

Estimation of Expedited Systems Engineering Schedules

Barry Boehm, Dan Ingold, JoAnn Lane, USC-CSSE

SCEA-ISPA Joint Conference
June 2012

Outline

- Baseline: CORADMO Expedited Software Development Model
 - RAD: Rapid Application Development
 - Expedited Schedule Drivers
 - Relation to RAD Opportunity Tree
- Nominal Systems Engineering effort and schedule obtained from COSYSMO effort estimation model, cube-root effortschedule relationship
- RAD Opportunity Tree elements reorganized around productprocess-project-people-risk factors

COCOMO II RAD Extension (CORADMO)

RAD Context

- RAD a critical competitive strategy
 - Market window; pace of change

- Non-RAD COCOMO II overestimates RAD schedules
 - Need opportunity-tree cost-schedule adjustment
 - Cube root model inappropriate for small RAD projects
 - COCOMO II: Months = $3.7 \, ^{3}\sqrt{\text{Person-Months}}$
 - 27 PM => 3.7 * 3 = 11.1 Months
 - Small Staff size (27/11.1 = 2.4 people) reduces cost
 - But slow with respect to competition
 - Larger staff size (27/5 people = 5.4 months) more competitive

RAD Opportunity Tree

5une 2012

O: covered by

RCAP:RAD Capability of Personnel

	RATING								
FACTOR	XL	VL	L	N	Н	VH	ХН		
PERS-R	10%	25%	40%	55%	70%	85%	95%		
PREX-R	≤2mo	4 mo	6 mo	1 yr	3 yrs	6 yrs	10 yrs		
I,E, C Multipliers									
PM	1.20	1.13	1.06	1.0	.93	.86	.80		
М	1.40	1.25	1.12	1.0	.82	.68	.56		
P=PM/M	.86	.90	.95	1.0	1.13	1.26	1.43		

PERS-R is the Early Design Capability rating, adjusted to reflect the performers' capability to rapidly assimilate new concepts and material, and to rapidly adapt to change.

PREX-R is the Early Design Personnel Experience rating, adjusted to reflect the performers' experience with RAD languages, tools, components, and COTS fune 20 integration.

RCAP Example

RCAP = Nominal PM = 25, M = 5, P = 5 The square root law: 5 people for 5 months: 25 PM

RCAP = XH PM = 20, M = 2.8, P = 7.1 A very good team can put on 7 people and finish in 2.8 months: 20 PM

RCAP = XL PM = 30, M = 7, P = 4.3

Trying to do RAD with an unqualified team makes them less efficient (30 PM) and gets the schedule closer to the cube root law:

(but not quite: $3\sqrt{30 \text{ person-months}} = 9.3 \text{ months} > 7 \text{ months}$)

Effect of RCAP on Cost, Schedule

Outline

- Baseline: CORADMO Expedited Software Development Model
 - RAD: Rapid Application Development
 - Expedited Schedule Drivers
 - Relation to RAD Opportunity Tree
- Nominal Systems Engineering effort and schedule obtained from COSYSMO effort estimation model, cube-root effort-schedule relationship
 - RAD Opportunity Tree elements reorganized around productprocess-project-people-risk factors

Basic Expedited SE Model Form

- Estimate SE effort using COSYSMO
- Estimate nominal SE schedule as 1.5 * cube root (SE effort)
 - Software, VLSI development schedule = 3 * cube root (SE effort)
 - Roughly 50% of development schedule needed for SE
- Estimate deviations from nominal schedule using multipliers for product, process, project, people, and risk acceptance factors
 - Very Low, Low factor ratings slow down schedule
 - High, Very High and Extra High factor ratings speed up schedule
 - Factor ratings generally a weighted average of several elements

COSYSMO Operational Concept

COSYSMO Cost Drivers - Application

тос	COSYSMO Application Factor Selection									See Embedded Comments for Descriptions and Selection Criteria		
COSYSMO Application Factor Description	ldentifier	Current Prod. Range	Suggested Prod. Range	(AT) AFOM	LOW (L)	NOM (N)	HIGH (H)	VHIGH (VH)	XHIGH (XH)	Rating Selected	Resulting Multiplier	Application Factor Rating Selection Comments
Requirements Understanding	RQMT	1.73	1.73	1.40	1.20	1.00	0.90	0.81		N	1.00	
Architecture Complexity	ARCH	1/66	1.66	1.28	1.14	1,00	0.88	0.77	***	N	1.00	
Level of Service (KPP) Requirements	LSVC	2.50	2.50	0.66	0.83	1.00	1,33	1.65		N	1.00	
Migration Complexity	MIGR	1.50	1.50			1.00	1.25	1.50		N	1.00	
No. and Diversity of Installations/Platforms	INST	1.50	1.50	****	****	1.00	1.25	1.50	****	N	1.00	
No. of Recursive Levels in the Design	RECU	1.50	1.50	0.82	0.91	1.00	1.12	1.23		N	1.00	
Documentation to Match Lifecycle Needs	роси	0.67	0.67	0.82	0.91	1.00	1.12	1.23	****	N	1.00	
Technology Maturity	TMAT	2.50	2.50	1.75	1.37	1.00	0.85	0.70	****	N	1.00	Select the Rating from the pullo
Productivity Range (PR) the Highest Number / Lowest Number and is ar indication of the "Relativ Degree of Influence" of this parameter on SE effort as currently	However inputs based If you	ver, for the as to whe upon you agree with t number	d" column he COSYSM hat you thin ur overall e th the "Cur with a ne	O SE Da nk the " xperienc rrent" no w numb	ta Collec Relative e (not s umber, c er n (n>	ction Mo Degree specific t do noth >1.0) in	ode, it so of Influ to the p ing. If y the app	erves as ience" o ast prog ou disag ropriate	a mean of this pa gram bei gree, sin cell.	s of collect arameter <u>sl</u> ing charact	ing your hould be rerized). rite the	that best represents the Rating program being estimated in the Mode or in the SE Data Collectic Rating that best characterizes t program for which you are provenication Factors (8t 4

Product Factor Elements

- Product simplicity (of interfaces, legacy migration, -ilities)
 - Very Low: Extremely complex; Extra High: Extremely simple
- Ability to reuse product elements
 - Very Low: None; Extra High: over 90%
- Ability to defer low-impact aspects
 - Very Low: None; Extra High: over 90%
- System definition via models vs. documents
 - Very low: None; Extra High: over 90%
- Technology maturity of key capabilities
 - Very Low: >0 Level 1-2 or >1 Level 3; Extra High: All >Level 7

Process Factor Elements

- Concurrency of OpCon, Rqts., Architecture, V&V
 - Very Low: Highly sequential; Extra High: Fully concurrent
- Process streamlining
 - Very Low: Heavily Bureaucratic; Extra High: Fully streamlined
- General SE tool support (coverage, maturity, integration: CMI)
 - Very Low: Simple tools, weak CMI; Extra High: Very strong CMI

Project Factor Elements

- Collaboration support
 - Very Low: Globally distributed; weak communications, data sharing
 - Extra High: Largely collocated; very strong communications, data sharing
- Single-domain models, methods, processes, tools (MMPTs)
 - Very Low: Simple MMPTs, weak CMI; Extra High: Very strong CMI
- Multi-domain models, methods, processes, tools (MMPTs)
 - Very Low: Simple MMPTs, weak CMI; Extra High: Very strong CMI

People Factor Elements

- General-SE Knowledge, Skills, and Agility (KSA)
 - Very Low: Very weak KSA; Extra High: Extra strong KSA
- Single-domain Knowledge, Skills, and Agility (KSA)
 - Very Low: Very weak KSA; Extra High: Extra strong KSA
- Multi-domain Knowledge, Skills, and Agility (KSA)
 - Very Low: Very weak KSA; Extra High: Extra strong KSA
- Team compatibility
 - Very Low: Continuous strong conflict
 - Extra High: Very strong leadership, commonality of interests

Risk Acceptance Factor

- Risk Acceptance
 - Very Low: Highly risk-averse; Extra High: Highly risk-accepting

Current Model Status

- Results similar to CORADMO for software-intensive systems
 - Considered useful for planning
 - Preparing Delphi exercise for relative parameter influence ranges for systems engineering

- Need further data for hardware-intensive systems
 - Good data and driver ratings hard to find