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I. INTRODUCTION 
Several future trends will present significant challenges 

for cost estimation of 21st century software systems.  
Prominent among these trends are: 

1. Rapid change, emergent requirements, and 
evolutionary development 

2. Net-centric systems of systems 
3. Model-Driven and Non-Developmental Item 

(NDI)-intensive systems 
4. Ultrahigh software system assurance 
5. Legacy maintenance and Brownfield development 
6. Agile and Lean/Kanban development. 

This paper summarizes our ongoing US Government-
sponsored analysis of these trends. We discuss the 
implications for cost estimation capabilities.  Methods are 
shown to handle some of these effects, but many software 
variabilities remain uncovered. 

II. RAPID CHANGE, EMERGENT REQUIREMENTS, AND 
EVOLUTIONARY DEVELOPMENT 

21st century software systems will encounter 
increasingly rapid change in their objectives, constraints, and 
priorities.  This change will be necessary due to increasingly 
rapid changes in their competitive threats, technology, 
organizations, leadership priorities, and environments.  It is 
thus increasingly infeasible to provide precise size and cost 
estimates if the systems’ requirements are emergent rather 
than pre-specifiable.  This has led to increasing use of 
strategies such as incremental and evolutionary development, 
and to experiences with associated new sizing and costing 
phenomena such as the Incremental Development 
Productivity Decline.  It also implies that measuring the 
system’s size by counting the number of source lines of code 
(SLOC) in the delivered system may be an underestimate, as 
a good deal of software may be developed and deleted before 
delivery due to changing priorities. 

There are three primary options for handling these sizing 
and estimation challenges.  The first is to improve the ability 

to estimate requirements volatility during development via 
improved data collection and analysis, such as the use of 
code counters able to count numbers of SLOC added, 
modified, and deleted during development [1].  If such data 
is unavailable, the best one can do is to estimate ranges of 
requirements volatility.   

For incremental and evolutionary development projects, 
the second option is to treat the earlier increments as reused 
software, and to apply reuse factors to them (such as the 
percent of the design, code, and integration modified, 
perhaps adjusted for degree of software understandability 
and programmer unfamiliarity [2]).  This can be done either 
uniformly across the set of previous increments, of by having 
these factors vary by previous increment or by subsystem.  
This will produce an equivalent-SLOC (ESLOC) size for the 
effect of modifying the previous increments, to be added to 
the size of the new increment in estimating effort for the new 
increment.  In tracking the size of the overall system, it is 
important to remember that these ESLOC are not actual lines 
of code to be included in the size of the next release. 

The third option is to include an Incremental 
Development Productivity Decline (IDPD) factor, or even 
multiple factors varying by increment or subsystem.  The 
IDPD factor is the percent of productivity decline between 
successive increments i and i+1 such that Productivity i+1 = 
(1 - IDPD %) * Productivity i. 

Unlike hardware, where unit costs tend to decrease with 
added production volume, the unit costs of later software 
increments tend to increase, due to previous-increment 
breakage and usage feedback, and due to increased 
integration and test effort.  Thus, using hardware-driven or 
traditional software-driven estimation methods for later 
increments will lead to underestimates and overruns in both 
cost and schedule. 

A relevant example was a large defense software system 
that had the following characteristics, where effort is 
measured in Person-Months (PM): 

• 5 builds, 7 years, $100M 
• Build 1 producibility over 300 SLOC/PM 
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• Build 5 producibility under 150 SLOC/PM 
o Including Build 1-4 breakage, integration, 

rework 
o 318% change in requirements across all 

builds.  
A factor-of-2 decrease in producibility across four new 

builds corresponds to an average build-to-build IDPD factor 
of 19%.  A recent quantitative IDPD analysis of a smaller 
software system yielded an IDPD of 14%, with significant 
variations from increment to increment [3].  Similar IDPD 
phenomena have been found for large commercial software 
such as the multi-year slippages in the delivery of 
Microsoft’s Word for Windows [4] and Windows Vista, and 
for large agile-development projects that assumed a zero 
IDPD factor [5].  

Based on experience with similar projects, the following 
impact causes and ranges per increment are conservatively 
stated in Table 1. 

TABLE I.  IDPD EFFORT DRIVERS 

Less effort due to more experienced personnel, assuming 
reasonable initial experience level  
   Variation depending on personnel turnover rates 5-20% 

More effort due to code base growth  
   Breakage, maintenance of full code base  20-40%

   Diseconomies of scale in development, integration  10-25%

   Requirements volatility, user requests  10-25%

 
In the best case, there would be 20% more effort (from 

above -20+20+10+10); for a 4-build system, the IDPD 
would be 6%.  In the worst case, there would be 85% more 
effort (from above 40+25+25-5); for a 4-build system, the 
IDPD would be 23%. 

With fixed staff size in any case, there would be either a 
schedule increase or incomplete builds.  The difference 
between 6% and 23% may not look too serious, but the 
cumulative effect on schedule across a number of builds is 
very serious.   

A simplified illustrative model relating productivity 
decline to number of builds needed to reach 4M ESLOC 
across 4 builds follows.  Assume that the two year Build 1 
production of 1M SLOC can be developed at 200 SLOC/PM, 
so it will need 208 developers (500 PM/ 24 mo.).  Further 
assuming that constant staff size of 208 for all builds, the 
analysis in Figure 1 shows the impact on the amount of 
software delivered per build and the resulting effect on the 
overall delivery schedule as a function of the IDPD factor.   

Many incremental development cost estimates assume an 
IDPD of zero, and an on-time delivery of 4M SLOC in 4 
builds.  However, as the IDPD factor increases and the 
staffing level remains constant, the productivity decline per 
build stretches the schedule out to twice as long for an IDPD 
of 20% as seen in Figure 1. 

Thus, it is important to understand the IDPD factor and 
its influence when doing incremental or evolutionary 
development.  Ongoing research indicates that the magnitude 
of the IDPD factor may vary by type of application 

(infrastructure software having higher IDPDs since it tends 
to be tightly coupled and touches everything; applications 
software having lower IDPDs if it is architected to be loosely 
coupled), or by recency of the build (older builds may be 
more stable).  Further data collection and analysis would be 
very helpful in improving the understanding of the IDPD 
factor.    

 
 

Figure 1.  Effects of IDPD on Number of Builds to achieve 4M SLOC  

III. 2.  NET-CENTRIC SYSTEMS OF SYSTEMS (NCSOS) 
If one is developing software components for use in a 

NCSoS, changes in the interfaces between the component 
systems and independently-evolving NCSoS-internal or 
NCSoS-external systems will add further effort.  The amount 
of effort may vary by the tightness of the coupling among the 
systems; the complexity, dynamism, and compatibility of 
purpose of the independently-evolving systems; and the 
degree of control that the NCSoS protagonist has over the 
various component systems.  The latter ranges from Directed 
SoS (strong control), through Acknowledged (partial control) 
and Collaborative (shared interests) SoSs, to Virtual SoSs 
(no guarantees) [6]. 

For estimation, one option is to use requirements 
volatility as a way to assess increased effort.  Another is to 
use existing models such as COSYSMO [7] to estimate the 
added coordination effort across the NCSoS [8].  A third 
approach is to have separate models for estimating the 
systems engineering, NCSoS component systems 
development, and NCSoS component systems integration to 
estimate the added effort [7]. 

IV. 3.  MODEL-DRIVEN AND NON-DEVELOPMENTAL ITEM 
(NDI)-INTENSIVE DEVELOPMENT 

Model-driven development and Non-Developmental Item 
(NDI)-intensive development are two approaches that enable 
large portions of software-intensive systems to be generated 
from model directives or provided by NDIs such as 
commercial-off-the-shelf (COTS) components, open source 
components, and purchased services such as Cloud services.  
Figure 2 shows trends in the growth of COTS-based 
applications (CBAs) [10] in the top graph, and services-
intensive systems [11] in the area of web-based e-services 
below it. 
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Figure 2.  COTS and Services-Intensive Systems Growth in USC E-
Services Projects 

 
Such applications are highly cost-effective, but present 

several sizing and cost estimation challenges: 
• Model directives generate source code in Java, C++, 

or other third-generation languages, but unless the 
generated SLOC are going to be used for system 
maintenance, their size as counted by code counters 
should not be used for development or maintenance 
cost estimation. 

• Counting model directives is possible for some types 
of model-driven development, but presents 
significant challenges for others (e.g., GUI builders). 

• Except for customer-furnished or open-source 
software that is expected to be modified, the size of 
NDI components should not be used for estimating. 

• A significant challenge is to find appropriately 
effective size measures for such NDI components.  
One approach is to use the number and complexity 
of their interfaces with each other or with the 
software being developed.  Another is to count the 
amount of glue-code SLOC being developed to 
integrate the NDI components, with the proviso that 
such glue code tends to be about 3 times as 
expensive per SLOC as regularly-developed code 
[12]. A similar approach is to use the interface 
elements of function points for sizing [13]. 

• A further challenge is that much of the effort in 
using NDI is expended in assessing candidate NDI 
components and in tailoring them to the given 
application.  Some initial guidelines for estimating 
such effort are provided in the COCOTS model [14].  

• Another challenge is that the effects of COTS and 
Cloud-services evolution are generally 
underestimated during software maintenance.  COTS 

products generally provide significant new releases 
on the average of about every 10 months, and 
generally become unsupported after three new 
releases.  With Cloud services, one does not have the 
option to decline new releases, and updates occur 
more frequently.  One way to estimate this source of 
effort is to consider it as a form of requirements 
volatility. 

• Another serious concern is that functional size 
measures such as function points, use cases, or 
requirements will be highly unreliable until it is 
known how much of the functionality is going to be 
provided by NDI components or Cloud services. 

 

V. 4.  ULTRAHIGH SOFTWARE SYSTEMS ASSURANCE 
The increasing criticality of software to the safety of 

transportation vehicles, medical equipment, or financial 
resources; the security of private or confidential information; 
and the assurance of “24/7” Internet, web, or Cloud services 
will require further investments in the development and 
certification of software than are provided by most current 
software-intensive systems.   

While it is widely held that ultrahigh-assurance software 
will substantially raise software–project cost, different 
models vary in estimating the added cost. For example, [15] 
estimates that engineering highly–secure software will 
increase costs by a factor of 8; the 1990’s Softcost-R model 
estimates a factor of 3.43 [16]; the SEER model uses a 
similar value of 3.47 [13].  

A recent experimental extension of the COCOMO II 
model called COSECMO used the 7 Evaluated Assurance 
Levels (EALs) in the ISO Standard Common Criteria for 
Information Technology Security Evaluation (CC) [ISO 
1999], and quoted prices for certifying various EAL security 
levels to provide an initial estimation model in this context 
[18].  Its added-effort estimates were a function of both EAL 
level and software size: its multipliers for a 5000-SLOC 
secure system were 1.50 for EAL 4 and 8.8 for EAL 7. 

A further sizing challenge for ultrahigh-assurance 
software is that it requires more functionality for such 
functions as security audit, communication, cryptographic 
support, data protection, etc.  These may be furnished by 
NDI components or may need to be developed for special 
systems. 

  

VI. 5.  LEGACY MAINTENANCE AND BROWNFIELD 
DEVELOPMENT 

Fewer and fewer software-intensive systems have the 
luxury of starting with a clean sheet of paper or whiteboard 
on which to create a new Greenfield system.  Most software-
intensive systems are already in maintenance; The 
International Data Corporation estimates that there are 
roughly 200 billion SLOC in service worldwide [19].  Also, 
most new applications need to consider continuity of service 
from the legacy system(s) they are replacing.  Many such 
applications involving incremental development have failed 
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because there was no way to separate out the incremental 
legacy system capabilities that were being replaced.  Thus, 
such applications need to use a Brownfield development 
approach that concurrently architect the new version and its 
increments, while re-engineering the legacy software to 
accommodate the incremental phase-in of the new 
capabilities [20] [21] [22]. 

Traditional software maintenance sizing models have 
determined an equivalent SLOC size by multiplying the size 
of the legacy system by its Annual Change Traffic ACT) 
fraction (% of SLOC added + % of SLOC modified)/100.  
The resulting equivalent size is used to determine a nominal 
cost of a year of maintenance, which is then adjusted by 
maintenance-oriented effort multipliers.  These are generally 
similar or the same as those for development, except for 
some, such as required reliability and degree of 
documentation, in which larger development investments 
will yield relative maintenance savings.  Some models such 
as SEER [13] include further maintenance parameters such 
as personnel and environment differences.  An excellent 
summary of software maintenance estimation is in [20]. 

However, as legacy systems become larger and larger (a 
full-up BMW contains roughly 100 million SLOC [24]), the 
ACT approach becomes less stable.  The difference between 
an ACT of 1% and an ACT of 2% when applied to 100 
million SLOC is 1 million SLOC.  A recent revision of the 
COCOMO II software maintenance model sizes a new 
release as ESLOC = 2*(Modified SLOC) + Added SLOC + 
0.5* (Deleted SLOC).  The coefficients are rounded values 
determined from the analysis of data from 24 maintenance 
activities [Nguyen, 2010], in which the modified, added, and 
deleted SLOC were obtained from a code counting tool.  
This model can also be used to estimate the equivalent size 
of re-engineering legacy software in Brownfield software 
development.  At first, the estimates of legacy SLOC 
modified, added, and deleted will be very rough, and can be 
refined as the design of the maintenance modifications or 
Brownfield re-engineering is determined. 

 

VII. 6.  AGILE AND LEAN/KANBAN DEVELOPMENT 
The difficulties of software maintenance estimation can 

often be mitigated by using lean workflow management 
techniques such as Kanban [25].  In Kanban, individual 
maintenance upgrades are given Kanban cards (Kanban is 
the Japanese word for card; the approach originated with the 
Toyota Production System).   Workflow management is 
accomplished by limiting the number of cards introduced 
into the development process, and pulling the cards into the 
next stage of development (design, code, test, release) when 
open capacity is available (each stage has a limit of the 
number of cards it can be processing at a given time).   Any 
buildups of upgrade queues waiting to be pulled forward are 
given management attention to find and fix bottleneck root 
causes or to rebalance the manpower devoted to each stage 
of development.  A key Kanban principle is to minimize 
work in progress. 

An advantage of Kanban is that if upgrade requests are 
relatively small and uniform, that there is no need to estimate 

their required effort; they are pulled through the stages as 
capacity is available, and if the capacities of the stages are 
well-tuned to the traffic, work gets done on schedule.  
However, if a too-large upgrade is introduced into the 
system, it is likely to introduce delays as it progresses 
through the stages.  Thus, some form of estimation is 
necessary to determine right-size upgrade units, but it does 
not have to be precise as long as the workflow management 
pulls the upgrade through the stages.  For familiar systems, 
performers will be able to right-size the units.  For Kanban in 
less-familiar systems, and for sizing builds in agile methods 
such as Scrum, group consensus techniques such as Planning 
Poker [26] or Wideband Delphi [27] can generally serve this 
purpose. 

The key point is to recognize that estimation of 
knowledge work can never be perfect, and to create 
development approaches that compensate for variations in 
estimation accuracy.  Kanban is one such; another is the 
agile methods’ approach of timeboxing or schedule-as-
independent-variable (SAIV), in which maintenance 
upgrades or incremental development features are 
prioritized, and the increment architected to enable dropping 
of features to meet a fixed delivery date (With Kanban, 
prioritization occurs in determining which of a backlog of 
desired upgrade features gets the next card).   

Such prioritization is a form of value-based software 
engineering, in that the higher-priority features can be 
flowed more rapidly through Kanban stages [24], or in 
general given more attention in defect detection and removal 
via value-based inspections or testing [28] [29].  Another 
important point is that the ability to compensate for rough 
estimates does not mean that data on project performance 
does not need to be collected and analyzed.  It is even more 
important as a sound source of continuous improvement and 
change adaptability efforts.  

 

VIII. 7.  PUTTING IT ALL TOGETHER AT THE LARGE-
PROJECT OR ENTERPRISE LEVEL 

The biggest challenge of all is that the six challenges 
above need to be addressed concurrently.  Suboptimizing on 
individual-project agility runs the risks of easiest-first lock-in 
to unscalable or unsecurable systems, or of producing 
numerous incompatible stovepipe applications.  
Suboptimizing on security assurance and certification runs 
the risks of missing early-adopter market windows, of 
rapidly responding to competitive threats, or of creating 
inflexible, user-unfriendly systems. 

One key strategy for addressing such estimation and 
performance challenges is to recognize that large systems 
and enterprises are composed of subsystems that have 
different need priorities and can be handled by different 
estimation and performance approaches.  Real-time, safety-
critical control systems and security kernels need high 
assurance, but are relatively stable.  GUIs need rapid 
adaptability to change, but with GUI-builder systems, can 
largely compensate for lower assurance levels via rapid 
fixes.  A key point is that for most enterprises and large 
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systems, there is no one-size-fits-all method of sizing, 
estimating, and performing.   

This implies a need for guidance on what kind of process 
to use for what kind of system or subsystem, and on what 

kinds of sizing and estimation capabilities fit what kinds of 
processes.  A start toward such guidance is provided in Table 
2 [29]. 

TABLE II.  SITUATION-DEPENDENT PROCESSES AND ESTIMATION APPROACHES 

Type Examples Pros Cons Cost Estimation 
Single Step Stable; High 

Assurance 
Pre-specifiable full-

capability 
requirements 

Emergent 
requirements or 

rapid change 

Single-increment parametric estimation models 

Prespecified 
Sequential 

Platform base plus 
PPPIs 

Pre-specifiable full-
capability 

requirements 

Emergent 
requirements or 

rapid change 

COINCOMO or repeated single-increment parametric 
model estimation with IDPD 

Evolutionary 
Sequential 

Small: Agile 
Large: Evolutionary 

Development 

Adaptability  to 
change 

Easiest-first; late, 
costly breakage 

Small: Planning poker-type 
Large: Parametric with IDPD and Requirements 

Volatility  
Evolutionary 
Overlapped  

COTS-intensive 
systems 

Immaturity risk 
avoidance 

Delay may be non 
competitive 

Parametric with IDPD and Requirements Volatility 

Evolutionary 
Concurrent 

Mainstream product 
lines;  

Systems of systems 

High assurance with 
rapid change 

Highly coupled 
systems with very 

rapid change 

COINCOMO with IDPD for development; 
COSYSMO for rebaselining 

 

Table 2 summarizes the traditional single-step waterfall 
process plus several forms of incremental development, each 
of which meets different competitive challenges and which 
are best served by different cost estimation approaches.  

The time phasing of each form is expressed in terms of 
the increment 1, 2, 3, … content with respect to the Rational 
Unified Process (RUP) phases of Inception, Elaboration, 
Construction, and Transition (IECT) in Figure 3.  

The profiles in Figure 3 are representative cost model 
outputs for these phases.  They show estimated staffing 
levels over time using the COCOMO II default effort and 
schedule phase distributions for RUP [2]. However, the 
Evolutionary Concurrent process has the Inception and 
Elaboration phases for the next increment stretched to be 
coincident with the current increment. 

It becomes complicated for estimation models to 
calculate effort and schedule per phase per iteration for all 
the cases in Figure 3.  For example, in the incremental 
processes there are across-increment work dependencies to 
account for that become even more complex with 
overlapping phases. 

The Single Step model is the traditional waterfall model, 
in which the requirements are pre-specified, and the system 
is developed to the requirements in a single increment.  
Single-increment parametric estimation models, 
complemented by expert judgment, are best for this process.  

The Prespecified Sequential incremental development 
model is not evolutionary.  It just splits up the development 
in order to field an early Initial Operational Capability, 
followed by several pre-planned product Improvements 
(P3Is).  When requirements are identifiable and stable, it 
enables a strong, predictable process.  When requirements 
are emergent and/or rapidly changing, it often requires very 
expensive rework when it needs to undo architectural 
commitments.  Cost estimation can be performed by 
sequential application of single-step parametric models plus 
the use of an IDPD factor, or by parametric model extensions 

supporting the estimation of increments, including options 
for increment overlap and breakage of existing increments, 
such as the COINCOMO extension of COCOMO II.  

 
 

Figure 3.  Lifecycle Process Phasing for Cost Estimation 

The Evolutionary Sequential model rapidly develops an 
initial operational capability and upgrades it based on 
operational experience.  Pure agile software development fits 
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this model: if something is wrong, it will be fixed in 30 days 
in the next release.  Rapid fielding also fits this model for 
larger or hardware-software systems.  Its strength is getting 
quick-response capabilities in the field.  For pure agile, it can 
fall prey to an easiest-first set of architectural commitments 
which break when, for example, it tries to add security or 
scalability as a new feature in a later increment.  For rapid 
fielding, it may be expensive to keep the development team 
together while waiting for usage feedback, but it may be 
worth it.  For small agile projects, group consensus 
techniques such as Planning Poker are best; for larger 
projects, parametric models with an IDPD factor are best.  

Evolutionary Overlapped covers the special case of 
deferring the next increment until critical enablers such as 
desired new technology, anticipated new commercial product 
capabilities, or needed funding becomes available or mature 
enough to be added.   

Evolutionary Concurrent has the systems engineers 
handling the change traffic and rebaselining the plans and 
specifications for the next increment, while keeping the 
development stabilized for the current increment. 

 
 

REFERENCES 
[1] V. Nguyen,  "Improved Size and Effort Estimation Models for 

Software Maintenance," PhD Dissertation, Department of Computer 
Science, University of Southern California, December 2010, 
http://csse.usc.edu/csse/TECHRPTS/by_author.html#Nguyen 

[2] B. Boehm, C. Abts, W. Brown, S. Chulani, B. Clark, E. Horowitz, R. 
Madachy, D. Reifer, and B. Steece, Software Cost Estimation with 
COCOMO II, Upper Saddle River, NJ: Prentice-Hall, 2000. 

[3] T. Tan,  Q. Li, B. Boehm, Y. Yang, M. He, and R. Moazeni, 
"Productivity Trends in Incremental and Iterative Software 
Development," Proceedings, ACM-IEEE ESEM 2009. 

[4] G. Gill, and M. Iansiti, “Microsoft Corporation: Office Business 
Unit,” Harvard Business School Case Study 691-033, 1994. 

[5] A. Elssamadisy, and G. Schalliol, “Recognizing and Responding to 
‘Bad Smells’ in Extreme Programming”, Proceedings, ICSE 2002, 
pp. 617-622. 

[6] Systems Engineering Guide for System of Systems, Version 1.0, 
OUSD(AT&L), June 2008. 

[7] R. Valerdi, The Constructive Systems Engineering Cost Model 
(COSYSMO), VDM Verlag, 2008. 

[8] J. Lane, "Cost Model Extensions to Support Systems Engineering 
Cost Estimation for Complex Systems and Systems of Systems," 7th 
Annual Conference on Systems Engineering Research 2009 (CSER 
2009) 

[9] J. Lane, and B. Boehm, "Modern Tools to Support DoD Software 
Intensive System of Systems Cost Estimation - A DACS State-of-the-
Art Report," August 2007. 

[10] Y. Yang,  J. Bhuta, B. Boehm, and D. Port, "Value-Based Processes 
for COTS-Based Applications," IEEE Software, Volume 22, Issue 4, 
July-August 2005, pp. 54-62. 

[11] S. Koolmanojwong, and B. Boehm, "The Incremental Commitment 
Model Process Patterns for Rapid-Fielding Projects,"Proceedings, 
ICSP 2010, Paderborn, Germany.  

[12] V. Basili and B. Boehm, "COTS-Based Systems Top 10 List," IEEE 
Computer, Vol. 34(5): 91-93, May, 2001. 

[13] D. Galorath, and M. Evans, Software Sizing, Estimation, and Risk 
Management, Auerbach Publications, 2006. 

[14] C. Abts, "Extending the COCOMO II Software Cost Model to 
Estimate Effort and Schedule for Software Systems Using 
Commercial-off-the-Shelf (COTS) Software Components: The 
COCOTS Model," PhD Dissertation, Department of Industrial and 
Systems Engineering, University of Southern California, May 2004.  

[15] M. Bisignani, and  T. Reed, “Software Security Costing Issues”, 
COCOMO Users' Group Meeting. 1988. Los Angeles: USC Center 
for Software Engineering. 

[16] D. Reifer, Security: A Rating Concept for COCOMO II. 2002. Reifer 
Consultants, Inc.  

[17] ISO JTC 1/SC 27, Evaluation Criteria for IT Security, in Part 1: 
Introduction and general model, International Organization for 
Standardization (ISO), 1999. 

[18] E. Colbert, and B. Boehm, "Cost Estimation for Secure Software & 
Systems," ISPA / SCEA 2008 Joint International Conference, June 
2008.  

[19] H. Price, and J. Morley, “Create, Apply, and Amplify: A Story of 
Technology Development,” SEI Monitor, February 2009, page 2. 

[20] R. Hopkins, and K. Jenkins, Eating the IT Elephant: Moving from 
Greenfield Development to Brownfield, IBM Press. 

[21] G. Lewis, et al., “SMART: Analyzing the Reuse Potential of Legacy 
Components on a Service-Oriented Architecture Environment,” 
CMU/SEI-2008-TN-008. 

[22] B. Boehm, “Applying the Incremental Commitment Model to 
Brownfield System Development,” Proceedings, CSER 2009. 

[23] R. Stutzke, Estimating Software-Intensive Systems, Upper Saddle 
River, NJ: Addison Wesley, 2005. 

[24] M. Broy, “Seamless Method- and Model-based Software and Systems 
Engineering,” The Future of Software Engineering, Springer, 2010. 

[25] D.Anderson, Kanban, Blue Hole Press, 2010. 
[26] M. Cohn, Agile Estimating and Planning, Prentice Hall, 2005. 
[27] B. Boehm, Software Engineering Economics.  Englewood Cliffs, NJ, 

Prentice-Hall, 1981. 
[28] K. Lee, and B. Boehm, "Empirical Results from an Experiment on 

Value-Based Review (VBR) Processes," Proceedings, ISESE 2005, 
September 2005.  

[29] Q. Li, B. Boehm, Y. Yang, and Q. Wang, "A Value-Based Review 
Process for Prioritizing Artifacts", Proceedings, ICSSP 2010. 

[30] B. Boehm, and J. Lane, “"DoD Systems Engineering and 
Management Implications for Evolutionary Acquisition of Major 
Defense Systems," Proceedings,  CSER 2010. 

 

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com


	I. Introduction
	II. Rapid Change, Emergent Requirements, and Evolutionary Development
	III. 2.  Net-centric Systems of Systems (NCSoS)
	IV. 3.  Model-Driven and Non-Developmental Item (NDI)-Intensive Development
	V. 4.  Ultrahigh Software Systems Assurance
	VI. 5.  Legacy Maintenance and Brownfield Development
	VII. 6.  Agile and Lean/Kanban Development
	VIII. 7.  Putting It All Together at the Large-Project or Enterprise Level
	References




