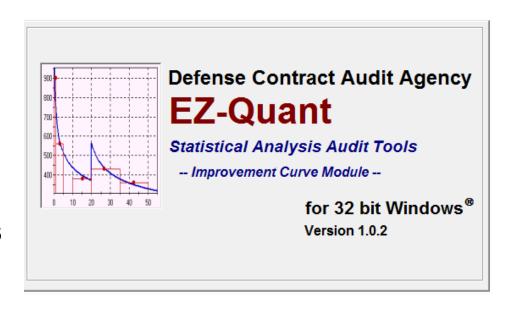
Learning Curve analysis with EZ-Quant

An overview


2012 SCEA/ISPA Conference

Michael Mahoney michael.mahoney@lmco.com

EZ-Quant

- What it is
- Why you want it
- Where to get it
- System considerations
- Outputs
- Examples

What it is

Developed for DCAA auditors, EZ-Quant is improvement curve software that supports curve estimation and projections for:

- Unit Theory
- Cumulative Average Theory
- Retained Improvement Unit Theory
- Production Break Unit Theory
- Fixed Level of Effort Unit Theory
- Design Change Unit Theory

Why you want it

- It's free
- It's thin
- It works
- It has a decent set of help files
- It draws graphs and exports data to Excel
- You can save data files for quick re-use
- Guess what the folks who audit your proposal will be using?

Where to get it

1

EZ-Quant Statistical Analysis Software

Version 1105

The Defense Contract Audit Agency (DCAA) does not provide technical support on this product outside of DCAA audit activities. This product has been developed and tested by the DCAA for use in its audit processes. It is freeware and its use and copying is unrestricted. While DCAA has made every effort to identify and repair all deficiencies in this product, DCAA does not guarantee that this product is free from defects that might interfere with its operation on the downloader's system. This product is made available "as is", and the use of the software is done at the downloader's own risk. DCAA makes no warranties, expressed or implied, concerning this product.

EZ-Quant is a suite of three stand-alone applications (Statistical Sampling, Regression, and Improvement Curves) and each of these applications may have a different version number depending on the extent and timing of enhancements.

In prior releases, the release version was the same as that of the statistical sampling module. Beginning with this release, the EZ-Quant Installation package will have its own version number disassociated from the version numbers of the three included applications. The EZ-Quant installation version number will consist of the last two digits of the year and the two-digit month of the installation build (in this case, the installer version is 1105 indicating a May 2011 build).

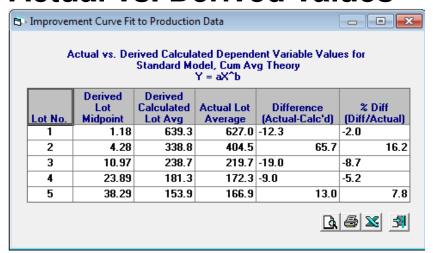
EZ-Quant Installer 1105 contains the following application versions:

- Statistical Sampling (ver. 1.1.2)
- Regression (ver. 1.2.0)
- Improvement Curves (ver. 1.0.2)

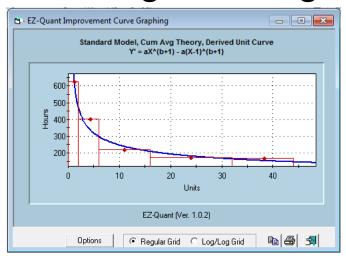
Software and Instructions:

- Download EZ-Quant (32.5 MB; May 2011) Please review the Readme file prior to download and installation.
- Version History Release Notes

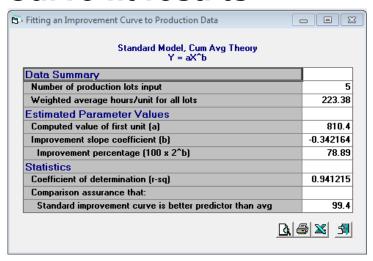
Return to Homepage

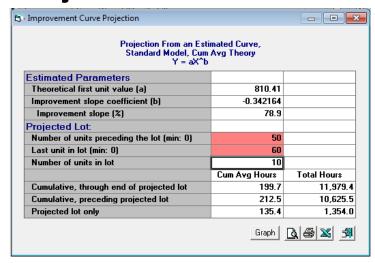

http://www.dcaa.mil/ezquant.htm

System considerations


- The download is a zip file (EZ_Quant_Install_1105.zip)
- The installation script is a .msi file which requires administrative rights
- I've run it on:
 - Windows XP
 - Windows Vista
 - Windows 7

Outputs


Actual vs. Derived values


Plots: Regular & Log/Log

Curve fit results

Projections

Outputs

Results exported to Excel

EZ-Quant (Ver. 1.0.2)								
Standard Model, Cum Avg Theory Y = aX^b								
File = C:\Users\mahonem4\Documents\SCEA-7-No3.icv								
Data Summary			Lot No.	Derived Lot Midpoint	Derived Calculated Lot Avg	Actual Lot	Difference (Actual- Calc'd)	% Diff (Diff/Actual)
Number of production lots input	5		1	1.18	639.3	627	-12.3	-2
Weighted average hours/unit for all lots	223.38		2	4.28	338.8	404.5	65.7	16.2
Estimated Parameter Values			3	10.97	238.7	219.7	-19	-8.7
Computed value of first unit (a)	810.4		4	23.89	181.3	172.3	-9	-5.2
Improvement slope coefficient (b)	-0.342164		5	38.29	153.9	166.9	13	7.8
Improvement percentage (100 x 2^b)	78.89							
Statistics								
Coefficient of determination (r-sq)	0.941215							
Comparison assurance that:			B EZ-Out	ant Improvement	Curve Graphine	1	Fa	X
Standard improvement curve is better predictor than avg	99.4			Standard		vg Theory, Deriv 1) - a(X-1)^(b+1)		
Estimated Parameters					:	1		
Theoretical first unit value (a)	810.41			600	:	: :	· · · · · · · · · · · · · · · · · · ·	
Improvement slope coefficient (b)	-0.342164		1 10	500		:·····	:	
Improvement slope (%)	78.9		Found	400		†······		
Projected Lot:				300		†······		
Number of units preceding the lot (min: 0)	50			200				
Last unit in lot (min: 0)	60			1	10	20 30) 40	
Number of units in lot	10			0	10	20 ot Units	, 40	
	Cum Avg Hours	Total Hours						
Cumulative, through end of projected lot	199.7	11,979.40			EZ-Qua	nt (Ver. 1.0.2)		
Cumulative, preceding projected lot	212.5	10,625.50	6		1.			
Projected lot only	135.4	1,354.00		Options	● Regular	Grid ○ Log/Lo	ng Grid 🖺	(A)

Example 1

CEBoK Module 7, Question 1

Question 1: Given the unit data at the right, what is the Learning Curve Slope (LCS) using cumulative average (CUMAV) learning curve theory?

UIIIL	Offic Cost
1	898
2	801
3	734
4	675
5	627
6	580
	1 2 3

Unit Coct

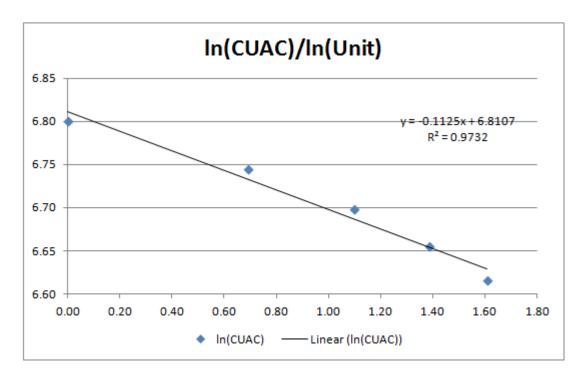
Choice D	See slide 17	ff.]

Unit	Unit Cost	CAUC	In(Unit #)	In(CAUC)
1	898	898.0	0	6.800170068
2	801	849.5	0.693147181	6.744647941
3	734	811.0	1.098612289	6.698268054
4	675	777.0	1.386294361	6.65544035
5	627	747.0	1.609437912	6.616065185
6	580	719.2	1.791759469	6.578093134

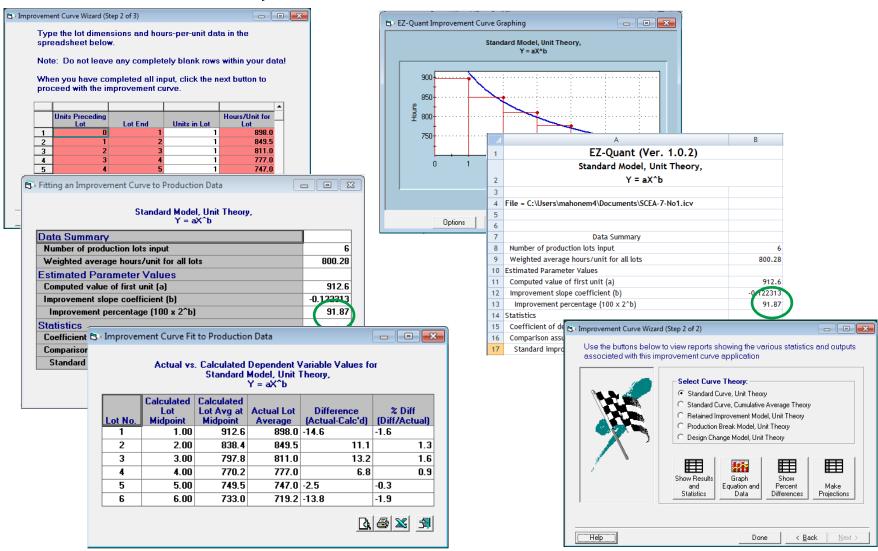
Compute the cumulative number of units and cumulative average unit cost (CAUC) as shown in the table. Transform into log-log space, fit the regression line to determine the intercept and slope, and

workspace

raise two to the power of the latter to determine LCS.


This is shown graphically, and b is from the equation of the line: y=b*ln(x)+ln(a).

LCS=2^-0.1223


0.9187218

Example 1

Lot	Qty Cum	Units	Unit Cost	CAUC	ln(Unit)	ln(CUAC)
1	1	1	898.0	898.0	-	6.80017
2	1	2	801.0	849.5	0.69315	6.74465
3	1	3	734.0	811.0	1.09861	6.69827
4	1	4	675.0	777.0	1.38629	6.65544
5	1	5	627.0	747.0	1.60944	6.61607
6	1	6	580.0	719.2	1.79176	6.57809

Example 1

workspace

Example 2

CEBoK Module 7, Question 2

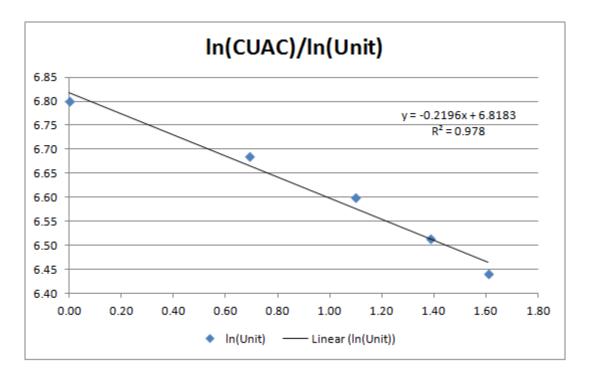
Question 2: Given the same unit data as in Question 1 (shown again at the right), what is the Learning Curve Slope (LCS) using unit learning curve (ULC) theory?

	Unit	Unit Cost	
	1		898
•	2		801
	3		734
	4		675
	5		627
	6		580
		•	

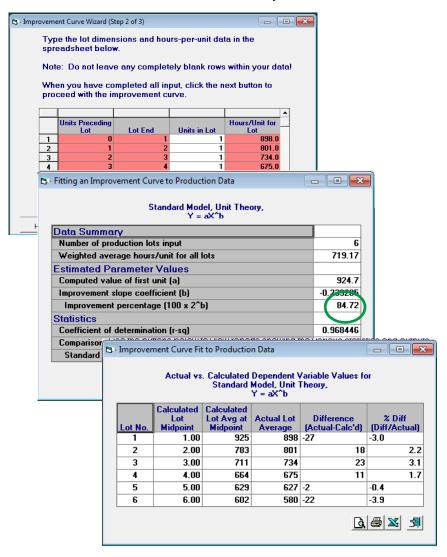
Unit	Unit Cost	In(Unit #)	In(Unit Cost)
1	898	0	6.800170068
2	801	0.693147181	6.685860947
3	734	1.098612289	6.598509029
4	675	1.386294361	6.514712691
5	627	1.609437912	6.440946541
6	580	1.791759469	6.363028104

Transform into log-log space, fit the regression line to determine the intercept and slope, and raise two to the power of the latter to determine LCS.

This is shown graphically, and b is from the equation of the line: y=b*ln(x)+ln(a).


LCS=2^-0.2392

0.847215


Note that it takes an apparently steeper LCS to represent the same cost improvement for ULC as compared to CUMAV.


Example 2

Lot	Qty Cum	Units	Unit Cost	ln(Unit)	ln(Unit)
1	1	1	898.0	-	6.80017
2	1	2	801.0	0.69315	6.68586
3	1	3	734.0	1.09861	6.59851
4	1	4	675.0	1.38629	6.51471
5	1	5	627.0	1.60944	6.44095
6	1	6	580.0	1.79176	6.36303

Example 2

workspace

Example 3

CEBoK Module 7, Question 3

Question 3: Given the lot data at the right, what is the predicted unit cost of the 50th unit using cumulative average (CUMAV) learning curve theory?

ı	LUI	Number	LUI CUSI
	1	2	1254
ı	2	4	1618
	3	10	2197
	4	16	2756
	5	12	2003
•			

Number

Choice A	ahila aagi	25 ff 1
Choice A	See Silue	Z0 II.]

Ľ	Choice A	See Silde 23) II.					
I	Lot	Number	Lot Cost	um Units Prod	Cum Cost	CAUC	In(Unit)	In(CAUC)
I	1	2	1254	2	1254	627.0	0.69315	6.44095
I	2	4	1618	6	2872	478.7	1.79176	6.17100
ł	3	10	2197	16	5069	316.8	2.77259	5.75831
I	4	16	2756	32	7825	244.5	3.46574	5.49934
I	5	12	2003	44	9828	223.4	3.78419	5.40880
ſ			•	•			ln a =	6.72245

LCS (78.6%)

In a = 6.72245 b = -0.34650 a = 830.847

Compute the cumulative number of units and cumulative average unit cost (CAUC) as shown in the table. Transform into log-log space, fit the regression line to determine the intercept and slope, and exponentiate the former to give the theoretical first unit cost.

Use the parameters for the learning curve equation, $Y = a * X ^ b$, to determine the cumulative average and then cumulative total costs through the 50th and 49th units.

The difference between these is the desired 50th-unit cost:

Unit			Total Cost		
	49	215.71	10569.73		
	50	214.20	10710.21	140.47	

Example 3

CEBoK Module 7, Question 3

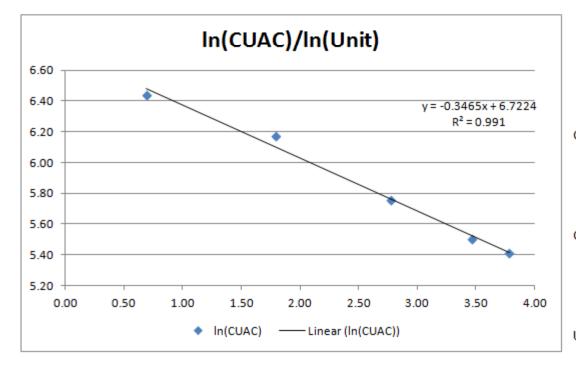
Slope:

$$b = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - n \overline{X} \overline{Y}}{\sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2}}$$

 \overline{X} and \overline{Y} are the raw values of the 2 variables and \overline{X} and \overline{Y} are the means of the 2 variables

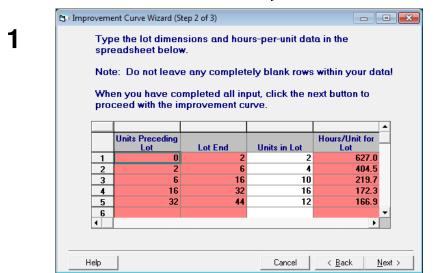
							X	Y	XY	X^2
Lot	Qty Cun	n Units	Lot Cost /	Avg Cost	Cum Cost	CAUC	ln(Unit)	ln(CUAC)		
1	2	2	1,254.0		1,254.0					
2	4	6	1,618.0		2,872.0					
3	10	16	2,197.0		5,069.0					
4	16	32	2,756.0	172.3	7,825.0	244.53	3.46574	5.49934	19.05927	12.01133
5	12	44	2,003.0	166.9	9,828.0	223.36	3.78419	5.40880	20.46793	14.32009
							12.50742	29.27841	71.01411	37.70952
						Average:	2.50148	5.85568		7.541904

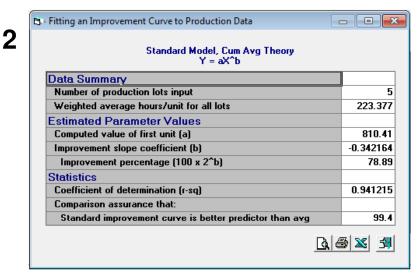
b= 71.01411-(5 * 2.50148 * 5.85568)


37.70952-5 * 2.50148^2

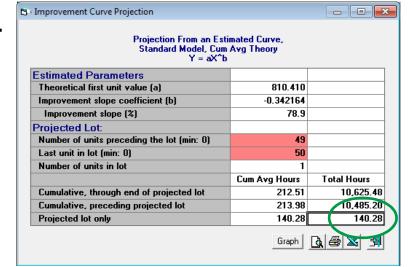
Example 3

Lot	Qty Cum	Qty Cum Units		Lot Cost Avg Cost		CAUC	ln(Unit)	In(CUAC)
1	2	2	1,254.0	627.0	1,254.0	627.00	0.69315	6.44095
2	4	6	1,618.0	404.5	2,872.0	478.67	1.79176	6.17100
3	10	16	2,197.0	219.7	5,069.0	316.81	2.77259	5.75831
4	16	32	2,756.0	172.3	7,825.0	244.53	3.46574	5.49934
5	12	44	2,003.0	166.9	9,828.0	223.36	3.78419	5.40880


ln(y) = ln(a) + b*ln(x) [as shown below it is ln(y) = b*ln(x) = ln(a)]




```
Cum 50th ln(y) =
                    6.7224 + -0.3465*ln(50)
          ln(y) =
                     6.7224 + -0.3465*3.9120
          ln(y) =
                     6.7224 + -1.3555
          ln(y)=
                      5.366884
          y =
                      214.1944 * 50=
                                           10,709.72
Cum 49th ln(y) =
                    6.7224 + -0.3465*ln(49)
                    6.7224 + -0.3465*3.8918
          ln(y) =
          ln(y) =
                     6.7224 + -1.3485
          ln(y)=
                     5.3738843
                     215.69908 * 49=
          y =
                                            10,569.25
Unit 50
                                               140.47
```


Example 3

CEBoK Module 7, Question 3: EZ-Quant Solution

Improvement Curve Wizard (Step 2 of 2) - - X Use the buttons below to view reports showing the various statistics and outputs associated with this improvement curve application Select Curve Theory: C Standard Curve, Unit Theory Standard Curve, Cumulative Average Theory C Retained Improvement Model, Unit Theory Production Break Model, Unit Theory C Design Change Model, Unit Theory 圃 圃 Show Results Graph Show Make Equation and Percent Difference Statistics Data **Projections** Help Done < Back

Example 4

CEBoK Module 7, Question 7

Question 7: If a manufacturer's learning curve is 80% and their first widget set took 56,000 hours to complete, how many hours will it take to complete the eighth set? (Assume ULC theory.)

workspace

Choice F [See slide 30]

Using Unit Learning Curve theory, Y=A*X^b, Y=56,000*8^(ln(80%)/ln(2)) 56000*8^(ln(.80)/ln(2)) = (28672)

The easier solution which could be crucial in saving time on the certification exam, is to notice that going from the 1st unit to the 8th unit represents doubling thrice, so that by the definition of learning curve, the first-unit hours will be multiplied by the LCS thrice:

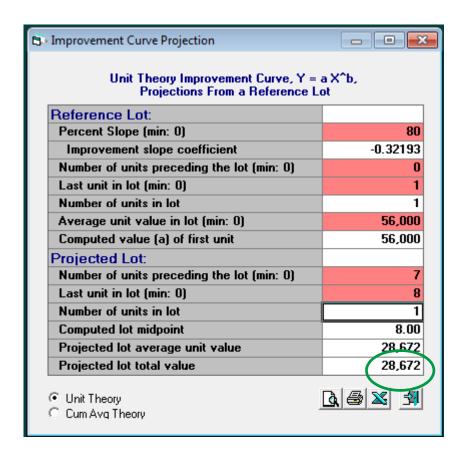
56000*0.8*0.8*0.8= **28672**

```
Y = A*X^b

Y = A* X^(ln(b)/ln(2))

Y = 56000 * 8 ^ (ln(.80)/ln(2))

Y = 56000 * 8 ^ (-.22314/.69315)


Y = 56000 * 8 ^ -0.32192

Y = 56000 * .51200

Y = 28672
```


Example 4

CEBoK Module 7, Question 7

The much easier solution...

Help

EZ-Quant

Questions?

