estimate

estimate · analyze · plan · control SEER for Hardware's Cost Model for Future Orbital Concepts ("FAR OUT")

Lee Fischman ISPA/SCEA Industry Hills 2008 G A L O R A T H

Introduction

A model for predicting the cost of long term unmanned orbital spacecraft (Far Out) has been developed at the request of AFRL.

Far Out has been integrated into SEER for Hardware.

This presentation discusses the Far Out project and resulting model.

Goals

- Estimate space satellites in <u>any earth orbit</u>. Deep space exploration missions may be considered as data is available, or may be an area for further research in Phase 3.
- Estimate concepts to be launched <u>10-20 years into the future</u>.
- Cost <u>missions ranging from exploratory to strategic</u>, with a specific range decided based on estimating reliability. The most reliable estimates are likely to be in the middle of this range.
- Estimates will include hardware, software, systems engineering, and production.
- Handle either government or commercial missions, either "one-of-a-kind" or constellations.
- Be used in a "top-down" manner using <u>relatively less specific mission resumes</u>, similar to those available from sources such as the Earth Observation Portal or Janes Space Directory.

Challenge: Technology Change Over Time

Evolution in bus technologies

- 1. Propulsion
 - a) Chemical
 - b) Electric
 - c) Solar, nuclear, microwave
- 2. Thermal Control
 - a) Passive systems, including multi-layer insulation, radiators.
 - b) Active systems, including heat pipes and coolers
 - c) Future exotic systems, including micro electromechanical system (MEMS) cooling, smart materials and new coatings
- 3. Structures
 - a) Aluminum
 - b) Composite
 - c) Control-structures interaction and smart structures
- 4. Electrical Power
 - a) Solar cells, with accompanying growth in efficiency over time
 - b) Nuclear
 - c) Solar concentrators, solar dynamic systems (Stirling, etc.)
- 5. Downlink frequency and associated Antenna and Pointing Requirements
 - a) Growth in frequency over time, from S- through C, K and X bands
 - b) Phased arrays
 - c) Laser communications
 - d) Algorithmic improvements, including multiple access protocols, compression, etc.
- 6. Computational
 - a) Improvements in speed, memory
 - b) Increased availability of COTS hardware and software
 - c) High levels of automation, self learning and correcting
 - d) Optical computers
- 7. On-Orbit Data Storage
 - a) Tape Recorders
 - b) Solid State Recorders
 - c) Future Systems

Evolution in payload technologies and performance

- 1. Payload Pointing Sensitivity
 - a) Pointing accuracy requirements
 - b) Pointing knowledge requirements
 - c) Fraction of Arc Second requirement decrease over time
 - d) Target resolution (meter resolution, target size)
- 2. Payload Data Rate Requirements over time
 - a) Track the total data rate of the instrument complement
 - b) Track the peak data rate
 - c) Track total bits per day
- 3. Aperture
 - a) Mirror or reflector size.
 - i) 1970 = -1 meter
 - ii) 1990 = ~ 2.4 meter (Hubble)
 - iii) 2010 = -6 meter (James Webb Space Telescope)
 - iv) Beyond $2015 = \sim 100$ meter (inflatable films)
 - b) Mirror or reflector technology
 - i) Ground glass
 - ii) Ground exotic material
 - iii) Thin material shaped on-orbit
 - iv) Inflatable
 - v) Other exotic
- 4. Station Keeping Requirement (knowledge)
 - a) 1970 Kilometers
 - b) 1990 Meters (GPS)
 - c) 2010 Nanometers (LISA)

As Technologies Evolve Discontinuously, The Cost Envelope Evolves Deterministically

Team

- Lee Fischman Project management and model creation. Senior Director of Development Galorath.
- Mike Kimel Assistance with statistical modeling. Previous positions in telecomm, corporate economics, academia, and hedge funds, Mike is now with First Energy Corp. Ph.D. in Economics from UCLA.
- Dave Pine (NASA, Ret.) Data provisioning and analysis. Senior NASA executive previously responsible for major program cost analysis and evaluation. From 1988-90, Deputy Program Manager (telescope operations and science support) for the Hubble Space Telescope.
- Troy Masters System designer / programmer.
- Dale Martin (Maj. USAF, Ret.) Data collection and collation. Previously held mgmt. positions in costing at USAF Space and Missiles Center.

Data and Modeling

0

Basic Approach: Time- Windowed Calibration and Test

Primary Data Sources

- NASA Air Force Cost Model carefully collated on a narrow range of missions.
- NASA Hard to get information (cost!) on a large variety of missions; specially collected.
- Janes (commercial) Exhaustive narratives on large number of missions.
- The Satellite Encyclopedia Online catalogue at www.tbssatellite.com/tse/online/index.shtml
- Earth Observation Portal (ESA) Basic info on missions at directory.eoportal.org/res_p1_Satellitemission.html
- 200+ missions
- From late 60s through 2005
- Military, government and commercial missions.
- Mission level information (power, stabilization, # of sensors, etc) being used.

Missions In Database

ACE (Advanced Composition Explorer)	IMP-H (Interplanetary Monitoring Platform)	STEP0 (Space test Experiment Platfo	r Acrimsat (Active Cavity Radiometer Irradiance Mc
ACTS (Advanced Communications Technol	oçINTELSAT-III (International Telecommunic	a STEP1 (Space test Experiment Platfo	r AMSC-1
AE-3 (Atmospheric Explorer)	INTELSAT-IV (International Telecommunic	a STEP3 (Space test Experiment Platfo	r Aurora 2
AMPTE-CCE (Active Magnetospheric Partic	ele JWST (James Webb Space Telescope)	STEREO (Solar Terrestrial Relations	CCALIPSO (Cloud-Aerosol Lidar & Infrared Pathfin
Aqua (Latin For Water)	KEPLER	Surveyor	Calipso (Picasso)
ATS-1 (Applications Technology Satellite)	LANDSAT-1	SWAS (Submillimeter Wave Astronor	n CHIPS (Cosmic Hot Interstellar Plasma Spectrom
ATS-2 (Applications Technology Satellite)	LANDSAT-4	TACSAT (Tactical Communications S	a Columbia 5 (CommSat)
ATS-5 (Applications Technology Satellite)	LANDSAT-7	TDRSS (Tracking Data Relay Satellite	e DBS-1
ATS-6 (Applications Technology Satellite)	Lewis	TDRS F7	Deep Space 2 (DS-2) [2 Probes] [Probes Piggyba
AURA	Lunar Orbiter	TDRS F7	DSCS 3 F7 (DSCS III)
Cassini Spacecraft + Huygens Probe	Lunar Prospector	TDRS (Next Generation) I,J &K (8,9,8	É EchoStar 5
Cassini	Magellan	TDRS (Next Generation)	EUVE (Extreme Ultraviolet Explorer)
Chandra X Ray Observatory(AXAF)	WMAP (Wilkinson Microwave Anisotropy F	Pr Terra (Latin for "Land") [Also known a	s Galaxy 11
Clark [Cancelled due to cost overrun]	Mariner-4	TIMED (Thermosphere, Ionosphere, I	V Galaxy 5
Clementine	Mariner-6	TIROS-M (Television Infrared Observ	aGE 5
CloudSat [dual launch with Calipso]	Mariner-8	TIROS-N (Television Infrared Observation	a GOES 3 (Geostationary Operational Environment
COBE (Cosmic Background Exploer)	Mariner-10	TOMS-EP Total Ozone Mapping Spec	CIGOES 9
Contour (Comet Nucleus Tour)	MARISAT	TOPEX (The Ocean Topography Exp	e GOES N
CRRES (Combined Release and Radiation	Ef Mars Express/Beagle 2	TRMM (Tropical Rain Measuring Miss	si GStar 4
Dawn	Mars Global Survevor	UARS (Upper Atmosphere Research	SHESSI-II
DE-1 (Dynamics Explorer)	Mars Observer	UFO (UHF Follow On)	Ikonos
DE-2 (Dynamics Explorer)	Mars Odvssev [Mars Surveyor 2001 Orbite	r1VELA-IV	Inmarsat 3-F5
Deep Impact Flyby Spacecraft & Impactor	Mars Pathfinder & Sojourner Rovers	Viking Lander (Two Landers but cost	8 Intelsat K
Deep Space 1 (DS-1)[Includes 2 Probess	er MCO (Mars Climate Orbiter) [One of two p	rc Viking Orbiter (Two Orbiters but cost	a IUE (International Ultraviolet Explorer)
DMSP-5D (Defense Meteorlogical Satellite I	Pr (MRO) Mars Reconnaissance Orbiter	Vovager ITwo Spacecraft but cost and	d Jason 1
DMSP-5D3 (Defense Meteorlogical Satellite	EMars Polar Lander [One of two projects wh	ic MSX (Mid-course Space Experiment)	Landsat 3
DSCS-II (Defense Satellite Communicatins	SIMER (Mars Exploration Rover) [Two Rover	s QuikSCAT	Landsat 4
DSCS-IIIA (Defense Satellite Communication	s Messenger (Mercury Surface, Space Envir	o QuikSCAT	Mars Telecommunication Orbiter (MTO)
DSCS-IIIB (Defense Satellite Communication	is Model-35	GEO 1	Meteor
DSP (Defense Support Program)	NATO III	Argos	NIMBUS
Earth Observing 1 (EO-1)	NEAR (Near Earth Asteroid Rendezvous) [relridium	Polar
ERBS (Earth Radiation Budget Experiment)	New Horizons	NOAA 15	Rosetta Instruments
ELTSATCOM 6/Elect Satellite Communicat	NPD (NPOESS Preparatory Project)	Globalstar 8	Sage III (the third Stratespheric Aerosol and Gas
FLISE (Far Liltraviolet Spectroscopic Explore	ar'OCO (Orbiting Carbon Observatory)	orbcomm	Sage III (the tillio Stratospheric Aerosol and Gas
CALEX (Colory Evolution Evolution	OSO 8 (Orbiting Solar Observatory)	orbyiow 2	SMM (Solar Maximum Mission)
		Stop m4	Swift (Commo Dov Burst Evalurer)
Gamesia (including comple return conculo)	F/O Phoonix	Step 114 Miletor 2 / Adv. EHE	Swiit (Gamma Ray Buist Explorer)
CLAST (Commo Doullarge Area Space To			Tethered Setellite System (TSS)
GLAST (Gamma Ray Large Area Space Te	Pioneer Venue Bus Orbiter, Small Broke es		Tethered Satellite System (155)
GPS-1 (Global Positioning Satellite)	Ploneer Venus Bus/Orbiter, Small Probe al	OPO 5	
GPS-IIR (Global Positioning Satellite)	Ploneer-10	SBS 5	Inana
GPSMYP (Global Positioning Satellite)	RHESSI (Reuven High Energy Solar Spect		Ulysses
GRACE (Gravity Recovery and Climate Exp	er S3 (Space Test Program Small Secondary		Vegetation Canopy Lidar (VCL) [Cancelled due to
Gravity Probe-B (GP-B)	SAMPEX (Solar Anomalous and Magnetos	pDSCS 3 F10	Wind
GRO/Compton Gamma Ray Observatory	SCATHA (Spacecraft Charging at High Alti	ti Satcom C3	WIRE (Wide-Field Infrared Explorer)
HEAO-1 (High Energy Astronomical Observ	at Spitzer Space Telescope (formerly SIRTF-	S Satcom C4	XTE (X-ray Timing Explorer, RXTE)
HEAO-2 (High Energy Astronomical Observ	at SME (Solar Mesosphere Explorer)	Orion 1	HETE-II (High Energy Transient Explorer)
HEAO-3 (High Energy Astronomical Observ	at SMS-1 (Synchronous Meterological Satellit	e STRV 1D	DART (Demonstration For Autonomous Rendezv
HST (Hubble Space Telescope) [SSM&OTA	AJ Solar Dynamics Observatory	Anik E1	OMV
ICESat (Ice, Clouds, and Land Elevation Sa	te SORCE (Solar Radiation and Climate Expe	er Anik E2	XSS-11
DSCS I (IDCSP/A)	SIM (Space Interferometry Mission)	Morelos	TSX-5
IMAGE (Imager for Magnetopause to Aurora	a (Stardust & Sample Return Capsule	NOAA 8	XSS-10
	© 2000 Calarat	h Incornorated	DSX

Data Collection Chronologic Summary

- Coefficient trend determination through static models and stepwise regression
- Complexity index by automatically weighted inputs
- Complexity index by analogy
- Neural networks
- Automated windowed coefficient trending
- Boosting using binomial logit classifiers
- Weighted combinations of simple models

Underlying Model - Neural Network

0

Neural networks normally seem better suited to "interpolative" applications such as classification, including pattern recognition, or function approximation. They may tend to over-fit and so an important step we took was in normalizing our data, essentially converting it from an extrapolative problem to an interpolative one. The normalization we undertook was transforming each field to its percentage rank vis-a-vis the observed minimum and maximum for that factor. For example, a design life of 24 months might lie in the 25th percentile for all observed design life, and so on.

Training was carried out using 52 missions from the 1960s through 1996 and testing occurred on 58 missions from 1996 through 2007.

Sorted chronologically, <u>virtually no degradation</u> in accuracy can be seen as estimates go farther <u>out</u>, <u>up to 11 years</u>. This was good news for being able predict future missions, and may have been due to our normalization process, which basically embedded the effect of time within the factors being input to the model.

Comparison of Leading Results

The neural network performs best, followed by Adaboost and then continuous boosting.

This judgment is based on a relative comparison of estimates; it can be seen that neural network estimates are regularly closer to zero deviation between estimated and actual cost. It is interesting to note that in the three instances where the neural network predicts too low by a substantial margin also correspond to worst performances for the Adaboost method, pointing to exceptional data points.

All MREs

Supporting Analyses

Influence of Programmatic Factors

<u>Program</u>	Program Redesign	Technical Complexity	Budget Constraint	Incomplete Estimate	Challenger Delay	Inflation Effect	
TETHER		+		+	+		
XTE	+			+			
GALILEO	+	+			+	+	
AXAF	+	+	+	+		+	
ATP	+	+				+	
HST		+		+	+	+	
EUVE	+			+			
GOES I-M	+	+				+	
AFE	+		+	+			
GRO		+	+		+	+	
ASRM	+	+	+			+	
NSCAT	+					+	
MARS OBS.	+	+	+		+	+	
OMV	+	+	+			+	
TDRS-7		+	+	+			
LANDSAT-D	+	+				+	
COSTR	+						
TRMM	+			+	+		
ULYSSES	-		+	+	+		
MAGELLAN	+	+					
FTS	-	+		+	+	+	
ACTS	+		+			+	
TOPEX		+					
FREEDOM	+	+	+			+	
GGS			+				
UARS					+		
CASSINI	-		+	+		+	
ENDEAVOUR							
EOS	-					+	
					© 2	2008 Galorath Incorp	ora

	Coefficients	Standard Error	t Stat
Intercept	29.41	45.27	0.65
Program Redesign	22.40	45.24	0.50
Technical Complexity	87.09	39.94	2.18
Budget Constraint	-47.82	35.81	-1.34
Incomplete Estimate	82.86	39.22	2.11
Challenger Delay	16.94	40.61	0.42
Inflation Effect	-19.30	46.35	-0.42
Log transformed cost			
Regression St	atistics		
Multiple R	0.58		
R Square	0.34		
Adjusted R Square	0.16		
Standard Error	0.44		
Observations	29.00		

by G

0

	Coefficients	Standard Error	t Stat
Intercept	1.58	0.22	7.18
Program Redesign	0.24	0.22	1.07
Technical Complexity	0.53	0.19	2.73
Budget Constraint	0.03	0.17	0.20
Incomplete Estimate	0.25	0.19	1.32
Challenger Delay	0.12	0.20	0.62
Inflation Effect	-0.31	0.22	-1.36

Log transformed zero intercept							
Regression Statistics							
Multiple R	0.94						
R Square	0.89						
Adjusted R Square	0.82						
Standard Error	0.79						
Observations	29.00						

	Coefficients	Standard Error	t Stat
Intercept	0.00	#N/A	#N/A
Program Redesign	1.21	0.31	3.90
Technical Complexity	1.09	0.32	3.44
Budget Constraint	0.37	0.30	1.25
Incomplete Estimate	0.54	0.33	1.64
Challenger Delay	0.55	0.34	1.63
Inflation Effect	-0.38	0.40	-0.94

Schedule As A Function of Project Launch Era

	Project		PDR-	CDR-			CDR-
	Develop.	ATP-PDR	CDR	1st Flight	ATP-PDR	PDR-CDR	1st Flight
	Duration	Time	Time	Time	Time by	Time by	Time by
	(Months)	(Months)	(Months)	(Months)	%	%	%
Major Projects - Pre-1980	73	25.9	14.2	33.0	32.8%	19.8%	47.4%
Moderate Projects - Pre-1980	59	20.2	11.4	27.2	34.3%	20.7%	45.0%
Minor Projects - Pre-1980	41	9.1	11.8	20.5	21.8%	29.8%	48.4%
	57.8	18.4					
Major Projects - Post-1980	104	16.8	28.2	58.8	16.7%	27.2%	56.1%
Moderate Projects - Post-1980	71	14.9	13.3	42.4	20.4%	20.1%	59.5%
Minor Projects - Post-1980	45	7.5	9.6	32.0	14.6%	19.5%	65.9%
	73.2	13.1					

The data show that regardless of the size of the project, the projects after 1980 have nearly 30% less time allocated from ATP to PDR. They also on average took about 27% longer to accomplish. One might conclude that the rush to start projects has resulted in longer total development times, a premise to which I whole-heartedly subscribe.

Schedule As A Function of Project Duration And Scope

Regardless of the length of the schedule, the time from CDR to first launch averages 55% of the total project development time +/- 2.5%.

On the other hand, the longer the total development time the higher the percent of time from ATP-PDR and conversely the shorter the time from PDR to CDR.

		Project		PDR-	CDR-			CDR-
	Project	Develop.	ATP-PDR	CDR	1st Flight	ATP-PDR	PDR-CDR	1st Flight
	Develop.	Duration	Time	Time	Time	Time by	Time by	Time by
	Duration (yrs)	(Months)	(Months)	(Months)	(Months)	%	%	%
	Major	84	19.6178	21.1689	43.4	23.2%	24.7%	52.1%
	Moderate	66	16.0	13.2	37.3	23.9%	21.2%	54.8%
	Minor	45	8.2	10.56	26.68	18.0%	24.1%	57.9%
GRAND TOTAL AVG - A	II Missions	62	13.6147	14.0938	34.35593	21.3%	23.3%	55.4%

© 2008 Galorath Incorporated

18

Project major elements

		Total Cost							Project	Ground
		at Time of			Project	Ground Sys.		Instrument	Support	Sys. Dev.
date	PROJECT	Data	BUS	Instrument	Support	Dev.	BUS %	%	%	%
6/1/1989	12-Defense Support Prog C	\$8,111.0	\$1,678.0	\$2,355.0	\$2,295.0	\$1,783.0	20.7%	29.0%	28.3%	22.0%
2/1/1996	Near Earth Asteroid Rendez.	\$109.7	\$41.1	\$30.8	\$25.7	\$12.1	37.5%	28.1%	23.4%	11.0%
11/1/1996	Mars Global Surveyor	\$274.7	\$69.6	\$50.9	\$22.2	\$132.0	25.3%	18.5%	8.1%	48.1%
8/1/1997	ACE	\$106.8	\$47.0	\$50.2	\$6.3	\$3.3	44.0%	47.0%	5.9%	3.1%
10/1/1997	Cassini	\$1,190.0	\$690.0	\$319.0	\$79.0	\$102.0	58.0%	26.8%	6.6%	8.6%
11/1/1997	TRMM	\$238.5	\$111.5	\$50.5	\$46.4	\$30.1	46.8%	21.2%	19.5%	12.6%
5/13/1998	NOAA (K-N')	\$1,036.0	\$471.0	\$408.0	\$135.0	\$22.0	45.5%	39.4%	13.0%	2.1%
12/1/2001	TIMED	\$122.8	\$41.6	\$38.4	\$24.4	\$18.4	33.9%	31.3%	19.9%	15.0%
1/1/2003	Icesat	\$188.3	\$55.0	\$67.3	\$19.5	\$46.5	29.2%	35.7%	10.4%	24.7%
8/1/2003	SIRTF	\$512.0	\$179.4	\$212.0	\$34.5	\$86.1	35.0%	41.4%	6.7%	16.8%
4/1/2004	Gravity Probe - B	\$425.6	\$131.1	\$237.7	\$38.8	\$18.0	30.8%	55.9%	9.1%	4.2%
10/5/2006	STEREO	\$229.0	\$98.0	\$60.0	\$12.0	\$59.0	42.8%	26.2%	5.2%	25.8%
2/1/2009	POES	\$1,133.8	\$586.4	\$437.9	\$95.0	\$14.5	51.7%	38.6%	8.4%	1.3%

^{© 2008} Galorath Incorporated

Far Out Model In SEER for Hardware

SEER for Hardware Interface

Parameter Entry

First Action – Create A New Project

New	SEER-H.Project Settings	
Project Dialog	SEER"	Description My Project Analyst Lee Fischman
	Welcome to the SEER-H Project Settings Dialog!	Apply same KBase settings to all Work Element type Select Work Element Type Work Element Type
	Use the Project Settings dialog to set project defaults such as pre-loading default knowledge bases, production quantities, and project parameters. <i>Check</i> the Apply same KBase settings to all Work Element types if you want to pre-define Knowledge Base selections for all work element types. If you prefer to define Knowledge Base options for each element type, <i>uncheck</i> the box. If this is a new project, <i>Click</i> Next to enter program quantities and/or set project parameters. <i>Click</i> Finish when done.	Specify Knowledge Bases Application 2 Platform 2 0&S Description 2 Acquisition Category 2 Standard 2 Class 2
		Previous Next Einish Help Cancel

R

	Cre	ate/Modify	y Work Element			×
Far Out Element is selected from the Element Type list		Desci A <u>E</u> lema	iption: Notional spacec nalyst: Lee Fischman ent Types	raft		
	Pr	evious Item	ls: Level1	Make This Item: D	emote 1 Level (>] 🔻
	Teo	hnology	?		Created — Date: 5/0	12/08
	Pla	form	?		Time: 10:	32:45
		S Descr hooser	?		Modified —	
	Cat	egory _		[пк	Cancel
	Sta	ndard	<u>/ </u>			Cancer

Next Create A Far Out Element

Far Out Entry Screen

Ground Systems 2.2% 2.2%

Far Out Report

Far Out Orbital Concepts Cost Model

at out by Major Fla

Project: Notional Spacecraft Expected Launch Year: 2015

		Cost by	Major Element				Percer	ntage of Total Co	st			
P	rob. ost	Total	Bus	Instrument	Project Support	Ground Systems	Bus	Instrument	Project Support			
1	.0%	78,653,356	38,429,860	27,452,301	11,011,484	1,759,712	48.9%	34.9%	14.0%			
2	0%	82,031,000	40,080,170	28,631,196	11,484,354	1,835,280	48.9%	34.9%	14.0%			
з	0%	83,533,545	40,814,310	29,155,628	11,694,711	1,868,896	48.9%	34.9%	14.0%			
4	0%	84,937,256	41,500,160	29,645,564	11,891,231	1,900,301	48.99					
5	0%	86,058,406	42,047,952	30,036,878	12,048,192	1,925,385	48.99		Cost by Major Eler			
6	0%	86,736,101	42,379,072	30,273,413	12,143,069	1,940,547	48.99 Prob.	то	otal			
7	0%	87,793,386	42,895,659	30,642,436	12,291,089	1,964,201	48.99 Prob.					
8	0%	88,738,592	43,357,485	30,972,340	12,423,418	1,985,349	48.99 ^{10%}	78	8,653,356			
9	0%	90,520,915	44,228,324	31,594,423	12,672,944	2,025,224	48.99 ^{20%}	8	2,031,000			
							30%	8	3,533,545			

	Development Cost by Phase					
Cost by Major	Element			Percentage	of Total Cost	
Total	ATP-PDR	PDR-CDR	CDR-1st Flight	ATP-PDR	PDR-CDR	CDR-1st Flight
78,653,356	27,591,690	32,450,529	18,611,138	35.1%	41.3%	23.7%
82,031,000	28,776,571	33,844,065	19,410,363	35.1%	41.3%	23.7%
83,533,545	29,303,666	34,463,980	19,765,899	35.1%	41.3%	23.7%
84,937,256	29,796,089	35,043,118	20,098,048	35.1%	41.3%	23.7%
86,058,406	30,189,390	35,505,678	20,363,338	35.1%	41.3%	23.7%
86,736,101	30,427,126	35,785,279	20,523,695	35.1%	41.3%	23.7%
87,793,386	30,798,023	36,221,490	20,773,872	35.1%	41.3%	23.7%
88,738,592	31,129,603	36,611,460	20,997,529	35.1%	41.3%	23.7%
90,520,915	31,754,844	37,346,805	21,419,267	35.1%	41.3%	23.7%

© 2008 Galorath Incorporated

40% 50% 60% 70% 80%

			Developm	ent Duration by	Phase			
	Total C	Duration	Du	ration by Major Pha	ase	Percen	tage of Total Durat	ion
Prob. Dur	Years	Months	ATP-PDR	PDR-CDR PDR-CDR	CDR-1st Flight	ATP-PDR	PDR-CDR	ODR-1st Flight
10%	3.6	44	5	8	30	11.1%	19.3%	69.6%
20%	3.6	44	5	8	30	11.1%	19.3%	69.6%
30%	3.7	44	5	S	30	11.1%	19.3%	69.6%
40%	3.7	44	5	8	31	11.1%	19.3%	69.6%
50%	3.7	44	5	8	31	11.1%	19.3%	69.6%
60%	3.7	44	5	8	31	11.1%	19.3%	69.6%
70%	3.7	44	5	9	31	11.1%	19.3%	69.6%
80%	3.7	44	5	9	31	11.1%	19.3%	69.6%
90%	3.7	44	5	9	31	11.1%	19.3%	69.6%

Parameters - GMU: Notional spacecraft

-PROGRAMMATIC												
Launch Year	2008	2008	2008									
Mission Type		Comm										
Apogee Class		HEO/GEO										
Design Life (mos)	24	24	24									
Expected Cost Range		Medium										
Relative Complexity	Nom	Nom				Dow	alanmant Oast	by Major Ela	mont			
E-BUS						You	nust enter dat	by Major Ele	Vear			
-BUS DESCRIPTORS				Cost by	Major Element	1041	nusc enter ua		Perc	entage of Total Co	st	
Bus Legacy		Nominal		000009	ingjor Erement				1010	ontago or rotar oo.		
Dry Mass (kg)	498.05	498.05	Prob.	Total	Bus	Instrument	Project	Ground	Bus	Instrument	Project	Ground
	1.00	1.00	Cost				Support	Systems			Support	Systems
	1.00	1.00										
Number of Deployables	2	2	10%	119,943,665	58,603,405	41,863,815	16,792,945	2,683,500	48.9%	34.9%	14.0%	2.2%
BUS SUBSYSTEMS												
Command and Data Handling			20%	120,246,033	58,751,140	41,969,350	16,835,278	2,690,264	48.9%	34.9%	14.0%	2.2%
Processor Speed (MIPS)	82	82	0.001		50.004.040				40.00			0.01
-Number of Communication Bands	1	1	30%	120,518,404	58,884,218	42,064,416	16,873,412	2,696,358	48.9%	34.9%	14.0%	2.2%
—Max Data Rate (Kbps)	512.00	512.00	40%	120 679 780	58 963 065	42 120 740	16 896 006	2 699 969	48 9%	34.9%	14.0%	2.2%
Autonomy		Lesser	10.0		30,003,005	42,120,140	10,000,000	2,000,000	40.070	54.5%	14.0%	2.274
□ - Power			50%	120.892.521	59.067.008	42.194.993	16.925.791	2,704,728	48.9%	34.9%	14.0%	2.2%
-Max Watts (W)	500.00	500.00			,,							
-Power Generation Technology	Sola	r Array, Body Mount	ted60%	121,116,746	59,176,563	42,273,254	16,957,184	2,709,745	48.9%	34.9%	14.0%	2.2%
-Solar Array Technology		SiGaAs	200									
Solar Array Output (watts/kg)	0	0	70%	121,358,570	59,294,715	42,357,658	16,991,041	2,715,155	48.9%	34.9%	14.0%	2.2%
Attitude Control and Determination												
Pointing Accuracy	0.36	0.36	80%	121,642,872	59,433,623	42,456,887	17,030,846	2,721,516	48.9%	34.9%	14.0%	2.2%
		Detector Coolers	0.001	100.015.170	50.045.074	40 500 007	17 000 010	0 700 050	40.0%			0.0%
-INSTRUMENTS			90%	122,015,476	59,615,674	42,586,937	17,083,013	2,729,852	48.9%	34.9%	14.0%	2.2%
-Number of Instruments	3	3	3									
Payload Legacy		Nominal										

Parameters' Relative Effect

4

4

4

Parameter Effects Graphically

Programmatic Parameters 1

> PROGRAMMATIC

This is a parameter category which contains parameters describing the general nature of the project:

Launch Year

The year when the project will be launched. A project may consist of several units, block purchases, or options consisting of several units within each block or option purchase. For a multiunit project, enter the year of launch of the first unit. For a block/option project (e.g., a specific unit used as an analog), enter the year of launch of the first unit of that build.

Mission Type

Select the Mission Type that most closely describes the main purpose of the mission. A project may also fly payloads of opportunity (based on space available), which have little to do with the main mission. The Mission Type, however, refers only to the main purpose, not these ancillary objectives.

ltem	Description
Technology	A technical test of a satellite.
Comm	Communication missions relay domestic or military transmissions, such as telephone, radio, and TV signals, from one point on the Earth's surface to another.
Sensing	Sensing missions gather information about natural phenomena or human activities on Earth or other planets, or in space.

Apogee Class

Select the orbital requirement that most closely matches the mission. The nature and objectives of the mission will determine the most advantageous orbit.

ltem	Description
LEO	Low Earth Orbit, with apogees and perigees below 3,000 km.
HEO/ GEO	High Earth, Highly Elliptical, and Geosynchronous orbits. GEO orbits are used by communication and weather satellites, with apogees between 30,000 km and 40,000 km. For a geostationary orbit, an altitude of about 36,000 km is needed.
Planetary	Missions to a different body – another planet or moon, a comet, etc.

Design Life

The required lifetime for the mission. A longer Design Lifetime requires more robust systems. This parameter directly impacts the level of redundancy in the design and the cost of system design and implementation, since more hardware will be required, and will be cross-strapped to provide greater redundancy. It also affects Integration and Test.

Note that this parameter represents the required, rather than the expected, lifetime; many satellites operate well past their design lifetime.

Expected Cost Range

Based on the first unit's cost from Authority To Proceed (ATP) through launch of the first unit. These costs include development of the ground systems, but not launch vehicle or operations costs.

The Expected Cost Range parameter directs the model to the proper set of Cost Estimating Relationships (CER's) and is especially important in estimating schedule lengths.

Item	Definition
Smallest	Up to \$50,000,000.00 (US).
Small	Between \$50,000,000.00 and \$175,000,000.00.
Medium	Between \$175,000,000.00 and \$716,000,000.00.
Large	Greater than \$716,000,000.00.

Relative Complexity

Use this parameter only when you have very little concrete information about the project and are looking for a ballpark estimate of cost and schedule.

Use the sliders to select the Least (lowest likely), Likely (most likely), and Most (highest likely) levels of complexity.

Item	Description
VHi	Most technologies will be decidedly difficult to accomplish given the anticipated state of the art.
Hi	Most technologies will be harder to accomplish given the anticipated state of the art.
Nom	Technologies will be no harder nor simpler to accomplish than most other missions of the time.
Lo	Most technologies will be straightforward to accomplish given the anticipated state of the art.
VLo	All technologies will be trivial to accomplish given the anticipated state of the art.

Bus Descriptors Parameters 1

> BUS DESCRIPTORS

This is a category parameter. Note that NASA uses the term *Bus* while the DoD uses the term *spacecraft* for the same set of subsystems. NASA uses the terms *spacecraft*, *satellite* or *observatory* to mean the entire flight article (bus + payload). DoD uses *space vehicle* to describe the entire flight article. Both agencies use the terms *payload* or *instruments* for the sensors that perform objective of the mission interchangeably.

Bus Legacy

How much of the bus consists of legacy hardware and design. Take into account the level of modifications that will likely be requested. Commercial missions may use standard busses with little or no modification. Government missions, however, are more likely to require major modifications; DoD requirements for radiation hardening, long-life redundancy and encryption may negate much of the savings from using a high legacy bus.

Government projects often operate at the cutting-edge of technology, and developing bus subsystems that can support such high-tech payloads can necessitate modifications that are beyond existing or expected in the near future heritage systems. It is even possible that trying to force-fit a long list of modifications into an existing commercial bus could cost more than building a new bus from scratch.

Item	Description
Extensive	Based in large part on past designs.
Nominal	Borrowing from past designs with significant amounts of new design.
Minor	Predominantly new design, perhaps with reference to known designs and technology.
	© 2008 Galorath Incorporated

Bus Descriptors Parameters 2

Dry Mass

The expected weight (when completed), in kilograms, including contingencies, of the satellite on Earth, excluding the launch vehicle adaptor and fairing weight, and upper stages if they are not an integral part of the satellite. Exclude the weight of fuels, oxidizers and pressurants but includes the weight of the tanks holding the liquids. For example, an apogee kick motor that is released from the space vehicle stack after completing its role would not count as space vehicle mass, whereas an internal liquid propulsion system doing the same job would be.

Main Body Width

The longest width of the space vehicle measured in the direction of the pitch axis, in meters, after all deployables have been activated.

Main Body Length

The longest measurement lengthwise of the space vehicle measured in the direction of the roll axis, in meters, after all deployables have been activated.

Number of Deployables

Deployables are space vehicle components which are folded and latched for launch, then deployed after the space vehicle is separated from the launch vehicle protective hardware, or later. Enter the total number of items deployed; if, for example, the solar array has two wings, enter two deployables, because there are two distinct deployment systems. However, each fold of a wing would not be a deployable.

Typical deployables include solar arrays and the antenna systems, as well as payload elements requiring deployment, thermal control elements, telescope covers, etc.

Bus Subsystems C&DH Params 1

Command and Data Handling

This is a category parameter. The computer, C&DH, and telemetry systems are the heart of any spacecraft bus and their proper performance is central to accomplishment of the mission. The C&DH subsystem controls the operation of other elements of the space vehicle. It sends commands to the elements and receives data from them, processing data to ensure that they are working properly. The communications portion of the C&DH system sends telemetry data to ground operators and receives commands for the operation of the space vehicle. The selection of correct model input parameter values determines both whether requirements will be met and the cost of meeting those requirements. This model examines four parameters to characterize the C&DH system.

Processor Speed

Processor Speed is the rate at which the selected flight computer executes operational instructions, measured in Millions of Instructions per Second (MIPS). After a spacecraft design is determined, a suitable computer must be matched to it. The individual subsystems and programs required to run on the computer dictate how much power, in the computing sense, a processor will need. Accurate scaling is vital to the design on the command system. Too few MIPS and a computer will be unable to run the spacecraft, while too many and the computer will be wasting power and money. Processor speed has be increasing dramatically for decades, and predictions are that it will continue. The model has already extrapolated this technology tread and will assess individual requirements against the likelihood of availability of the technology when needed. Space application processor speed lags terrestrial because of the severe environment of space and the need to have fully tested, high reliability chips. Over the past thirty years space application chip MIPS have increase from .4 MIPS to between 240 and 300 MIPS.

Bus Subsystems C&DH Params 2

Number of Communication Bands

There are a number of radio frequency ranges in use in satellite communications, such as C, L, S, X, Ku, and Ka-band. Satellite-to-satellite communication at light wave frequencies is also an option. The higher the frequency, the more data (bits) that can be carried on that communication link. The Number of Communication Bands dictates the number of transmitters, receivers, or transponders, the number and types of antennas and impacts to the power, C&DH and Attitude Control & Determination subsystems. Since Number of Communication Bands is a significant design driver, this parameter also becomes a significant cost driver.

Maximum Data Rate

The maximum downlink rate from the space vehicle to the ground in Kbps (kilobits per second). The communications subsystem uses transmitters, receivers or transponders - a transmitter and receiver in one component, to handle all transmit (telemetry) and receive (command) communications functions. The digital bit rate for uplinks (ground to space vehicle), downlinks (space vehicle to ground) or payload and housekeeping data that is transmitted is the Data Rate for that element. In designing the various subsystems the Data Rate drives the selection of communication bands, antenna types and sizes, transmit power requirements, fields of view, allowable data error rates, etc.

Autonomy

Select Greater or Lesser A	utonomy.
Item	Description
Greater	Select Greater Autonomy if the space vehicle is capable of routinely carrying out most or all of the functions for which it was designed without receiving instructions from the ground. A highly autonomous device can receive non-routine instructions from the ground for some purposes, including emergency override commands or (in the case of planetary exploration devices) mission direction/ redirection instructions, but under most circumstances, it will not need such commands. In the case of a highly autonomous planetary exploration vehicle, for example, new mission instructions would come from a ground station, but the device itself would make most or all of the decisions required to navigate around obstacles and determine the details of the path to a new location, as well as automatically taking samples when it arrives.
Lesser	Select Lesser Autonomy if the space vehicle requires ground instructions for a significant portion of its routine tasks. In general, if a vehicle does not fit the description of Greater Autonomy, select Lesser. For passive or near-passive devices (such as transponders) or those with very simple functions, Autonomy should be set to Lesser, even if they ordinarily operate without ground instructions.

Bus Subsystems Power Params 1

This is a category parameter. Space power systems are on-board assemblages of equipment to generate, store, and distribute electrical energy on satellites/ spacecraft. A reliable source of electrical power is required for supplying energy to the spacecraft and its payloads during launch and through its years of operational lifetime in a space environment.

Power generation in most cases is by solar arrays, although fuel cells are used by the Space Shuttle and any vehicle going further than the orbit of Mars must use a method that excludes converting solar energy.

Max Watts

Enter the maximum power in watts which the vehicle will require. The maximum power requirement for a space vehicle is the greatest amount of power that the space vehicle requires. The maximum power requirement can, for a short period, be greater than what is provided by the power generation system, as that power can be supplemented by power stored by the batteries. However, for an orbit the power generation system must be able to power all required space vehicle systems and recharge the power storage system or the power system will run at a deficit and discharge, threatening the vehicle. Many factors influence the final configuration of a power system. Basic to the initial consideration are the nature of the mission (Earth-orbiting or planetary) and mission lifetime. Other relevant factors include (1) spacecraft and payload requirements with consideration to average and peak power loads; (2) effect of environment such as orbit period, length of time the spacecraft is in sunlight and shadow, radiation particle damage, and space charging; and (3) constraints imposed by the spacecraft such as weight, volume, spacecraft shape and appendages, satellite attitude control, electromagnetic radiation limitations, characteristics of payloads, and thermal dissipation.

Power Generation Technology

This selection details the means by which power will obtained. Power either may be generated onboard or, if a short mission, stored prior to launch using batteries. Deep space missions going away from the sun sometimes rely on a radioisotope thermoelectric generator, as the energy of the sun is increasingly insufficient as a distance from it increases.

Item	Description
Solar Array, Body Mounted	
Solar Array, Deployed	
RTG	Radioisotope thermal generator.
Batteries	Any type of battery technology.
Other	Relying on external power, exotic sources, etc.

Solar Array Technology

Select the solar array technology to be used on the mission.			
ltem	Description		
Si	Silicon		
SiGaAs	Silicon Gallium Arsenide		
GaAs on Ge	Gallium Arsenide on Geranium		
High Efficiency SiGaAs	Improved efficiency Silicon Gallium Arsenide		
Multi-Junction GaAs	Highly efficent technology using multiple thin films.		
Si-Indium Phosphide on Ge	Silicon Indium Phosphide on Geranium		

Bus Subsystems Attitude Control Params

Solar Array Output

Solar Array Output requirements are measured in how many watts per kilogram the power generation system produces. Solar arrays are becoming more efficient, producing more electricity for the same area of solar array, and also becoming lighter so that they allow more of the system weight to be used by the payload. Systems projected for the future include solar concentrator arrays, where sunlight is concentrated and reflected onto boilers that in turn produce electricity, rather than using photovoltaic systems. Such systems could provide more than an order of magnitude improvement in watts/kg over current systems.

Attitude Control & Determ. Parms

> Attitude Control and Determination

This is a category parameter. Attitude Control and Determination has two distinct parts that must work together in order that a space vehicle can successfully complete its mission.

1. Attitude control is that part of Attitude Control and Determination that physically moves the satellite to a desired position and holds it there so that the space vehicle can complete its functions. There are many different attitude control systems that the designer can select among to

2. Attitude determination is that part of Attitude Control and Determination that tells the control system how much to alter the space vehicle's attitude, tracks the changes in attitude, marking the precise attitude for transmission to the ground. The direction the satellite is pointing is

Pointing Accuracy

Enter the pointing accuracy in degrees. Pointing Accuracy or the ability for the space vehicle's attitude to be control such that the payload can complete its objectives is a mission requirement that is generated by the needs of the payload instrumentation. Pointing Accuracy is a major design driver; it determines how sensitive the space vehicle must be to its own mechanical forces like vibrations and moving appendages. It is important to ensure that physical distortions do not affect Pointing Accuracy, so this parameter impacts the mechanical alignment of the attitude control system with the payloads as well as thermal stability. Pointing Accuracy can be a function of the entire satellite or of an individual instrument, once the satellite points the instrument relatively close to its target. Some instruments can change their observation direction by commands sent from the earth or under spacecraft autonomous control.

Bus Subsystems Thermal Params

Thermal Technology

Select the thermal technology system from the list. The thermal system regulates the temperature of the satellite's components. Too hot or too cold, or too great a swing in temperature will prematurely end the useful life of a satellite. The thermal system dissipates the heat into space. Temperatures are controlled within acceptable temperature ranges for all subsystems, including the payload. There are two types of thermal control: passive control which depends on passive materials or devices such as surface treatments, heat pipes, radiators and dewars, and active control which depends on active devices such as electric coolers and heaters.

The Thermal Technology system required is dependent upon the temperatures needed by the mission and the amount of mass that needs that temperature. Some payloads require that only the detector (measured in grams) be cooled, whereas others require that the entire instrument be cooled (measured in kilograms), and sometimes even an entire space vehicle will be cooled, as in the James Webb Space Telescope. The temperature requirement is measured in degrees Kelvin and the amount of cooling or heat removed is measured in watts/ hour.

Radiators and Insulation Detector Coolers Cryo-cooler Stirling Cryo Cycle Cryo heat pipe

Instruments Parameters

> INSTRUMENTS

This is a category parameter. Payload or instruments consist of those scientific and/ or operational apparatus used to enable the objectives of the mission.

Number of Instruments

Enter the number of instruments in the payload. For this model an instrument is defined a piece of hardware with an independent command and telemetry link into the C&DH subsystem. Like the number of communication bands, the Number of Instruments also is a major cost driver, since it impacts all of the bus' subsystems with the possible exception of propulsion.

Payload Legacy

Select the amount of Payload Legacy. Correctly assessing Payload Legacy is central to an accurate estimate. Virtually all instruments can point to heritage - much of it based on old instruments with little to no applicability to the design and components of instrument under consideration. The key issue is whether instrument heritage is applicable to the planned instrument. If heritage is overly optimistic, then the cost estimate produced will be low. Since Far Out estimates systems will not be built until farther in the future than is usually the case, it is important to consider the state of heritage or legacy that is likely to be in existence when the instrument is actually being designed.

FAR OUT

ADVANCED SPACE CONCEPTS COST MODEL