

Booz Allen Hamilton Inc.
Suite 900
121 South Tejon Street
Colorado Springs, CO 80903
Tel 1 719 387 2000
Fax 1 719 387 2020
www.boozallen.com

Automating SEER for Software: A Quick Cost Estimation Process

John Teal and Gary Hellenga

Abstract
Software estimates are useful tools for examining project scopes ranging from an entire system-
of-systems program, down to a specific component of a small subsystem. In general, however,
producing an estimate is neither quick nor easy. Even worse, maintaining the estimates as
projects mature and undergo change is laborious – and consequently, tracking the progress of a
project’s estimates over the project lifetime is rarely effectively accomplished. What is desired is
an estimation process that can respond with agility to changes in project direction and to the
assumptions on which the estimate is based, without undue cost and effort in updating the
estimates themselves. This paper will discuss a process for automating and speeding up the
iterative development and maintenance of estimates using SEER, reasons for creating the process,
and the benefits to the estimator.

Most estimators use SEER in interactive mode, performing the laborious and error-prone task of
manually entering data into the SEER User Interface client. This is a time-consuming and
sometimes frustrating segment of the software cost estimating process. Unfortunately most
estimators do not realize that their desktop application employs a client-server architecture, and
the server portion can be utilized with a variety of clients other than the SEER for Software user.
Using an Excel-based process, the server mode can accept a sequence of commands from a text
file or the Windows clipboard, and process them to create a SEER Project file, generate estimates,
and produce output reports that can be exported to the same or alternate client application. If
performed properly, this process only takes a few seconds. The goal of this process is to reduce
demands of data entry, and to empower the estimator to focus on the role of a software estimating
consultant and analyst.

2008 Joint ISPA/SCEA Annual Conference Booz | Allen | Hamilton

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Section 1: Introduction to parametric software cost estimating
Starting now, software cost does not have to be as difficult as it used to be! Recent developments
mean that manually reentering hundreds of project data points – one of the most tedious aspects
of parametric modeling – can be significantly reduced.

Cost estimation of software projects is certainly one of the more daunting niches of cost
estimating because it requires obscure domain knowledge, familiarity with little known
commercial models, and an appetite for details. To engineers, software development can be a
complicated frustrating field and to cost estimators the sentiment is no different. But despite the
drawbacks, software estimating is a field that cannot be ignored. Given the spectacular failure
rates of defense software development projects, managers desperately need to understand the
scope of their system and software estimates are useful tools for examining project scopes
ranging from an entire system-of-systems program, down to a specific component of a small
subsystem. Managers need to understand the impacts of schedule changes and requirements
creep which highlights the importance of software cost models because, as always, the true
common denominator across most projects is the cost.

There are several ways that commercial models are used to estimate costs of software projects. In
a perfect world, the cost estimator has access to a set of software requirements documents that are
completed and unlikely to change throughout the duration of the project. In this situation, the
estimator is functionally competent to create lines of code estimates using these requirements
documents and perhaps even cross-reference these totals with Function Point assessments. The
estimator combines all of this information and uses his or her years of experience in order to
create a realistic estimate. Reality check! Too often, especially in the defense market, the
requirements documents are being written while the code is being developed, the estimator
doesn’t have functional understanding of software development, and the project manager has a
keen interest in tweaking estimate variables in order to keep the costs on the low side of realistic.
Information is always in a state of change and the estimator has to keep up -- instead of software
development being a linear process, it becomes iterative. While there is nothing inherently wrong
with an iterative process, the strains of constant updates can become a burden.

While many view software cost estimating models as a godsend to the cost community, these
same people should also identify the tools’ weaknesses. First and foremost, these models have
traditionally required a tremendous amount of data entry. A typical program element in a
software cost estimating model may have dozens of required inputs. Multiply that by three
because many models also require a low, medium, and high input for each element. Then
multiply this by the number of programs, components, and COTS units, and it quickly becomes
apparent how much data there is to manage. Matters become more complicated when
requirements, staffing situations, and other variables begin changing on a weekly basis. Few
estimators can juggle multiple what-if scenarios and make these constant updates without an error
or two! It is an unfortunate situation when a highly trained software estimator is reduced to the
role of a data-entry chimp specialist, focusing on getting the thousands of details correct rather
than adding value as a consultant and analyst to the project. Software cost does not have to be as
difficult as it used to be! This paper will address, and attempt to solve, the problems commonly
associated with the iterative style of software development.

Section 2: SEER for Software
Out of all of the software cost estimate models commercially available, this paper focuses on
SEER for Software (until recently known as System Evaluation and Estimating of Resources –
Software Estimating Model [SEER-SEM]), owned and licensed by the Galorath Corporation. In
addition to software development costs, the model estimates maintenance cost, effort, schedule,

2008 Joint ISPA/SCEA Annual Conference Booz | Allen | Hamilton

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

reliability and risk by comparing parameters that the user enters to a vast database of industry-
wide historical data. SEER can generate a cost estimate even if complete project data is not
available, because the model can leverage historical data and make assumptions based on what
little data it is given. In the SEER cost model equations, estimates of new lines of code and pre-
existing lines of code are critical for a cost estimate development, and knowledge of requirements
volatility, the effort to re-host from the development environment to the target environment,
security requirements levels and years of maintenance are all high priority items as well.
However, there are almost 150 unique items in a Program element in SEER that require attention
in order to perfectly calibrate the model to a specific project. A major development effort with
multiple Program components may have thousands upon thousands of parameters to manipulate!
In a recent NASA project the cost estimator was receiving frequent information updates and
what-if drills from the software development team, and manually entering these thousands of
parameters was not time-effective and occasionally resulted in data entry errors.

Resolving data entry errors is a time consuming process, and it ultimately has the effect of
reducing the credibility of the estimator. Identification of data entry errors may occur when a
current report is compared to a previous report and the cost is a few thousand dollars different, or
the schedule duration is off by a couple of days. Finding the parameter that caused the delta can
take hours if the estimate is big enough, although it can seem like an eternity when the project
manager is looking on. Even seasoned SEER users find themselves in this unfortunate situation
from time to time.

To speed up turn-around time and reduce errors, the team began using SEER’s Server Mode.
Within versions of SEER-SEM 6.0 and later, the server mode provides an alternative to manually
entering data—WBS projects, elements, knowledge base selections, sizing data, and parameter
values may all be created in SEER using server mode scripts, which are sequences of commands
that can be stored in a text file. As Galorath describes in the SEER Help menu, the actual
command strings that SEER requires are very similar to the different input parameters that SEER
users are familiar with, except the strings consist of the parameter followed by a tab, followed by
text or data; followed by any additional tab-delimited values. Where a command includes more
than one value, the number of lines of new code for example, tabs delimit the values.

This is an example of a command script that creates 4 Program elements at the top level of
hierarchy, with the last two having subordinate COTS and Component elements:

ProjectCreate [tab] MyProject
WBSCreate [tab] Parent 1 [tab] Program [tab] 1 [tab] [hard return]
WBSCreate [tab] Parent 2 [tab] Program [tab] 1 [tab] [hard return]
WBSCreate [tab] Parent 3 [tab] Program [tab] 1 [tab] [hard return]
WBSCreate [tab] Child 1 [tab] COTS [tab] 2 [tab] [hard return]
WBSCreate [tab] Parent 4 [tab] Program [tab]1 [tab] [hard return]
WBSCreate [tab] Child 2 [tab] COTS [tab] 2 [tab] [hard return]
WBSCreate [tab] Child 3 [tab] Component [tab] 2 [tab] [hard return]

Command scripts can be formulated from any appropriately-formatted text source, including text
files and data already copied to the Windows clipboard. The default formatting applied to data
copied from Excel worksheet ranges to the clipboard is perfectly suited for transferring
commands from an Excel file to SEER.

The bottom line is that the estimator and the engineer can use Excel as a common way to keep
track of input parameters, and when it’s time to generate a new estimate it’s as easy as copying
the data range, opening SEER, and selecting Tools Run Commands from Clipboard.

2008 Joint ISPA/SCEA Annual Conference Booz | Allen | Hamilton

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Figure 1: Run Commands from Clipboard capability

Although this capability represents a huge gain in efficiency, on a recent NASA project the team
leveraged the premise of a client-server architecture and Excel’s Visual Basic for Applications
(VBA) programming language to further automate the process.

Section 3: Client-server architectures
Client-server architectures are prevalent in modern software design. The World Wide Web and
other systems based on the same underlying protocols allow users with a Web browser client to
interact with many different servers that can provide a variety of services, without the user’s
computer having to install specialized software for each of these services. In these situations, the
domain-specific capabilities of the services reside on the server, and can be offered to anyone
with a Web browser. This design offers considerable flexibility in distributing the services to a
large number of users simultaneously.

The SEER tool also uses a client-server architecture. For most users, who run SEER as a desktop
application where the client and server both run on the user’s computer, this architecture is rather
transparent – the application appears to be monolithic. But the advantages of using the client-
server construct become apparent when SEER is integrated with other tools, such as Microsoft
Project or the IBM Rational software engineering environment; with the same server application,
SEER can support many types of client software in addition to its own native user interface. The
nature of the client-server architecture is illustrated in Figure 2 below, showing how the SEER
server accepts commands and returns estimate data to the client.

Figure 2: Interaction of the Client-Server system

2008 Joint ISPA/SCEA Annual Conference Booz | Allen | Hamilton

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

One interface supported by the SEER server is a Microsoft automation (OLE) interface. Many
Windows applications, such as Project, utilize this interface, and thus, integrating such
applications with SEER can be done reasonably easily. In addition, the Windows clipboard can
readily interface with SEER, and can be used to manually transfer data, commands, and results
between various Windows applications and SEER. In the process Booz Allen has implemented,
we use the automation capabilities of our customized Microsoft Office Excel spreadsheet to
access SEER functionality, starting up the SEER server, if necessary, using it to create and
populate SEER scenarios, then closing it when done. This allows SEER to be fully controlled
from Excel, without having to manually run any SEER functions on the system.

With the ability to run SEER from Excel, the Excel workbook can serve as full-fledged client for
SEER’s server; almost all capabilities of the SEER desktop application can be duplicated by
appropriate “coding” within Excel’s VBA macro language.

Coding?! Within Excel?! Many users may think of Excel as simply a data-capture tool, but
anyone who has used even the simplest formulas within a workbook, such as sums and other
numerical calculations, should realize that some software processing of the data is going on
behind the scenes. The formulas embedded in Excel utilize functions encoded in Visual Basic for
Applications, a programming language used in most of Microsoft’s Office suite of products,
though users of products like Word and PowerPoint may have less use for this capability than
Excel users. VBA provides built-in constructs that allow programmers to easily reference and
manipulate common elements of Excel spreadsheets, such as Workbooks, Worksheets, Ranges
(rectangular collections of cells on a worksheet), and the like. Combining this capability to access
and manipulate sets of data with the ability to access and control SEER through an automation
interface, makes Excel with VBA a powerful tool for capturing project data and building a cost
estimate from it. Also, VBA provides the capability to create and use typical user interface
“widgets”, such as pushbuttons, radio buttons, checkboxes, and number spinners, to augment the
worksheet cells as data entry and operations control facilities. These widgets are tied to
underlying VBA subroutines, commonly known as “macros”, that execute when the widgets are
manipulated in certain ways (e.g., clicking a button, checking or un-checking a checkbox, etc.).

To an estimator who is not a proficient VBA programmer, the challenge to automate SEER may
seem overwhelming; however an advanced knowledge set is not necessary. To help get users
started, SEER includes an Excel file titled ‘SEER-SEM Server Mode Details.xls’ which is
accessible by searching through the SEER directory that is created during the installation process.
The workbook has information describing how to leverage the server mode capabilities of SEER.
One section includes sample code to help the user learn how to use other tools such as Microsoft
Excel or Project in concert with SEER. Specifically, the workbook includes samples of the VBA
macro code needed to invoke SEER as well as the sample server mode commands needed to
create an estimate. Furthermore, the service agreement for all of the major parametric estimating
tools includes technical support to help users solve problems that might arise during the
development process.

Section 4: Process Overview
The process described in this paper arose from work Booz Allen’s Systematic Reuse Team
performed in support of NASA. In several tasks performed under this engagement, the Team
created cost estimates to help quantify cost differences between competing software acquisition
strategies or competing system architectures. In the process of collecting the information about
the systems involved, their characteristics, and their decomposition into subsystems and lower-
level elements, the Team’s software engineers and their NASA civil servant counterparts found it

2008 Joint ISPA/SCEA Annual Conference Booz | Allen | Hamilton

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

natural to use Excel to capture this data; these spreadsheets served as collaboration tools for
debating the salient aspects of these systems within work groups, as well as publishing
conclusions to the outside community (Excel is used ubiquitously, and thus, data captured with it
is generally easy for even outsiders to understand and review). Typical spreadsheet functions
such as sums and averages were utilized to help understand each level of the resulting system
hierarchies. As the Team began to use SEER to model the cost aspects of these systems, we
found we needed to add a few additional calculations to derive the input values SEER required.
Eventually, virtually all the numerical inputs needed by SEER were being calculated within the
spreadsheet; other assumptions needed to produce estimates, such as project team capabilities,
development environment and target system parameters, project schedule data, etc., were
generally captured in Word or text documents, but could just as easily have been added into the
Excel workbooks that held the numerical data.

Once the data of interest was captured, in one or more source documents, it was used to create
SEER scenarios (Projects). Data from the Excel spreadsheets was used to create the project Work
Breakdown Structure (WBS) and to supply size estimates for each WBS element. As the
engineers debated spreadsheet values and made frequent changes to spreadsheet content, the
SEER Project files had to be correspondingly updated. The process of manually copying
spreadsheet data to the SEER user interface, and keeping the SEER models in synch with the
spreadsheets, soon became tedious and occasionally error-prone. After the first errors were
discovered, the Team adopted the paradigm of printing input reports along with all estimate
reports, and manually comparing those input values with the spreadsheet contents – this “QA”
function added even more time and tedium to the process of generating estimates. We realized
what was really needed was an automated process that would streamline the transfer of the
spreadsheet data to SEER, to reduce the time and eliminate errors associated with the manual
process.

Just as this need was really becoming apparent to us, Galorath announced an upcoming webinar
on integrating SEER with other tools. This webinar described the SEER client-server architecture
discussed above, and while not focused on Excel as a client, it became apparent that the SEER
Server Mode might offer our team exactly what we needed to address our data transfer issues.
Working with Galorath’s Tech Support team, we used Galorath-provided interface documentation
and code samples to build the VBA macro code needed to automate our use of SEER from our
Excel workbooks. Along the way, the team generalized spreadsheet data structures to allow them
to be used across a variety of NASA systems and subsystems we were looking to support in our
on-going work. The amount of VBA coding that was required was not overwhelming due to the
technical support and examples provided by Galorath. Someone who has never programmed
software would likely have a hard time re-creating this capability, but an analyst who routinely
builds macros will probably not find this too difficult.

Now, anyone on our team can use the Excel template, with its specialized macros for interfacing
with SEER, to capture the important aspects of a project in a single worksheet, and use user-
friendly interface widgets to identify what is to be done with the workbook contents (such as
generating an estimate with reports X, Y, and Z). This can then be passed to anyone with a
licensed copy of SEER (the Booz Allen Systematic Reuse Team engineers do not have licenses to
run SEER, but are paired up with cost estimators from the Economic and Business Analysis team
who can advise them on the use of SEER and can make the actual runs of the tool); all the
recipient needs to do to create an estimate is click the “Go!” pushbutton.

The process showing in Figure 3 below shows how the team can manage data in Excel and send
the workbook to the estimator when updates are required. A macro alleviates the need for the

2008 Joint ISPA/SCEA Annual Conference Booz | Allen | Hamilton

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

estimator to review the Excel file, open SEER and enter project updates—instead, a macro
automates the new process and the Excel file is updated with new costs and reports in a matter of
seconds. After a quick review the estimator can send this information back to the project team.

Figure 3: Automated Estimation Overview

The generation of the estimate, and export of estimate reports back to the Excel workbook, takes
only seconds. This ability to create cost models in SEER so quickly and efficiently greatly
improves the utility of the estimation process, as it affords the ability to do many ‘what if’
scenarios that might otherwise take too much time and effort, gives assurance that the entry of
data into the models is free of errors, and provides such a convenient means of update (via the
Excel workbook) that the estimate is more likely to be maintained and updated throughout the
project’s lifecycle. In addition, the cost analyst is freed to spend most of his/her time performing
analysis on the inputs and results, instead of the mechanics of creating the model and entering
data.

Section 5: Advanced Process Overview
While the ability to generate estimates in seconds with only a button click is tremendously
powerful, there are situations where an even higher degree of automation is desirable. For
example, what if the cost estimator is attending an all day software engineering meeting and is
receiving quick ‘what-if’ taskings? One option would be for the estimator to run down the hall to
his or her desktop every time a parameter changes and run back with new cost reports. Although
that would work, there are ways to automate the round-trip processing of the spreadsheet file so
that the software team can focus on capturing the pertinent attributes of the new estimate-- then
generate the results in minutes-- using the Excel capabilities described above.

The Booz Allen Excel template allows setting of an “autoprocess” flag. When the workbook is
opened, this flag’s value is checked, and, if set, the “Go” functionality is automatically executed.
On the cost analyst’s computer, the team built and installed a scheduled process that runs every
few hours. When the process is activated, it searches a particular file directory on a shared file
server, and opens, then closes, any workbooks it finds there; after the workbook is processed, it is
moved to another directory. The opening of the file causes the “Go” macro to be executed, and
the estimate is created. All the software team has to do is access the shared file server during the
meeting, submit an updated Excel file, then pick up the finished product after the automated
process has run. The estimator never has to leave the meeting.

Section 6: Other Uses, Future Uses
Given how well the process worked here, where else can it be applied? First and foremost, SEER
for Hardware (formerly known as SEER-H) is an obvious opportunity because it operates in a

2008 Joint ISPA/SCEA Annual Conference Booz | Allen | Hamilton

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

near parallel fashion as SEER for Software. In fact, SEER for Hardware might be an even better
candidate for the advanced automated process described in Section 5 because engineers often
play a bigger role in identification of hardware component parameters than they do in the
software realm, and would therefore want a more automated, iterative process. Pertmaster, a
probabilistic schedule management tool, also can import the data required to define a plan such as
the plan title, task names, task durations, resource assignments, start and finish dates. As with
SEER, this data simply needs to be created in any sort of text file in a comma delimited text
format. ACEIT, a popular cost estimating tool from Tecolote Inc., allows the user to import data
from both Excel and Word using plug-in extensions. This process seems analogous but at this
point the nature of the client-server architecture is unclear. While this paper may have read like
an advertisement for SEER, realize that the beneficial capabilities of many common estimating
tools may be ‘hiding in plain sight.’ Estimators can gain efficiency and improve accuracy if they
are willing to find these capabilities and learn about them.

The benefits of using this approach are difficult to quantify for the NASA Systematic Reuse
Team because the new process is orders of magnitude faster and more efficient than the manual
mode the team employed previously. Whereas data entry used to be a full-time job for several
weeks, plus several hours per week thereafter to include updates or perform what-if drills, many
of these tasks now only take several seconds. The amount of efficiency gained though this
process offsets the initial developmental effort, especially when considering that the development
effort only occurs once but the efficiency can be actualized across many projects. Also, given that
a mid-level cost estimator can frequently cost the government over one hundred dollars per hour,
the total project savings is very substantial if the estimator requires less time to do his or her job.
More importantly, with the reduced data-entry workload, the estimator has increased time to act
as a consultant to the estimating team.

2008 Joint ISPA/SCEA Annual Conference Booz | Allen | Hamilton

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Biographies:
John Teal is an associate with Booz Allen Hamilton in Colorado Springs and works in the areas
of cost analysis, life cycle cost estimating, business case analysis, cost risk analysis, and
economic analysis. His six years of cost and finance experience have been on space and aircraft
programs for the Air Force, intelligence agencies, DoD joint programs, and NASA. He is
currently pursuing an MBA at Regis University and has a Bachelor of Science degree from the
United States Military Academy at West Point. Mr. Teal is a Certified Cost Estimator/Analyst
(CCE/A) and a Project Management Professional (PMP). He is a member of the Pikes Peak
SCEA chapter where he serves as the Program Chair. He can be reached at teal_john@bah.com
or 719-387-3757.

Gary Hellenga is an associate with Booz Allen Hamilton in Bozeman, Montana and is a software
and systems engineer, performing both as a consultant and a practitioner. He has over 15 years of
experience related to full software lifecycle aspects of space-related systems, including real-time
flight software, flight planning and simulation, remote sensing modeling, image processing,
communications system planning, and launch loads analysis. He has supported programs for the
Department of Defense and several intelligence agencies, in addition to his current role
supporting NASA. He has a Master of Science in Applied Mathematics from Montana State
University, and is a Microsoft Certified Applications Developer. He has helped develop cost
estimating processes within the Booz Allen Colorado Springs software development team, and
has applied cost estimating techniques to business case analyses supporting NASA’s developing
Constellation Program. He can be reached at hellenga_gary@bah.com or 406-587-6177.

2008 Joint ISPA/SCEA Annual Conference Booz | Allen | Hamilton

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

