

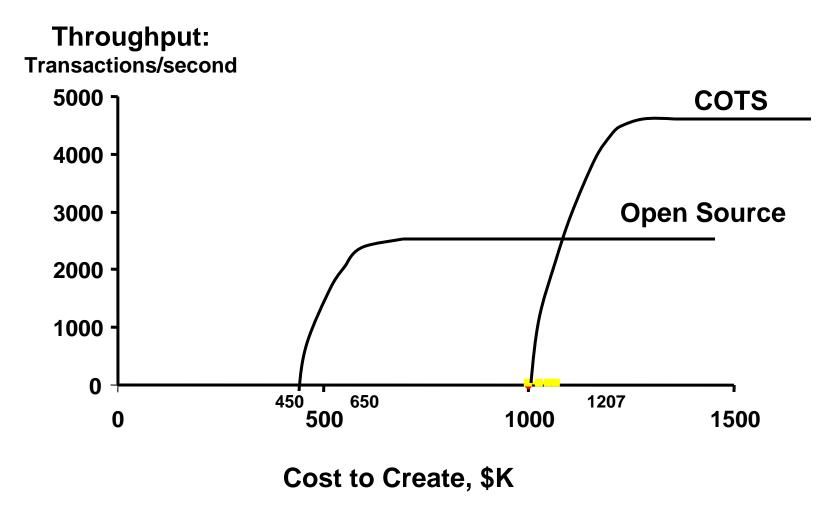
University of Southern California Center for Systems and Software Engineering

Estimating for Lifecycle and Product Line Affordability

Barry Boehm, JoAnn Lane, Supannika Koolmanojwong, USC-CSSE Ray Madachy, NPS

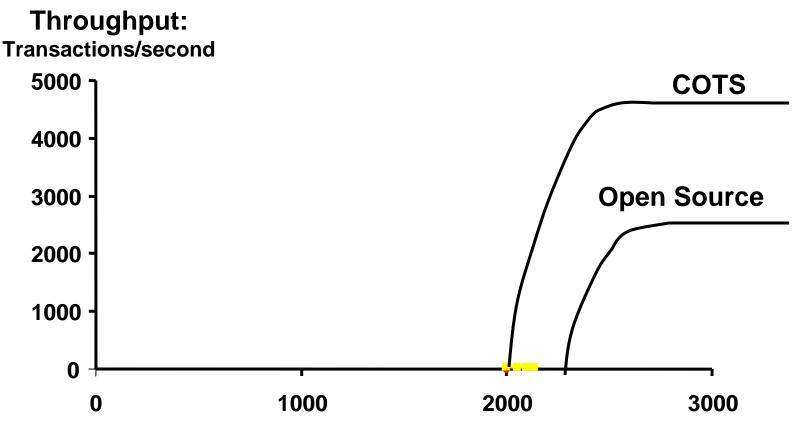
> SCEA-ISPA Joint Conference June 2012

University of Southern California Center for Systems and Software Engineering


Outline

- Perspectives on Affordability
 - Relations to value propositions and constraints
 - Affordability context considerations
- Utility of Total Ownership Cost Approaches
 - For a single system's life cycle
 - For the life cycles of a family of systems
- Conclusions

University of Southern California Center for Systems and Software Engineering


Which Is More Affordable? Important to consider value, constraints

University of Southern California Center for Systems and Software Engineering

Which Is More Affordable? Important to consider total ownership cost

Cost to Create and Maintain, \$K

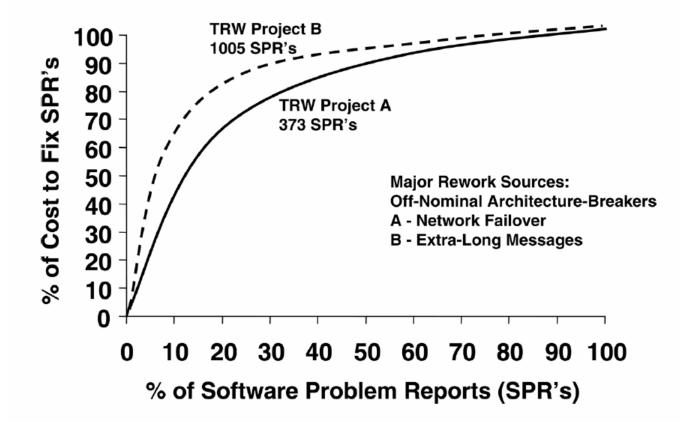
University of Southern California Center for Systems and Software Engineering

Outline

- Perspectives on Agility and Affordability
 - Primary agility failure modes
 - Affordability context considerations

-> Utility of Total Ownership Cost Approaches

- For a single system's life cycle
- For the life cycles of a family of systems


Conclusions

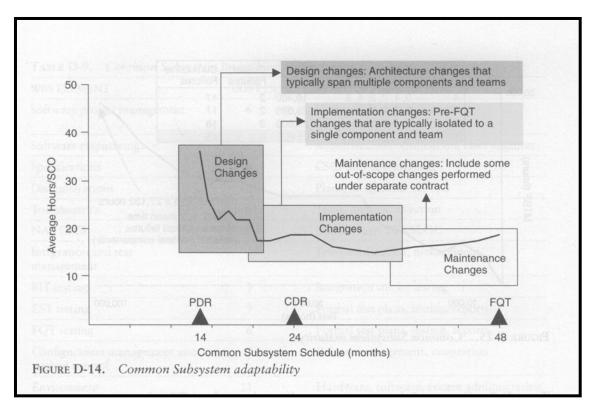
University of Southern California Center for Systems and Software Engineering

Overfocus on Acquisition Cost

C4ISR Contracts: Nominal-case requirements; 90 days to PDR

University of Southern California Center for Systems and Software Engineering

Rework Sources Analysis: Projects A and B


- Change processing over 1 person-month = 152 person-hours

Category	Project A	Project B	
Extra long messages		3404+626+443+328+244= 5045	
Networkfailover	2050+470+360+160= 3040		
Hardware-software interface	620+200= 820	1629+513+289+232+166= 2832	
Encryption algorithms		1247+368= 1615	
Subcontractor interface	1100+760+200= 2060		
GUI revision	980+730+420+240+180 =2550		
Data compression algorithm		910	
External applications interface	770+330+200+160= 1460		
COTS upgrades	540+380+190= 1110	741+302+221+197= 1461	
Database restructure	690+480+310+210+170= 1860		
Routing algorithms		494+198= 692	
Diagnostic aids	360	477+318+184= 979	
TOTAL:	13620	13531	

University of Southern California Center for Systems and Software Engineering

C4ISR Project C: Architecting for Change USAF/ESC-TRW CCPDS-R Project*

When investments made in architecture, average time for change order becomes relatively stable over time...

* Walker Royce, Software Project Management: A Unified Framework. Addison-Wesley, 1998.

June 2012

University of Southern California Center for Systems and Software Engineering

Current TOC-Single System Model

The simple initial TOC-SS model has the following inputs:

%D: The % of development cost invested in Design for Flexibility

System Size: For software, the equivalent KSLOC (thousands of source lines of code)

- For hardware, the COSYSMO size parameter: complexity-weighted numbers of requirements, interfaces, operational scenarios, and algorithms [Valerdi, 2005].

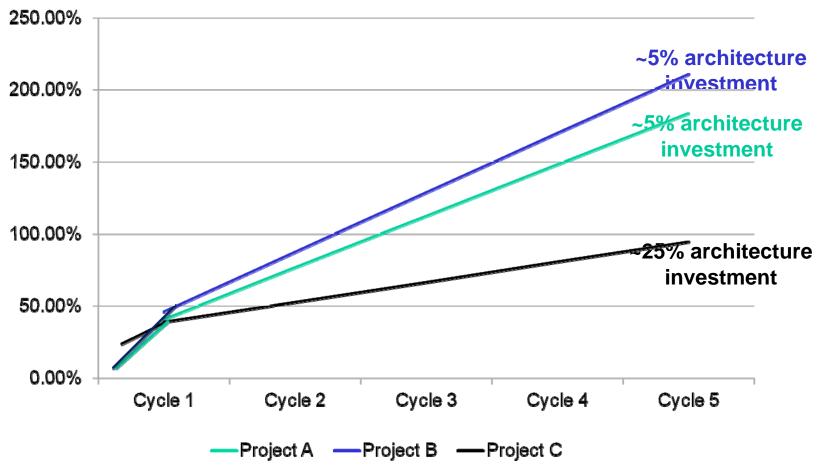
#F: The number of years that the system undergoes field changes

%FC: The percentage of the fielded system size undergoing change

The TOC-SS model has the following outputs:

TOC (Devel): The TOC for development

TOC (Devel + K): TOC (Devel) + TOC (K years of fielding), K = 1, ..., #F


University of Southern California Center for Systems and Software Engineering Single-System TOC Model Example

	A	В	С	D	E
1	Input Paramotors	System			
2	Input Parameters	A	В	С	
3	Software Size (KSLOC)	100	100	355	
4	# Change Requests/Release	373	1005	1600	
5	# Change Requests (I&T only)				
6	#I&T Change Requests/Release/ >1 PM	27	22		
7	# Total Change Requests/Release/ > 1 PM			16	
8	Change Request Fix Time (See assumption #2)	261	356	263	
9	Total Effort (Person Months)	731	865	1900	
10	% Arch, RESL	5%	5%	25%	
11	% Rework, RVOL	35.70%	41.16%	13.85%	
12				CONCERCIONE DE LOS DOS DOS LOS DOS DOS DOS DOS DOS DOS DOS DOS DOS D	
13	Cumulative Total Cost of Ownership	Project A	Project B	Project C	
14	Cycle 1	40.70%	46.16%	38.85%	
15	Cycle 2	76.41%	87.31%	52.70%	
16	Cycle 3	112.11%	128.47%	66.55%	
17	Cycle 4	147.82%	169.62%	80.40%	
18	Cycle 5	183.52%	210.78%	94.25%	

University of Southern California Center for Systems and Software Engineering

Relative* Total Ownership Cost (TOC)

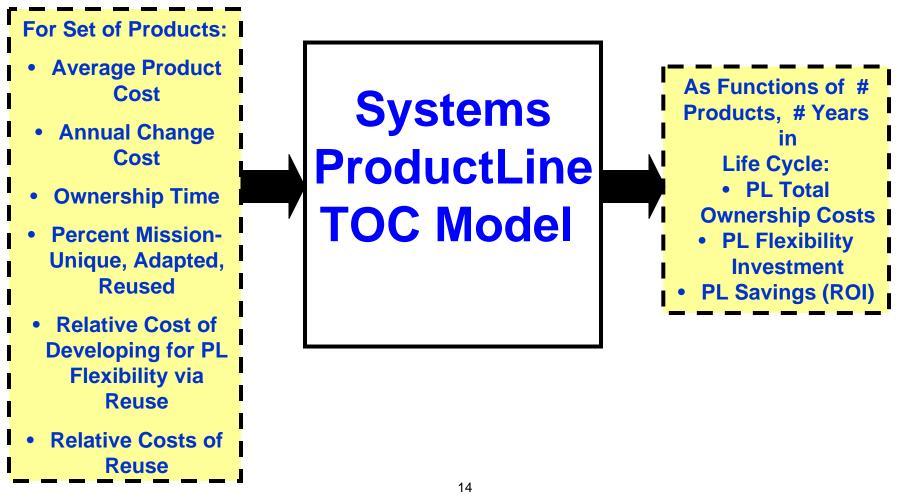
* Cumulative architecting and rework effort relative to initial development effort

June 2012

Use of life cycle cost ratios (%O&M)

- Hardware [Redman 2008]
 - 12% -- Missiles (average)
 - 60% -- Ships (average)
 - 78% -- Aircraft (F-16)
 - 84% -- Ground vehicles (Bradley)
- Software [Koskinen 2010]
 - 75-90% -- Business, Command-Control
 - 50-80% -- Complex platforms as above
 - 10-30% -- Simple embedded software
- Apply lack-of-flexibility factor to O&M component

University of Southern California Center for Systems and Software Engineering


Outline

- Perspectives on Affordability
 - Relations to value propositions and constraints
 - Affordability context considerations
- Utility of Total Ownership Cost Approaches
 - For a single system's life cycle
 - For the life cycles of a family of systems
- Conclusions

University of Southern California Center for Systems and Software Engineering

Systems Product Line TOC Model

University of Southern California Center for Systems and Software Engineering

Product Line Engineering and Management

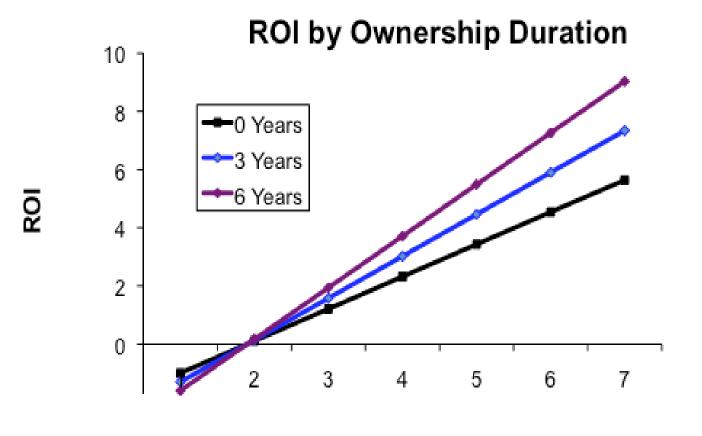
SYSTEMS ENGINEERING Research Center		Sys	stems		luct L ue Mo		lexib	llity			
Welcome SERC Collaborator											
Open Save Save As)										
System Costs											
Average Product Developmen	nt Cost	(Burde	ened \$I	M) 5		Ow	nership	o Time (Years) 3			
Annual Change Cost (% of De	velopr	nent C	ost)	10	2	Inte	erest Ra	ate (Annual %) 7			
Annual Onlange Obst (70 01 De	reiopi	none o	030	1	5	inte	103114				
Product Line Percentages F	Relativ	e Cost	s of R	euse (%)						
Unique % 40	Relat	ive Co	st of R	euse fe	or Ada	pted	40				
Adapted % 30	Relat	ive Co	st of R	euse fr	or Reu	bea	5				
	rteiat	110 00	310110	6436 N	on neu	300	2				
Reused % 30											
Investment Cost											
			hunder F			_					
Relative Cost of Developing fo	Dr PL F	exidili	ty via F	keuse	1.7						
Calculate											
			esults								
# of Products	1	2	3	4	5	6	7	Return on Investment			
Development Cost (\$M)	\$7.1	<u> </u>	<u> </u>	\$2.7	<u> </u>	\$2.7	\$2.7				
Ownership Cost (\$M)	\$2.1	\$0.8	\$0.8	\$0.8	-	\$0.8	\$0.8				
Cum. PL Cost (\$M)	\$9.2	<u> </u>	<u> </u>	<u> </u>	<u> </u>	\$26.6	<u> </u>				
	\$2.1	\$0	\$0	\$0	\$0	\$0	\$0				
PL Effort Savings	(\$2.7)	\$0.3	\$3.3	\$6.3	\$9.4	\$12.4	\$15.4				
Return on Investment	-1.30	0.14	1.58	3.02	4.46	5.90	7.34				

Preferences

June 2012

5 6 7

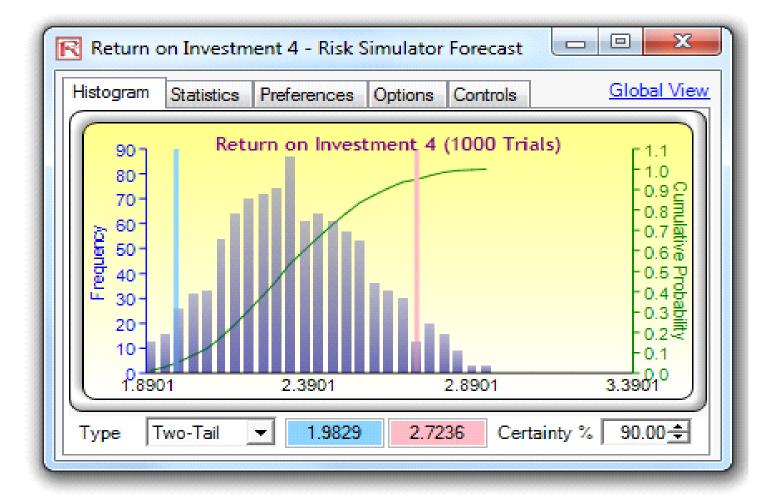
-1.3 0.1 1.6 3.0 4.5 5.9 7.3


4

2 3

University of Southern California Center for Systems and Software Engineering

Product Line Payoff Increases with Lifetime



of Products

University of Southern California Center for Systems and Software Engineering

Extension with NPS KVA Capabilities

University of Southern California Center for Systems and Software Engineering

Conclusions

- Affordability increasingly competition-critical
 - Need to balance cost, schedule, performance, functionality
- Some improvement avenues available
 - Total Ownership Cost Analysis of Alternatives
 - Identify and architect to encapsulate sources of change
 - Product Line Engineering and Management
 - Concurrent vs. Sequential Engineering
 - Using cost-effectiveness, evidence-based decision points
 - Value-Based Engineering
 - Vs. assuming equal-value requirements, tests, defects
- No one-size-fits-all solution