



# Estimation Challenges for 21st Century Software Systems

#### Barry Boehm, Brad Clark, Ray Madachy, Wilson Rosa, Thomas Tan 2011 ISPA/SCEA Conference June 8, 2011





# **Next-Generation Estimation Challenges**

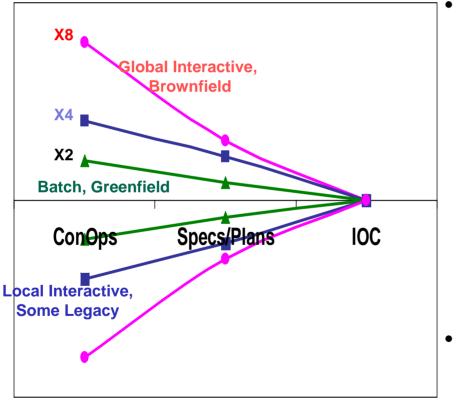
- Emergent requirements
  - Example: Virtual global collaboration support systems
  - Need to manage early concurrent engineering
- Rapid change
  - In competitive threats, technology, organizations, environment
- Net-centric systems of systems
  - Incomplete visibility and control of elements
- Model-driven, service-oriented, Brownfield systems
  - New phenomenology, counting rules
- Always-on, never-fail systems
  - Need to balance agility and discipline





# **Emergent Requirements**

– Example: Virtual global collaboration support systems

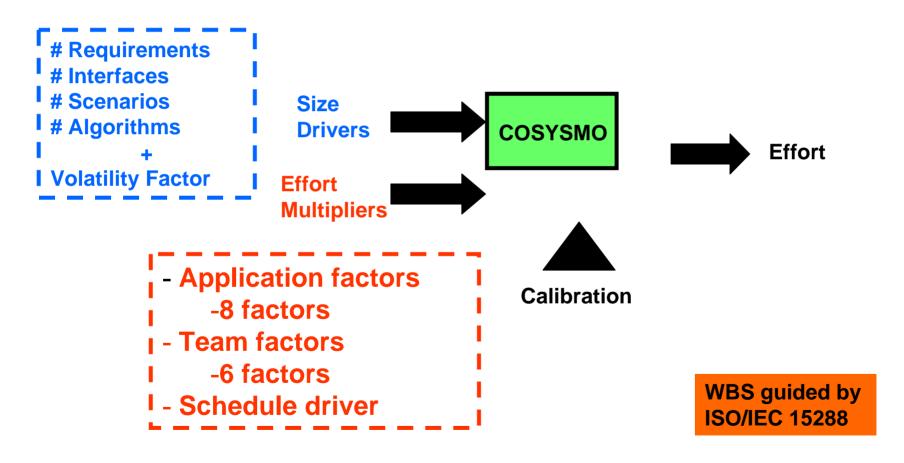

- View sharing, navigation, modification;agenda control; access control
- Mix of synchronous and asynchronous participation
- No way to specify collaboration support requirements in advance
- Need greater investments in concurrent engineering
  - of needs, opportunities, requirements, solutions, plans, resources







# The Broadening Early Cone of Uncertainty (CU)




- Need greater investments in narrowing CU
  - Mission, investment, legacy analysis
  - Competitive prototyping
  - Concurrent engineering
  - Associated estimation methods and management metrics
- Larger systems will often have subsystems with narrower CU's





# **COSYSMO Operational Concept**





#### Center for Systems and Software Engineering



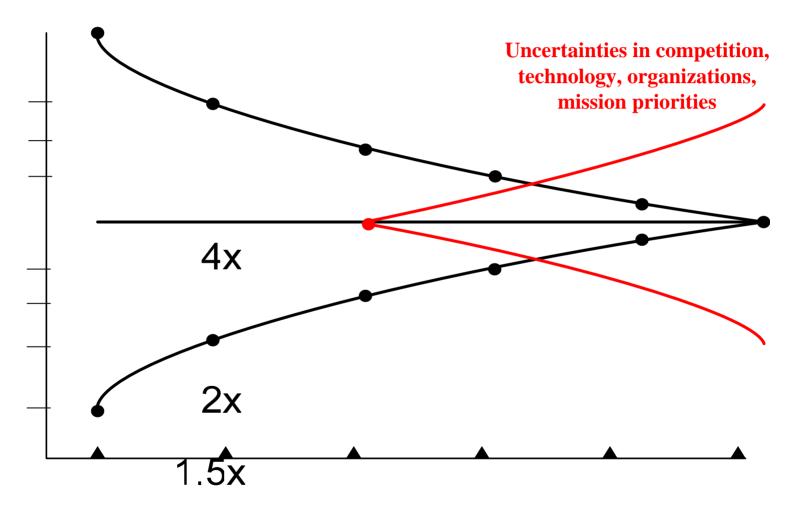
|             | тос                                                                                                                                                                                                                                                                                                                                                                 |            | COSYSMO Application Factor Selection |                             |              |            |                                                                                                                                          |             | See Embedded Comments for<br>Descriptions and Selection Criteria |               |                    |                         |                                                                     |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------|-----------------------------|--------------|------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------|---------------|--------------------|-------------------------|---------------------------------------------------------------------|
|             | COSYSMO Application<br>Factor Description                                                                                                                                                                                                                                                                                                                           | Identifier | Current<br>Prod.<br>Range            | Suggested<br>Prod.<br>Range | VLOW<br>(VL) | LOW<br>(L) | NOM<br>(N)                                                                                                                               | HIGH<br>(H) | VHIGH<br>(VH)                                                    | XHIGH<br>(XH) | Rating<br>Selected | Resulting<br>Multiplier | Application Factor Rating Selection<br>Comments                     |
|             | Requirements<br>Understanding                                                                                                                                                                                                                                                                                                                                       | RQMT       | 1.78                                 | 1.73                        | 1.40         | 1.20       | 1.00                                                                                                                                     | 0.90        | 0.81                                                             |               | N                  | 1.00                    |                                                                     |
|             | Architecture<br>Complexity                                                                                                                                                                                                                                                                                                                                          | ARCH       | 1/66                                 | 1.66                        | 1.28         | 1.14       | 1,00                                                                                                                                     | 0.88        | 0.77                                                             | ***           | N                  | 1.00                    |                                                                     |
|             | Level of Service (KPP)<br>Requirements                                                                                                                                                                                                                                                                                                                              | LSVC       | 2.50                                 | 2.50                        | 0.66         | 0.83       | 1.00                                                                                                                                     | 1,33        | 1.65                                                             | ****          | N                  | 1.00                    |                                                                     |
|             | Migration Complexity                                                                                                                                                                                                                                                                                                                                                | MIGR       | 1.50                                 | 1.50                        | ****         | ***        | 1.00                                                                                                                                     | 1.25        | 1.50                                                             | ****          | N                  | 1.00                    |                                                                     |
|             | No. and Diversity of<br>Installations/Platforms                                                                                                                                                                                                                                                                                                                     | INST       | 1.50                                 | 1.50                        | ***          |            | 1.00                                                                                                                                     | 1.25        | 1.50                                                             |               | N                  | 1.00                    |                                                                     |
|             | No. of Recursive Levels<br>in the Design                                                                                                                                                                                                                                                                                                                            | REC        | 1.50                                 | 1.50                        | 0.82         | 0.91       | 1.00                                                                                                                                     | 1.12        | 1.23                                                             |               | N                  | 1.00                    |                                                                     |
| )           | Documentation to<br>Match Lifecycle Needs                                                                                                                                                                                                                                                                                                                           | DOCU       | 0.67                                 | 0.67                        | 0.82         | 0.91       | 1.00                                                                                                                                     | 1.12        | 1.23                                                             |               | N                  | 1.00                    |                                                                     |
|             | Technology Maturity                                                                                                                                                                                                                                                                                                                                                 | TMAT       | 2.50                                 | 2.50                        | 1.75         | 1.37       | 1.00                                                                                                                                     | 0.85        | 0.70                                                             |               | N                  | 1.00                    | Select the Rating from the pullo<br>that best represents the Rating |
| 7<br>}<br>} | Productivity Range (PR) is the "Suggested" column has no immediate impact in the COSYSMO SE Costing Mode.<br>However, for the COSYSMO SE Data Collection Mode, it serves as a means of collecting your bing that best Collection and is an inputs as to what you think the "Relative Degree of Influence" of this parameter should be Rating that best characterize |            |                                      |                             |              |            | program being estimated in the<br>Mode or in the SE Data Collectic<br>Rating that best characterizes t<br>program for which you are prov |             |                                                                  |               |                    |                         |                                                                     |

\_\_\_\_\_





# **Next-Generation Estimation Challenges**


- Emergent requirements
  - Example: Virtual global collaboration support systems
  - Need to manage early concurrent engineering
- Rapid change
  - In competitive threats, technology, organizations, environment
- Net-centric systems of systems
  - Incomplete visibility and control of elements
- Model-driven, service-oriented, Brownfield systems
  - New phenomenology, counting rules
- Always-on, never-fail systems
  - Need to balance agility and discipline





#### **Rapid Change Creates a Late Cone of Uncertainty**

- Need evolutionary/incremental vs. one-shot development





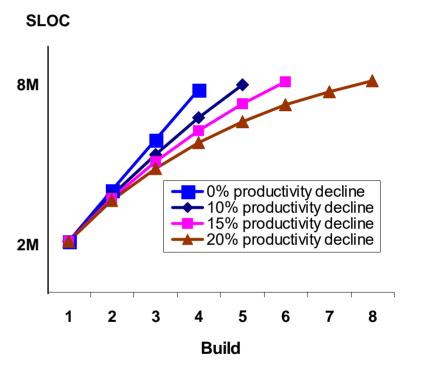


#### Incremental Development Productivity Decline (IDPD)

- Example: Site Defense BMD Software
  - 5 builds, 7 years, \$100M
  - Build 1 productivity over 300 SLOC/person month
  - Build 5 productivity under 150 SLOC/PM
    - Including Build 1-4 breakage, integration, rework
    - 318% change in requirements across all builds
    - IDPD factor = 20% productivity decrease per build
  - Similar trends in later unprecedented systems
  - Not unique to DoD: key source of Windows Vista delays
- Maintenance of full non-COTS SLOC, not ESLOC
  - Build 1: 200 KSLOC new; 200K reused@20% = 240K ESLOC
  - Build 2: 400 KSLOC of Build 1 software to maintain, integrate



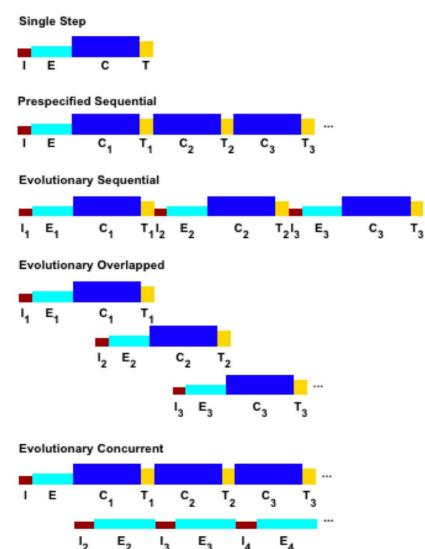
# IDPD Cost Drivers: Conservative 4-Increment Example


- Some savings: more experienced personnel (5-20%)
  - Depending on personnel turnover rates
- Some increases: code base growth, diseconomies of scale, requirements volatility, user requests
  - Breakage, maintenance of full code base (20-40%)
  - Diseconomies of scale in development, integration (10-25%)
  - Requirements volatility; user requests (10-25%)
- Best case: 20% more effort (IDPD=6%)
- Worst case: 85% (IDPD=23%)

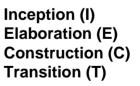




## **Effects of IDPD on Number of Increments**


- Model relating productivity decline to number of builds needed to reach 8M SLOC Full Operational Capability
- Assumes Build 1 production of 2M SLOC
   @ 100 SLOC/PM
  - 20000 PM/ 24 mo. = 833 developers
  - Constant staff size for all builds
- Analysis varies the productivity decline per build
  - Extremely important to determine the incremental development productivity decline (IDPD) factor per build








#### **Lifecycle Process Phasing for Cost Estimation**



IECT: Rational Unified Process Phases



....





# Situation-Dependent Processes and Estimation Approaches

| Туре                    | Examples                                           | Pros                                           | Cons                                          | Cost Estimation                                                                             |
|-------------------------|----------------------------------------------------|------------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------|
| Single Step             | Stable; High Assurance                             | Prespecifiable full-capability requirements    | Emergent requirements or<br>rapid change      | Single-increment<br>parametric estimation<br>models                                         |
| Prespecified Sequential | Platform base plus PPPIs                           | Prespecifiable full-capability<br>requirements | Emergent requirements or<br>rapid change      | COINCOMO or repeated<br>single-increment parametric<br>model estimation with IDPD           |
| Evolutionary Sequential | Small: Agile<br>Large: Evolutionary<br>Development | Adaptability to change                         | Easiest-first; late, costly<br>breakage       | Small: Planning-poker-type<br>Large: Parametric with<br>IDPD and Requirements<br>Volatility |
| Evolutionary Overlapped | COTS-intensive systems                             | Immaturity risk avoidance                      | Delay may be<br>noncompetitive                | Parametric with IDPD and<br>Requirements Volatility                                         |
| Evolutionary Concurrent | Mainstream product lines;<br>Systems of systems    | High assurance with rapid<br>change            | Highly coupled systems with very rapid change | COINCOMO with IDPD for<br>development; COSYSMO<br>for rebaselining                          |

IDPD: Incremental Development Productivity Decline, due to earlier increments breakage, increasing code base to integrate

**PPPIs: Pre-Planned Product Improvements** 

COINCOMO: COCOMO Incremental Development Model (COCOMO II book, Appendix B)

COSYSMO: Systems Engineering Cost Model (in-process COSYSMO book)

All Cost Estimation approaches also include expert-judgment cross-check.





# **Further Attributes of Future Challenges**

| Туре                        | Examples                                                                                                                           | Pros                                                                                                                        | Cons                                                                                                                                                                                                      | Cost Estimation                                                                                                                                                                                                                                                  |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Systems of<br>Systems       | <ul> <li>Directed: Future<br/>Combat Systems</li> <li>Acknowledged:<br/>Missile Defense<br/>Agency</li> </ul>                      | <ul> <li>Interoperability</li> <li>Rapid Observe-<br/>Orient-Decide-<br/>Act (OODA) loop</li> </ul>                         | <ul> <li>Often-conflicting partner priorities</li> <li>Change processing very complex</li> </ul>                                                                                                          | <ul> <li>Staged hybrid models</li> <li>Systems engineering: COSYSMO</li> <li>Multi-organization development costing</li> <li>Lead Systems integrator costing</li> <li>Requirements volatility effects</li> <li>Integration&amp;test: new cost drivers</li> </ul> |
| Model-Driven<br>Development | <ul> <li>Business 4<sup>th</sup>-<br/>generation<br/>languages (4GLs)</li> <li>Vehicle-model<br/>driven<br/>development</li> </ul> | <ul> <li>Cost savings</li> <li>User-<br/>development<br/>advantages</li> <li>Fewer error<br/>sources</li> </ul>             | <ul> <li>Multi-model composition<br/>incapabilities</li> <li>Model extensions for<br/>special cases (platform-<br/>payload)</li> <li>Brownfield complexities</li> <li>User-development V&amp;V</li> </ul> | <ul> <li>Models directives as 4GL<br/>source code</li> <li>Multi-model composition<br/>similar to COTS integration,<br/>Brownfield integration</li> </ul>                                                                                                        |
| Brownfield                  | <ul> <li>Legacy C4ISR<br/>System</li> <li>Net-Centric<br/>weapons platform</li> <li>Multicore-CPU<br/>upgrades</li> </ul>          | <ul> <li>Continuity of<br/>service</li> <li>Modernization of<br/>infrastructure</li> <li>Ease of<br/>maintenance</li> </ul> | <ul> <li>Legacy re-engineering<br/>often complex</li> <li>Mega-refactoring often<br/>complex</li> </ul>                                                                                                   | <ul> <li>Models for legacy re-<br/>engineering, mega-refactoring</li> <li>Reuse model for refactored<br/>legacy</li> </ul>                                                                                                                                       |





# Further Attributes of Future Challenges (Continued)

| Туре                       | Examples                                                                                                                                     | Pros                                                                                                                         | Cons                                                                                                                                                                                                             | Cost Estimation                                                                                                                                                                                                         |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ultrareliable<br>Systems   | <ul> <li>Safety-critical<br/>systems</li> <li>Security-critical<br/>systems</li> <li>High-<br/>performance real-<br/>time systems</li> </ul> | <ul> <li>System<br/>resilence,<br/>survivability</li> <li>Service-oriented<br/>usage<br/>opportunities</li> </ul>            | <ul> <li>Conflicts among<br/>attribute<br/>objectives</li> <li>Compatibility with<br/>rapid change</li> </ul>                                                                                                    | <ul> <li>Cost model extensions for added<br/>assurance levels</li> <li>Change impact analysis models</li> </ul>                                                                                                         |
| Competitive<br>Prototyping | <ul> <li>Stealth vehicle<br/>fly-offs</li> <li>Agent-based<br/>RPV control</li> <li>Combinations of<br/>challenges</li> </ul>                | <ul> <li>Risk buy-down</li> <li>Innovation<br/>modification</li> <li>In-depth<br/>exploration of<br/>alternatives</li> </ul> | <ul> <li>Competitor<br/>evaluation often<br/>complex</li> <li>Higher up-front<br/>cost         <ul> <li>But generally<br/>good ROI</li> </ul> </li> <li>Tech-leveling<br/>avoidance often<br/>complex</li> </ul> | <ul> <li>Competition preparation,<br/>management costing</li> <li>Evaluation criteria, scenarios, testbeds</li> <li>Competitor budget estimation</li> <li>Virtual, proof-of-principle, robust<br/>prototypes</li> </ul> |

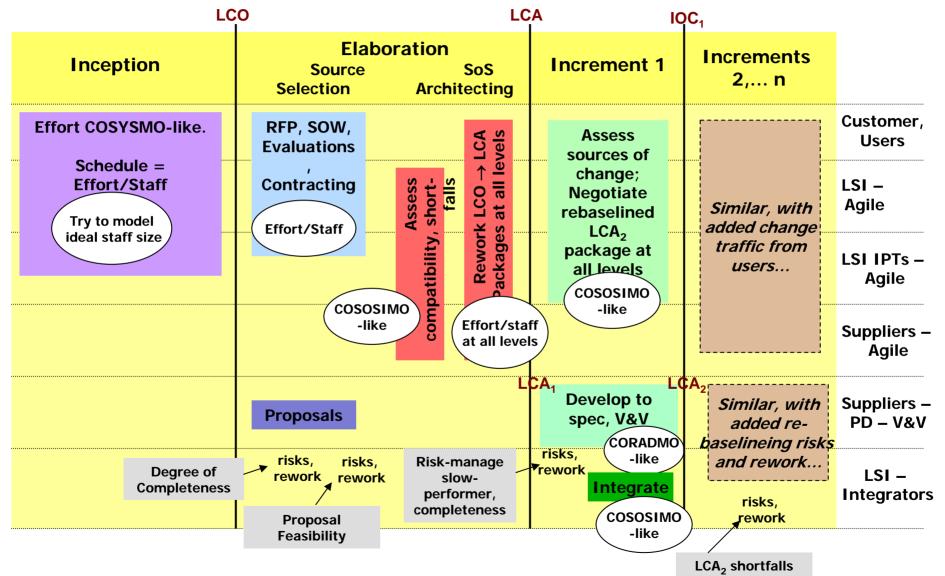




# **Next-Generation Estimation Challenges**

- Emergent requirements
  - Example: Virtual global collaboration support systems
  - Need to manage early concurrent engineering
- Rapid change
  - In competitive threats, technology, organizations, environment
- Net-centric systems of systems
  - Incomplete visibility and control of elements
- Model-driven, service-oriented, Brownfield systems
  - New phenomenology, counting rules
- Always-on, never-fail systems
  - Need to balance agility and discipline



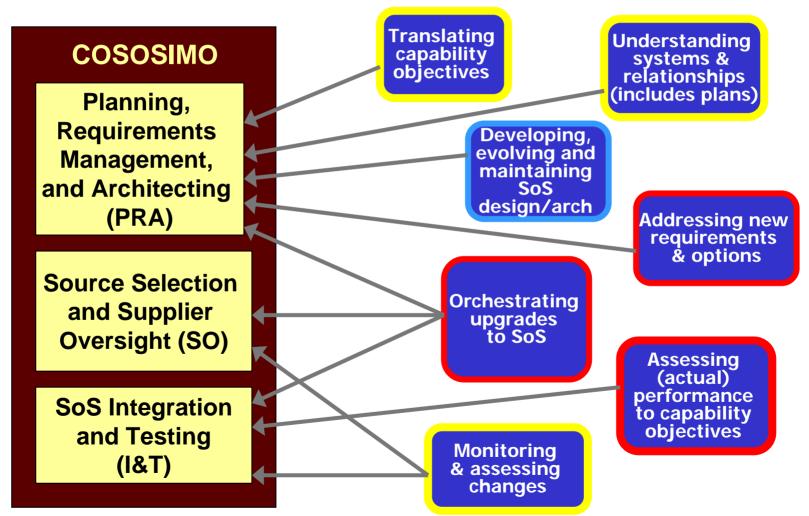



# **Net-Centric Systems of Systems Challenges**

- Need for rapid adaptation to change
  - See first, understand first, act first, finish decisively
- Built-in authority-responsibility mismatches
  - Increasing as authority decreases through Directed,
     Acknowledged, Collaborative, and Virtual SoS classes
    - Incompatible element management chains, legacy constraints, architectures, service priorities, data, operational controls, standards, change priorities...
- High priority on leadership skills, collaboration incentives, negotiation support such as cost models
  - SoS variety and complexity makes compositional cost models more helpful than one-size-fits-all models



#### Compositional approaches: Directed systems of systems




University of Southern California Center for Systems and Software Engineering





# SoSE Core Element Mapping to COSOSIMO Sub-models







#### **Comparison of Cost Model Parameters**

| Parameter Aspects         | COSYSMO                                                                                                                                                                                                                                                         | COSOSIMO                                                                                                                                                                                            |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Size drivers              | <ul> <li># of system requirements</li> <li># of system interfaces</li> <li># operational scenarios</li> <li># algorithms</li> </ul>                                                                                                                             | <ul> <li># of SoS requirements</li> <li># of SoS interface protocols</li> <li># of constituent systems</li> <li># of constituent system organizations</li> <li># operational scenarios</li> </ul>   |
| "Product" characteristics | Size/complexity<br>Requirements understanding<br>Architecture understanding<br>Level of service requirements<br># of recursive levels in design<br>Migration complexity<br>Technology risk<br>#/ diversity of platforms/installations<br>Level of documentation | Size/complexity<br>Requirements understanding<br>Architecture understanding<br>Level of service requirements<br><i>Component system maturity and stability</i><br><i>Component system readiness</i> |
| Process characteristics   | Process capability<br><i>Multi-site coordination</i><br>Tool support                                                                                                                                                                                            | Maturity of processes<br>Tool support<br><i>Cost/schedule compatibility</i><br>SoS risk resolution                                                                                                  |
| People characteristics    | Stakeholder team cohesion<br>Personnel/team capability<br>Personnel experience/continuity                                                                                                                                                                       | Stakeholder team cohesion<br>SoS team capability                                                                                                                                                    |



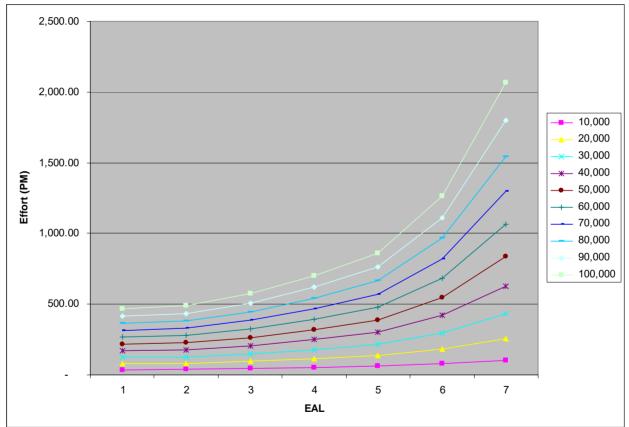


### Model-Driven, Service-Oriented, Brownfield Systems New phenomenology, counting rules

- Product generation from model directives
  - Treat as very high level language: count directives
- Model reuse feasibility, multi-model incompatibilities
  - Use Feasibility Evidence progress tracking measures
- Functional vs. service-oriented architecture mismatches
  - Part-of (one-many) vs. served-by (many-many)
- Brownfield legacy constraints, reverse engineering
  - Reverse-engineer legacy code to fit new architecture
  - Elaborate COSYSMO Migration Complexity cost driver
  - Elaborate COCOMO II reuse model for reverse engineering






- Consider using "weighted SLOC" as a productivity metric
- Some SLOC are "heavier to move into place" than others
  - And largely management uncontrollables
  - Examples: high values of COCOMO II cost drivers
    - RELY: Required Software Reliability
    - DATA: Database Size
    - CPLX: Software Complexity
    - DOCU: Required Documentation
    - RUSE: Required Development for Future Reuse
    - TIME: Execution Time Constraint
    - STOR: Main Storage Constraint
    - SCED: Required Schedule Compression
- Provides way to compare productivities across projects
  - And to develop profiles of project classes





#### **COSECMO Estimation Trends**

## Effort by Assurance Levels for Different Size Projects



- Plot of projects where only SECU & effort increasing drivers
- Efforts seem a little low based on values from Orange Book projects





# Conclusions

- Future trends imply need to concurrently address new estimation and management metrics challenges
  - Emergent requirements, rapid change, net-centric systems of systems, MDD/SOA/Brownfield, ultrahigh assurance
- Need to work out cost drivers, estimating relationships for new phenomena
  - Incremental Development Productivity Decline (IDPD)
  - Compositional approach for systems of systems
  - NDI, model, and service composability
  - Re-engineering, migration of legacy systems
  - Ultra-reliable systems development
  - Cost/schedule tradeoffs
- Need data for calibrating models





# References

- Boehm, B., "Some Future Trends and Implications for Systems and Software Engineering Processes", *Systems Engineering* 9(1), pp. 1-19, 2006.
- Boehm, B. and Lane J., "21st Century Processes for Acquiring 21st Century Software-Intensive Systems of Systems." *CrossTalk*: Vol. 19, No. 5, pp.4-9, 2006.
- Boehm, B., and Lane, J., "Using the ICM to Integrate System Acquisition, Systems Engineering, and Software Engineering," *CrossTalk*, October 2007, pp. 4-9.
- Boehm, B., Brown, A.W.. Clark, B., Madachy, R., Reifer, D., et al., Software Cost Estimation with COCOMO II, Prentice Hall, 2000.
- Department of Defense (DoD) Systems Engineering, Guide for Systems of Systems, June 2008.
- Department of Defense (DoD), Defense Acquisition Guidebook, version 1.6, <u>http://akss.dau.mil/dag/</u>, 2006.
- Department of Defense (DoD), Instruction 5000.2, Operation of the Defense Acquisition System, December 2008.
- Department of Defense (DoD), Systems Engineering Plan Preparation Guide, USD(AT&L), 2004.
- Galorath, D., and Evans, M., Software Sizing, Estimation, and Risk Management, Auerbach, 2006.
- Lane, J. and Boehm, B., "Modern Tools to Support DoD Software-Intensive System of Systems Cost Estimation, DACS State of the Art Report, also Tech Report USC-CSSE-2007-716
- Lane, J., Valerdi, R., "Synthesizing System-of-Systems Concepts for Use in Cost Modeling," Systems Engineering, Vol. 10, No. 4, December 2007.
- Madachy, R., "Cost Model Comparison," Proceedings 21<sup>st</sup>, COCOMO/SCM Forum, November, 2006, http://csse.usc.edu/events/2006/CIIForum/pages/program.html
- Maier, M., "Architecting Principles for Systems-of-Systems"; Systems Engineering, Vol. 1, No. 4 (pp 267-284).
- Northrop, L., et al., *Ultra-Large-Scale Systems: The Software Challenge of the Future*, Software Engineering Institute, 2006.
- Reifer, D., "Let the Numbers Do the Talking," CrossTalk, March 2002, pp. 4-8.
- Valerdi, R, Systems Engineering Cost Estimation with COSYSMO, Wiley, 2009 (to appear)





# List of Acronyms

| AA       | Assessment and Assimilation                           |
|----------|-------------------------------------------------------|
| AAF      | Adaptation Adjustment Factor                          |
| AAM      | Adaptation Adjustment Modifier                        |
| СОСОМО   | Constructive Cost Model                               |
| COSOSIMO | Constructive System of Systems Integration Cost Model |
| COSYSMO  | Constructive Systems Engineering Cost Model           |
| COTS     | Commercial Off-The-Shelf                              |
| CU       | Cone of Uncertainty                                   |
| DCR      | Development Commitment Review                         |
| DoD      | Department of Defense                                 |
| ECR      | Exploration Commitment Review                         |
| ESLOC    | Equivalent Source Lines of Code                       |
| EVMS     | Earned Value Management System                        |
| FCR      | Foundations Commitment Review                         |
| FDN      | Foundations, as in FDN Package                        |
| FED      |                                                       |
|          | Feasibility Evidence Description                      |
| GD       | General Dynamics                                      |
| GOTS     | Government Off-The-Shelf                              |





# List of Acronyms (continued)

- ICM Incremental Commitment Model
- IDPD Incremental Development Productivity Decline
- IOC Initial Operational Capability
- LCA Life Cycle Architecture
- LCO Life Cycle Objectives
- LMCO Lockheed Martin Corporation
- LSI Lead System Integrator
- MDA Model-Driven Architecture
- NDA Non-Disclosure Agreement
- NDI Non-Developmental Item
- NGC Northrop Grumman Corporation
- OC Operational Capability
- OCR Operations Commitment Review
- OO Object-Oriented
- OODA Observe, Orient, Decide, Act
- O&M Operations and Maintenance
- PDR Preliminary Design Review
- PM Program Manager





# List of Acronyms (continued)

- RFP Request for Proposal
- SAIC Science Applications international Corporation
- SLOC Source Lines of Code
- SoS System of Systems
- SoSE System of Systems Engineering
- SRDR Software Resources Data Report
- SSCM Systems and Software Cost Modeling
- SU Software Understanding
- SW Software
- SwE Software Engineering
- SysE Systems Engineering
- Sys Engr Systems Engineer
- S&SE Systems and Software Engineering
- ToC Table of Contents
- USD (AT&L) Under Secretary of Defense for Acquisition, Technology, and Logistics
- VCR Validation Commitment Review
- V&V Verification and Validation
- WBS Work Breakdown Structure