Information Technology

Analogies: Techniques for Adjusting Them

R. L. Coleman, J. R. Summerville, TASC; S. S. Gupta, IC CAIG

ASC/Industry Cost & Schedule Workshop Spring 2004 – Destin FL 21 April 2004

SCEA 2004 – Manhattan Beach, CA 17 June 2004

72nd MORSS– Monterey, CA 22 June 2004

Presented at the 2004 SCEA-ISPA Joint Annual Conference

Information Technology

- ogy Outline
- Background
- The current method
- Two new methods
 - Borrowed slope
 - Relational correlation
- Conclusion

Information Technology

Background

Information Technology

- Considerable attention is devoted to techniques in the development of Cost Estimating Relationships (CERs) for parametric estimating
 - Research on CERs
 - Methods for calibrating
- Considerable expertise is to be found in buildup techniques
 - Many Original Equipment Manufacturers (OEMs) have large cost shops which practice buildup
- Analogy, on the other hand, has been given little attention
- Next, some basic definitions ...

- Information Technology
 - Parametric Estimates: Estimates made by developing statistical "Cost Estimating Relationships" (CERs) based on one or more parameter and cost
 - Estimates involving parameters but not based on statistical analysis are more properly called either "adjusted analogies" or "adjusted buildups"
 - Analogies: Estimation by assuming that the costs of a new system will be equal to (or similar to) the costs of a system that is similar
 - "Adjustments" are almost always made
 - Buildups: Physical Bill of Materials (BOMs) and CAD-generated material lists and the like
 - We do not mean "buildups" consisting entirely of Staffing levels*Duration. Such estimating techniques are little more than "engineering judgment" in fine detail
 - Buildups often include "adjustments" to allow for size differences
 - Composite methods: A method that involves at least two of the three other types
 - Adjustments: Scaling of a cost by some physical, performance, or other such attribute
 - Scaling is usually directly proportional to the attribute
 - Scaling parameters are usually countable or measurable and intuitively tied to cost

Information Technology

The Current Method

Information Technology

NORTHROP GRUMMAN

- Adjustments, in the analogy or buildup method, typically rely on an "obvious" characteristic
 - The characteristic is most often weight
 - Sometimes weight of the new system is not known, and so another characteristic is used (often as a proxy for weight)
 - Sometimes a characteristic such as bore diameter of a gun is used
- Usually the ratio of the values of the characteristic in the new system to the value in the old system is multiplied by the cost of the old system
 - Sometimes called "j-ing up the estimate"
- Sometimes the characteristic is transformed in a way that is thought to make it proportional to weight
 - E.g., the bore diameter of a gun, is cubed
 - In these cases, there may be a presumed relationship to weight,

Information Technology

An example adjustment by ratio is:

- The analogy weighs 300 tons and costs \$100M
- The new system weighs 500 tons and so is assumed to cost (500/300)*\$100M = \$166.67M

This is a typical and familiar adjustment

- What is its implication?
- Should we be inclined to believe it?
- Is it in accord with what we believe?
- ... let's look at a graph to see what it implies ... there is a surprise there for most of us ... but first, force yourself to predict what the line between the analogy and the prediction looks like ... where does it cross the y axis?

Information Technology

The below graph shows the previous adjustment

- The analogy weighs 300 tons and costs \$100M
- The new system weighs 500 tons and is assumed to cost (500/300)*\$100M = \$166.67M
- Note that the line through the 2 points passes through the origin

Important Observation: Straight adjustments by ratios *always* pass through the origin! Most observers fail to predict that, even though it is straightforward to show that it must. <u>Important Question:</u> Is this reasonable?

Information Technology

- The y-intercept is a litmus test among cost estimators. There are about three schools of thought:
 - 1. CERs "should" pass through the origin
 - 2. CERs which do not pass through the origin <u>must</u> have an explicable y-intercept
 - 3. CERs must be statistically derived, and if done properly, the y-intercept is just "what it is"
- We'll discuss each <u>briefly</u> and then assume you are of school 2 or 3

Warnings:1- Almost anyone is from one of these schools of thought at heart. The writers are no exception.2- The gulf between these schools is wide.

Presented at the 2004 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

richard.coleman@ngc.com (703) 402-3702

Typical arguments

- "If I spend no money, I get no product"
- Pros:
 - <u>Sounds</u> good

• Cons:

- Doesn't seem to match the data. E.g., the price of FlashDrives:

Information Technology

Typical arguments

- "There must be physics-based arguments for CERs"

• Pros:

- Helpful to think about it, within reason

• Cons:

- If practiced to the extreme, good CERs can be rejected just because we do not yet understand them
- Engineers, who hate cost estimation, can usually talk the analyst to a full stop

Typical arguments

- We are not trying to predict the y-intercept. We are trying to predict the cost of systems of non-zero size.
 - We should take the best advice the data can give us
 - We should extrapolate as little as we can
- If the data show that the y-intercept is non-zero, we should not reject a CER just because we do not know why
 - Galileo believed the data, even absent a theory of gravity. It took centuries before Isaac Newton knew why – but Isaac Newton wouldn't even have wondered without Galileo showing that there was an explanation missing.
- This approach is what the practice of statistics currently recommends

• Pros:

 Any existing system (i. e., one of the data points underlying the CER) is well-predicted

Cons

- If the analysis is not well done, there may be a better CER

Information Technology

NORTHROP GRUMMAN

Borrowed slope¹ – a variant of the methods for calibrating CERs

- Adjust a "trusted analogy" by a "trusted slope"
- Relational Correlation² taking advantage of the geometry of regression
 - Adjust a "trusted analogy" by a "best guess slope"

1 A Framework for Costing in a CAIV Environment, R. L. Coleman, TASC; D. Mannarelli, Navy ARO, ASNE 1996, ADoDCAS 1996

2 *Relational Correlation, What to do when Functional Correlation is Impossible,* ISPA/SCEA 2001, R.L. Coleman, J.R. Summerville, M.E. Dameron, C.L. Pullen; TASC, Inc., S.S.Gupta, IC CAIG

Information Technology

The Borrowed Slope Method

Based on "calibrating a CER"

- A CER is adjusted to "more trusted," or industry, or company specific data by moving the slope to pass through a point or set of points
- Picture follows

To adjust an analogy, do precisely the same thing

 Instead of believing you are adjusting a CER to specific data, think of it as departing from "the most credible point" via "the most credible slope"

richard.coleman@ngc.com (703) 402-3702

Comparison – Borrowed Slope & Ratio Estimates

Information Technology

Information Technology

- A much more esoteric method is available, which borrows from
 - Bivariate normality
 - The geometry of regression
- This method is available when there is no "trusted slope" to borrow

Information Technology

Bivariate Normality

Information Technology

- Suppose X and Y are distributed N(μ_x , σ_x) and N(μ_y , σ_y)
- Suppose X and Y are jointly bivariate normal with correlation ρ

.... Then the graph of X and Y will appear as follows

Information Technology

The Bivariate Normal

Information Technology

The Geometry of Regression

Information Technology

- The below facts are known to mathematicians, but obscure, and not remembered in cost analysis ...
 - For any two jointly distributed variables, there is a regression line
 - The slope is:

$$m = \rho^*(\sigma y / \sigma x)$$

- The y intercept is:

 $b = \mu y - \rho(\sigma y / \sigma x) * \mu x$

- If the variables are joint bivariate normal, then ρ is the correlation coefficient

Let's look at the graph...

Information Technology

The Geometry of Bivariate Normality and the implications for Regression

richard.coleman@ngc.com (703) 402-3702

Information Technology

The Geometry of Bivariate Normality and the implications for Regression

Information Technology

The Geometry of Bivariate Normality and the implications for Regression

Information Technology

The Geometry of Bivariate Normality and the implications for Regression

Х

- Information Technology
 - For every regression with apparent slope m, there is an unseen equation
 - With steeper slope m/p which is the unseen slope of the two variables
 - With an unseen accompanying y intercept
 - Once we decide upon the means and the variances of x and y, the unseen line is fixed

– Once we pick ρ , the regression line is fixed

Information Technology

The Geometry of Bivariate Normality and the implications for Regression

Information Technology

Implementing Relational Correlation for Analogies

Information Technology

• For Single Point Analogies

- Determine a reasonable (preferably historically-based) standard deviation for the x and y variable
- E.g, to estimate ship repair parts as a function of tonnage you'll need:
 - The standard deviation for the analogy ship class repair parts cost
 - 2. The standard deviation for the tonnage within the ship class
 - 3. The standard deviation of repair parts for a single ship of the class
 - The ratio of 1 and 2 gives you the unseen slope
 - The relationship of 3 and 1 will yield r² (Variance of y|x = (1- ρ^2) * σy^2)
- For buildups, do as above, but use an analogy for the values, and apply it to your buildup using percents

The Relational Correlation Method

Information Technology

Information Technology

- Adjustments of analogies have received too little attention
- Three methods
 - Ratio adjustments
 - Current practice
 - Overstate above the analogy, and understate below
 - Borrowed slope
 - Needs a CER
 - Relational correlation
 - Esoteric
 - Does not need a CER
- Hopefully we have convinced you that ratio adjustment is just not good enough!

Information Technology

Backup & Old

The Problem

Information Technology

- You have two WBS elements
 - Warhead cost
 - Motor cost
- You know their historic means and standard deviations for both cost and the driving parameter, say weight
 - You know these values from independent data bases
 - So, you cannot get correlation
- You do have a CER to predict warhead cost
- You do not have a CER to predict motor cost
 - You believe weight is a driver, but a CER cannot be derived
 - And, the data you have is too far away from your program, it needs to be adjusted ... but how?
 - You do not wish to simply factor the cost by the weight change
- This is a typical problem, and is closely related to the risk problem just described
- We will try to predict motor cost as a function of warhead cost ... a useful equation as well as a helpful CER

Information Technology

- Ask the engineer: How much leeway in % do you typically have for weight (or cost) of the motor <u>if design has not yet begun</u>? (The unconstrained case)
 - Note: this may differ from the historic variation, but we will use it only in a relative sense
 - We will translate the weight fluctuation into cost fluctuation
- 2.Ask the engineer: How much leeway in % do you have for weight (or cost) of the motor, <u>if design of the warhead is complete</u>? (The constrained case)
- 3. This will give you r²:
 - You already knew the "unseen slope", $\sigma y/\sigma x$, now you know the "seen" slope $\rho(\sigma y / \sigma x)$, and you know b = μy $\rho \sigma y/\sigma x * \mu x$
 - The percent reduction in the variance of y is the r², and the square root of that is r (Variance of $y|x = (1 \rho^2)^* \sigma y^2$)
- 4. Implement the result as a CER, by passing the slope through the analogy or average of your data.

Note: We do not advocate using such a CER in lieu of a standard CER, only if there is no other recourse

How to Implement Relational Correlation for Expert-Based CERs

Information Technology

