COM