
Estimation Challenges for 21st Century Software Systems

Barry Boehm, Brad Clark, Thomas Tan
USC Center for Systems and Software Engineering

University of Southern California
Los Angeles, CA, USA

boehm@usc.edu, brad@software-metrics.com,
thomast@usc.edu

Raymond Madachy
Department of Systems Engineering

Naval Postgraduate School
Monterey, CA, USA
rjmadach@nps.edu

Wilson Rosa
Information Technology Division
Air Force Cost Analysis Agency

Arlington, VA, USA
Wilson.Rosa@pentagon.af.mil

I. INTRODUCTION
Several future trends will present significant challenges

for cost estimation of 21st century software systems.
Prominent among these trends are:

1. Rapid change, emergent requirements, and
evolutionary development

2. Net-centric systems of systems
3. Model-Driven and Non-Developmental Item

(NDI)-intensive systems
4. Ultrahigh software system assurance
5. Legacy maintenance and Brownfield development
6. Agile and Lean/Kanban development.

This paper summarizes our ongoing US Government-
sponsored analysis of these trends. We discuss the
implications for cost estimation capabilities. Methods are
shown to handle some of these effects, but many software
variabilities remain uncovered.

II. RAPID CHANGE, EMERGENT REQUIREMENTS, AND
EVOLUTIONARY DEVELOPMENT

21st century software systems will encounter
increasingly rapid change in their objectives, constraints, and
priorities. This change will be necessary due to increasingly
rapid changes in their competitive threats, technology,
organizations, leadership priorities, and environments. It is
thus increasingly infeasible to provide precise size and cost
estimates if the systems’ requirements are emergent rather
than pre-specifiable. This has led to increasing use of
strategies such as incremental and evolutionary development,
and to experiences with associated new sizing and costing
phenomena such as the Incremental Development
Productivity Decline. It also implies that measuring the
system’s size by counting the number of source lines of code
(SLOC) in the delivered system may be an underestimate, as
a good deal of software may be developed and deleted before
delivery due to changing priorities.

There are three primary options for handling these sizing
and estimation challenges. The first is to improve the ability

to estimate requirements volatility during development via
improved data collection and analysis, such as the use of
code counters able to count numbers of SLOC added,
modified, and deleted during development [1]. If such data
is unavailable, the best one can do is to estimate ranges of
requirements volatility.

For incremental and evolutionary development projects,
the second option is to treat the earlier increments as reused
software, and to apply reuse factors to them (such as the
percent of the design, code, and integration modified,
perhaps adjusted for degree of software understandability
and programmer unfamiliarity [2]). This can be done either
uniformly across the set of previous increments, of by having
these factors vary by previous increment or by subsystem.
This will produce an equivalent-SLOC (ESLOC) size for the
effect of modifying the previous increments, to be added to
the size of the new increment in estimating effort for the new
increment. In tracking the size of the overall system, it is
important to remember that these ESLOC are not actual lines
of code to be included in the size of the next release.

The third option is to include an Incremental
Development Productivity Decline (IDPD) factor, or even
multiple factors varying by increment or subsystem. The
IDPD factor is the percent of productivity decline between
successive increments i and i+1 such that Productivity i+1 =
(1 - IDPD %) * Productivity i.

Unlike hardware, where unit costs tend to decrease with
added production volume, the unit costs of later software
increments tend to increase, due to previous-increment
breakage and usage feedback, and due to increased
integration and test effort. Thus, using hardware-driven or
traditional software-driven estimation methods for later
increments will lead to underestimates and overruns in both
cost and schedule.

A relevant example was a large defense software system
that had the following characteristics, where effort is
measured in Person-Months (PM):

• 5 builds, 7 years, $100M
• Build 1 producibility over 300 SLOC/PM

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

• Build 5 producibility under 150 SLOC/PM
o Including Build 1-4 breakage, integration,

rework
o 318% change in requirements across all

builds.
A factor-of-2 decrease in producibility across four new

builds corresponds to an average build-to-build IDPD factor
of 19%. A recent quantitative IDPD analysis of a smaller
software system yielded an IDPD of 14%, with significant
variations from increment to increment [3]. Similar IDPD
phenomena have been found for large commercial software
such as the multi-year slippages in the delivery of
Microsoft’s Word for Windows [4] and Windows Vista, and
for large agile-development projects that assumed a zero
IDPD factor [5].

Based on experience with similar projects, the following
impact causes and ranges per increment are conservatively
stated in Table 1.

TABLE I. IDPD EFFORT DRIVERS

Less effort due to more experienced personnel, assuming
reasonable initial experience level
 Variation depending on personnel turnover rates 5-20%

More effort due to code base growth
 Breakage, maintenance of full code base 20-40%

 Diseconomies of scale in development, integration 10-25%

 Requirements volatility, user requests 10-25%

In the best case, there would be 20% more effort (from

above -20+20+10+10); for a 4-build system, the IDPD
would be 6%. In the worst case, there would be 85% more
effort (from above 40+25+25-5); for a 4-build system, the
IDPD would be 23%.

With fixed staff size in any case, there would be either a
schedule increase or incomplete builds. The difference
between 6% and 23% may not look too serious, but the
cumulative effect on schedule across a number of builds is
very serious.

A simplified illustrative model relating productivity
decline to number of builds needed to reach 4M ESLOC
across 4 builds follows. Assume that the two year Build 1
production of 1M SLOC can be developed at 200 SLOC/PM,
so it will need 208 developers (500 PM/ 24 mo.). Further
assuming that constant staff size of 208 for all builds, the
analysis in Figure 1 shows the impact on the amount of
software delivered per build and the resulting effect on the
overall delivery schedule as a function of the IDPD factor.

Many incremental development cost estimates assume an
IDPD of zero, and an on-time delivery of 4M SLOC in 4
builds. However, as the IDPD factor increases and the
staffing level remains constant, the productivity decline per
build stretches the schedule out to twice as long for an IDPD
of 20% as seen in Figure 1.

Thus, it is important to understand the IDPD factor and
its influence when doing incremental or evolutionary
development. Ongoing research indicates that the magnitude
of the IDPD factor may vary by type of application

(infrastructure software having higher IDPDs since it tends
to be tightly coupled and touches everything; applications
software having lower IDPDs if it is architected to be loosely
coupled), or by recency of the build (older builds may be
more stable). Further data collection and analysis would be
very helpful in improving the understanding of the IDPD
factor.

Figure 1. Effects of IDPD on Number of Builds to achieve 4M SLOC

III. 2. NET-CENTRIC SYSTEMS OF SYSTEMS (NCSOS)
If one is developing software components for use in a

NCSoS, changes in the interfaces between the component
systems and independently-evolving NCSoS-internal or
NCSoS-external systems will add further effort. The amount
of effort may vary by the tightness of the coupling among the
systems; the complexity, dynamism, and compatibility of
purpose of the independently-evolving systems; and the
degree of control that the NCSoS protagonist has over the
various component systems. The latter ranges from Directed
SoS (strong control), through Acknowledged (partial control)
and Collaborative (shared interests) SoSs, to Virtual SoSs
(no guarantees) [6].

For estimation, one option is to use requirements
volatility as a way to assess increased effort. Another is to
use existing models such as COSYSMO [7] to estimate the
added coordination effort across the NCSoS [8]. A third
approach is to have separate models for estimating the
systems engineering, NCSoS component systems
development, and NCSoS component systems integration to
estimate the added effort [7].

IV. 3. MODEL-DRIVEN AND NON-DEVELOPMENTAL ITEM
(NDI)-INTENSIVE DEVELOPMENT

Model-driven development and Non-Developmental Item
(NDI)-intensive development are two approaches that enable
large portions of software-intensive systems to be generated
from model directives or provided by NDIs such as
commercial-off-the-shelf (COTS) components, open source
components, and purchased services such as Cloud services.
Figure 2 shows trends in the growth of COTS-based
applications (CBAs) [10] in the top graph, and services-
intensive systems [11] in the area of web-based e-services
below it.

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

0
10
20
30
40
50
60
70
80

1997 1998 1999 2000 2001 2002

Year

Pe
rc

en
ta

ge

Figure 2. COTS and Services-Intensive Systems Growth in USC E-
Services Projects

Such applications are highly cost-effective, but present

several sizing and cost estimation challenges:
• Model directives generate source code in Java, C++,

or other third-generation languages, but unless the
generated SLOC are going to be used for system
maintenance, their size as counted by code counters
should not be used for development or maintenance
cost estimation.

• Counting model directives is possible for some types
of model-driven development, but presents
significant challenges for others (e.g., GUI builders).

• Except for customer-furnished or open-source
software that is expected to be modified, the size of
NDI components should not be used for estimating.

• A significant challenge is to find appropriately
effective size measures for such NDI components.
One approach is to use the number and complexity
of their interfaces with each other or with the
software being developed. Another is to count the
amount of glue-code SLOC being developed to
integrate the NDI components, with the proviso that
such glue code tends to be about 3 times as
expensive per SLOC as regularly-developed code
[12]. A similar approach is to use the interface
elements of function points for sizing [13].

• A further challenge is that much of the effort in
using NDI is expended in assessing candidate NDI
components and in tailoring them to the given
application. Some initial guidelines for estimating
such effort are provided in the COCOTS model [14].

• Another challenge is that the effects of COTS and
Cloud-services evolution are generally
underestimated during software maintenance. COTS

products generally provide significant new releases
on the average of about every 10 months, and
generally become unsupported after three new
releases. With Cloud services, one does not have the
option to decline new releases, and updates occur
more frequently. One way to estimate this source of
effort is to consider it as a form of requirements
volatility.

• Another serious concern is that functional size
measures such as function points, use cases, or
requirements will be highly unreliable until it is
known how much of the functionality is going to be
provided by NDI components or Cloud services.

V. 4. ULTRAHIGH SOFTWARE SYSTEMS ASSURANCE
The increasing criticality of software to the safety of

transportation vehicles, medical equipment, or financial
resources; the security of private or confidential information;
and the assurance of “24/7” Internet, web, or Cloud services
will require further investments in the development and
certification of software than are provided by most current
software-intensive systems.

While it is widely held that ultrahigh-assurance software
will substantially raise software–project cost, different
models vary in estimating the added cost. For example, [15]
estimates that engineering highly–secure software will
increase costs by a factor of 8; the 1990’s Softcost-R model
estimates a factor of 3.43 [16]; the SEER model uses a
similar value of 3.47 [13].

A recent experimental extension of the COCOMO II
model called COSECMO used the 7 Evaluated Assurance
Levels (EALs) in the ISO Standard Common Criteria for
Information Technology Security Evaluation (CC) [ISO
1999], and quoted prices for certifying various EAL security
levels to provide an initial estimation model in this context
[18]. Its added-effort estimates were a function of both EAL
level and software size: its multipliers for a 5000-SLOC
secure system were 1.50 for EAL 4 and 8.8 for EAL 7.

A further sizing challenge for ultrahigh-assurance
software is that it requires more functionality for such
functions as security audit, communication, cryptographic
support, data protection, etc. These may be furnished by
NDI components or may need to be developed for special
systems.

VI. 5. LEGACY MAINTENANCE AND BROWNFIELD
DEVELOPMENT

Fewer and fewer software-intensive systems have the
luxury of starting with a clean sheet of paper or whiteboard
on which to create a new Greenfield system. Most software-
intensive systems are already in maintenance; The
International Data Corporation estimates that there are
roughly 200 billion SLOC in service worldwide [19]. Also,
most new applications need to consider continuity of service
from the legacy system(s) they are replacing. Many such
applications involving incremental development have failed

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

because there was no way to separate out the incremental
legacy system capabilities that were being replaced. Thus,
such applications need to use a Brownfield development
approach that concurrently architect the new version and its
increments, while re-engineering the legacy software to
accommodate the incremental phase-in of the new
capabilities [20] [21] [22].

Traditional software maintenance sizing models have
determined an equivalent SLOC size by multiplying the size
of the legacy system by its Annual Change Traffic ACT)
fraction (% of SLOC added + % of SLOC modified)/100.
The resulting equivalent size is used to determine a nominal
cost of a year of maintenance, which is then adjusted by
maintenance-oriented effort multipliers. These are generally
similar or the same as those for development, except for
some, such as required reliability and degree of
documentation, in which larger development investments
will yield relative maintenance savings. Some models such
as SEER [13] include further maintenance parameters such
as personnel and environment differences. An excellent
summary of software maintenance estimation is in [20].

However, as legacy systems become larger and larger (a
full-up BMW contains roughly 100 million SLOC [24]), the
ACT approach becomes less stable. The difference between
an ACT of 1% and an ACT of 2% when applied to 100
million SLOC is 1 million SLOC. A recent revision of the
COCOMO II software maintenance model sizes a new
release as ESLOC = 2*(Modified SLOC) + Added SLOC +
0.5* (Deleted SLOC). The coefficients are rounded values
determined from the analysis of data from 24 maintenance
activities [Nguyen, 2010], in which the modified, added, and
deleted SLOC were obtained from a code counting tool.
This model can also be used to estimate the equivalent size
of re-engineering legacy software in Brownfield software
development. At first, the estimates of legacy SLOC
modified, added, and deleted will be very rough, and can be
refined as the design of the maintenance modifications or
Brownfield re-engineering is determined.

VII. 6. AGILE AND LEAN/KANBAN DEVELOPMENT
The difficulties of software maintenance estimation can

often be mitigated by using lean workflow management
techniques such as Kanban [25]. In Kanban, individual
maintenance upgrades are given Kanban cards (Kanban is
the Japanese word for card; the approach originated with the
Toyota Production System). Workflow management is
accomplished by limiting the number of cards introduced
into the development process, and pulling the cards into the
next stage of development (design, code, test, release) when
open capacity is available (each stage has a limit of the
number of cards it can be processing at a given time). Any
buildups of upgrade queues waiting to be pulled forward are
given management attention to find and fix bottleneck root
causes or to rebalance the manpower devoted to each stage
of development. A key Kanban principle is to minimize
work in progress.

An advantage of Kanban is that if upgrade requests are
relatively small and uniform, that there is no need to estimate

their required effort; they are pulled through the stages as
capacity is available, and if the capacities of the stages are
well-tuned to the traffic, work gets done on schedule.
However, if a too-large upgrade is introduced into the
system, it is likely to introduce delays as it progresses
through the stages. Thus, some form of estimation is
necessary to determine right-size upgrade units, but it does
not have to be precise as long as the workflow management
pulls the upgrade through the stages. For familiar systems,
performers will be able to right-size the units. For Kanban in
less-familiar systems, and for sizing builds in agile methods
such as Scrum, group consensus techniques such as Planning
Poker [26] or Wideband Delphi [27] can generally serve this
purpose.

The key point is to recognize that estimation of
knowledge work can never be perfect, and to create
development approaches that compensate for variations in
estimation accuracy. Kanban is one such; another is the
agile methods’ approach of timeboxing or schedule-as-
independent-variable (SAIV), in which maintenance
upgrades or incremental development features are
prioritized, and the increment architected to enable dropping
of features to meet a fixed delivery date (With Kanban,
prioritization occurs in determining which of a backlog of
desired upgrade features gets the next card).

Such prioritization is a form of value-based software
engineering, in that the higher-priority features can be
flowed more rapidly through Kanban stages [24], or in
general given more attention in defect detection and removal
via value-based inspections or testing [28] [29]. Another
important point is that the ability to compensate for rough
estimates does not mean that data on project performance
does not need to be collected and analyzed. It is even more
important as a sound source of continuous improvement and
change adaptability efforts.

VIII. 7. PUTTING IT ALL TOGETHER AT THE LARGE-
PROJECT OR ENTERPRISE LEVEL

The biggest challenge of all is that the six challenges
above need to be addressed concurrently. Suboptimizing on
individual-project agility runs the risks of easiest-first lock-in
to unscalable or unsecurable systems, or of producing
numerous incompatible stovepipe applications.
Suboptimizing on security assurance and certification runs
the risks of missing early-adopter market windows, of
rapidly responding to competitive threats, or of creating
inflexible, user-unfriendly systems.

One key strategy for addressing such estimation and
performance challenges is to recognize that large systems
and enterprises are composed of subsystems that have
different need priorities and can be handled by different
estimation and performance approaches. Real-time, safety-
critical control systems and security kernels need high
assurance, but are relatively stable. GUIs need rapid
adaptability to change, but with GUI-builder systems, can
largely compensate for lower assurance levels via rapid
fixes. A key point is that for most enterprises and large

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

systems, there is no one-size-fits-all method of sizing,
estimating, and performing.

This implies a need for guidance on what kind of process
to use for what kind of system or subsystem, and on what

kinds of sizing and estimation capabilities fit what kinds of
processes. A start toward such guidance is provided in Table
2 [29].

TABLE II. SITUATION-DEPENDENT PROCESSES AND ESTIMATION APPROACHES

Type Examples Pros Cons Cost Estimation
Single Step Stable; High

Assurance
Pre-specifiable full-

capability
requirements

Emergent
requirements or

rapid change

Single-increment parametric estimation models

Prespecified
Sequential

Platform base plus
PPPIs

Pre-specifiable full-
capability

requirements

Emergent
requirements or

rapid change

COINCOMO or repeated single-increment parametric
model estimation with IDPD

Evolutionary
Sequential

Small: Agile
Large: Evolutionary

Development

Adaptability to
change

Easiest-first; late,
costly breakage

Small: Planning poker-type
Large: Parametric with IDPD and Requirements

Volatility
Evolutionary
Overlapped

COTS-intensive
systems

Immaturity risk
avoidance

Delay may be non
competitive

Parametric with IDPD and Requirements Volatility

Evolutionary
Concurrent

Mainstream product
lines;

Systems of systems

High assurance with
rapid change

Highly coupled
systems with very

rapid change

COINCOMO with IDPD for development;
COSYSMO for rebaselining

Table 2 summarizes the traditional single-step waterfall
process plus several forms of incremental development, each
of which meets different competitive challenges and which
are best served by different cost estimation approaches.

The time phasing of each form is expressed in terms of
the increment 1, 2, 3, … content with respect to the Rational
Unified Process (RUP) phases of Inception, Elaboration,
Construction, and Transition (IECT) in Figure 3.

The profiles in Figure 3 are representative cost model
outputs for these phases. They show estimated staffing
levels over time using the COCOMO II default effort and
schedule phase distributions for RUP [2]. However, the
Evolutionary Concurrent process has the Inception and
Elaboration phases for the next increment stretched to be
coincident with the current increment.

It becomes complicated for estimation models to
calculate effort and schedule per phase per iteration for all
the cases in Figure 3. For example, in the incremental
processes there are across-increment work dependencies to
account for that become even more complex with
overlapping phases.

The Single Step model is the traditional waterfall model,
in which the requirements are pre-specified, and the system
is developed to the requirements in a single increment.
Single-increment parametric estimation models,
complemented by expert judgment, are best for this process.

The Prespecified Sequential incremental development
model is not evolutionary. It just splits up the development
in order to field an early Initial Operational Capability,
followed by several pre-planned product Improvements
(P3Is). When requirements are identifiable and stable, it
enables a strong, predictable process. When requirements
are emergent and/or rapidly changing, it often requires very
expensive rework when it needs to undo architectural
commitments. Cost estimation can be performed by
sequential application of single-step parametric models plus
the use of an IDPD factor, or by parametric model extensions

supporting the estimation of increments, including options
for increment overlap and breakage of existing increments,
such as the COINCOMO extension of COCOMO II.

Figure 3. Lifecycle Process Phasing for Cost Estimation

The Evolutionary Sequential model rapidly develops an
initial operational capability and upgrades it based on
operational experience. Pure agile software development fits

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

this model: if something is wrong, it will be fixed in 30 days
in the next release. Rapid fielding also fits this model for
larger or hardware-software systems. Its strength is getting
quick-response capabilities in the field. For pure agile, it can
fall prey to an easiest-first set of architectural commitments
which break when, for example, it tries to add security or
scalability as a new feature in a later increment. For rapid
fielding, it may be expensive to keep the development team
together while waiting for usage feedback, but it may be
worth it. For small agile projects, group consensus
techniques such as Planning Poker are best; for larger
projects, parametric models with an IDPD factor are best.

Evolutionary Overlapped covers the special case of
deferring the next increment until critical enablers such as
desired new technology, anticipated new commercial product
capabilities, or needed funding becomes available or mature
enough to be added.

Evolutionary Concurrent has the systems engineers
handling the change traffic and rebaselining the plans and
specifications for the next increment, while keeping the
development stabilized for the current increment.

REFERENCES
[1] V. Nguyen, "Improved Size and Effort Estimation Models for

Software Maintenance," PhD Dissertation, Department of Computer
Science, University of Southern California, December 2010,
http://csse.usc.edu/csse/TECHRPTS/by_author.html#Nguyen

[2] B. Boehm, C. Abts, W. Brown, S. Chulani, B. Clark, E. Horowitz, R.
Madachy, D. Reifer, and B. Steece, Software Cost Estimation with
COCOMO II, Upper Saddle River, NJ: Prentice-Hall, 2000.

[3] T. Tan, Q. Li, B. Boehm, Y. Yang, M. He, and R. Moazeni,
"Productivity Trends in Incremental and Iterative Software
Development," Proceedings, ACM-IEEE ESEM 2009.

[4] G. Gill, and M. Iansiti, “Microsoft Corporation: Office Business
Unit,” Harvard Business School Case Study 691-033, 1994.

[5] A. Elssamadisy, and G. Schalliol, “Recognizing and Responding to
‘Bad Smells’ in Extreme Programming”, Proceedings, ICSE 2002,
pp. 617-622.

[6] Systems Engineering Guide for System of Systems, Version 1.0,
OUSD(AT&L), June 2008.

[7] R. Valerdi, The Constructive Systems Engineering Cost Model
(COSYSMO), VDM Verlag, 2008.

[8] J. Lane, "Cost Model Extensions to Support Systems Engineering
Cost Estimation for Complex Systems and Systems of Systems," 7th
Annual Conference on Systems Engineering Research 2009 (CSER
2009)

[9] J. Lane, and B. Boehm, "Modern Tools to Support DoD Software
Intensive System of Systems Cost Estimation - A DACS State-of-the-
Art Report," August 2007.

[10] Y. Yang, J. Bhuta, B. Boehm, and D. Port, "Value-Based Processes
for COTS-Based Applications," IEEE Software, Volume 22, Issue 4,
July-August 2005, pp. 54-62.

[11] S. Koolmanojwong, and B. Boehm, "The Incremental Commitment
Model Process Patterns for Rapid-Fielding Projects,"Proceedings,
ICSP 2010, Paderborn, Germany.

[12] V. Basili and B. Boehm, "COTS-Based Systems Top 10 List," IEEE
Computer, Vol. 34(5): 91-93, May, 2001.

[13] D. Galorath, and M. Evans, Software Sizing, Estimation, and Risk
Management, Auerbach Publications, 2006.

[14] C. Abts, "Extending the COCOMO II Software Cost Model to
Estimate Effort and Schedule for Software Systems Using
Commercial-off-the-Shelf (COTS) Software Components: The
COCOTS Model," PhD Dissertation, Department of Industrial and
Systems Engineering, University of Southern California, May 2004.

[15] M. Bisignani, and T. Reed, “Software Security Costing Issues”,
COCOMO Users' Group Meeting. 1988. Los Angeles: USC Center
for Software Engineering.

[16] D. Reifer, Security: A Rating Concept for COCOMO II. 2002. Reifer
Consultants, Inc.

[17] ISO JTC 1/SC 27, Evaluation Criteria for IT Security, in Part 1:
Introduction and general model, International Organization for
Standardization (ISO), 1999.

[18] E. Colbert, and B. Boehm, "Cost Estimation for Secure Software &
Systems," ISPA / SCEA 2008 Joint International Conference, June
2008.

[19] H. Price, and J. Morley, “Create, Apply, and Amplify: A Story of
Technology Development,” SEI Monitor, February 2009, page 2.

[20] R. Hopkins, and K. Jenkins, Eating the IT Elephant: Moving from
Greenfield Development to Brownfield, IBM Press.

[21] G. Lewis, et al., “SMART: Analyzing the Reuse Potential of Legacy
Components on a Service-Oriented Architecture Environment,”
CMU/SEI-2008-TN-008.

[22] B. Boehm, “Applying the Incremental Commitment Model to
Brownfield System Development,” Proceedings, CSER 2009.

[23] R. Stutzke, Estimating Software-Intensive Systems, Upper Saddle
River, NJ: Addison Wesley, 2005.

[24] M. Broy, “Seamless Method- and Model-based Software and Systems
Engineering,” The Future of Software Engineering, Springer, 2010.

[25] D.Anderson, Kanban, Blue Hole Press, 2010.
[26] M. Cohn, Agile Estimating and Planning, Prentice Hall, 2005.
[27] B. Boehm, Software Engineering Economics. Englewood Cliffs, NJ,

Prentice-Hall, 1981.
[28] K. Lee, and B. Boehm, "Empirical Results from an Experiment on

Value-Based Review (VBR) Processes," Proceedings, ISESE 2005,
September 2005.

[29] Q. Li, B. Boehm, Y. Yang, and Q. Wang, "A Value-Based Review
Process for Prioritizing Artifacts", Proceedings, ICSSP 2010.

[30] B. Boehm, and J. Lane, “"DoD Systems Engineering and
Management Implications for Evolutionary Acquisition of Major
Defense Systems," Proceedings, CSER 2010.

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

	I. Introduction
	II. Rapid Change, Emergent Requirements, and Evolutionary Development
	III. 2. Net-centric Systems of Systems (NCSoS)
	IV. 3. Model-Driven and Non-Developmental Item (NDI)-Intensive Development
	V. 4. Ultrahigh Software Systems Assurance
	VI. 5. Legacy Maintenance and Brownfield Development
	VII. 6. Agile and Lean/Kanban Development
	VIII. 7. Putting It All Together at the Large-Project or Enterprise Level
	References

