
University of Southern California
Center for Systems and Software Engineering

Productivity Decline in
Directed System of Systems

Software Development

Ramin Moazeni
A. Winsor Brown

Barry Boehm

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

University of Southern California
Center for Systems and Software Engineering

Table of Contents
• Incremental Commitment Model (ICM)

– Overview
– Multi-Build Software and Overlap across builds
– Directed Systems of Systems
– Systems

• Incremental Development Productivity Decline
(IDPD)
– Overview
– Cost Drivers
– Effect on number of increments

• Conclusion

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

University of Southern California
Center for Systems and Software Engineering

Incremental Commitment Model (ICM)

For Systems/Acquisitions, including
• ICM Processes for Systems
• Systems

For Software Subsystems
• Parallels to Rational Unified Process (RUP)
• Differences from Systems

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

University of Southern California
Center for Systems and Software Engineering

ICM LC Processes for Systems

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

University of Southern California
Center for Systems and Software Engineering

ICM-Sw/RUP Activity/Process Model

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

University of Southern California
Center for Systems and Software Engineering

Why Multiple Build Software Systems
Simplest: Early Functionality in the hands of ALL

users
• Architecture/Core plus some functionality
• Implies Full Qualification/Acceptance Sw Testing each

software build so systems can go into Integration &
Test earlier

Increasingly Complex Systems
• Multiple, diverse "platforms"
• Different "foci" of functionality (in each build)
• Network Centric Systems Operation
• Evolution/federation of legacy systems
• System of Systems by design

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

University of Southern California
Center for Systems and Software Engineering

Overlaps Across Software Builds

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

University of Southern California
Center for Systems and Software Engineering

ICM Showing Multi-Build Software in a System

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

University of Southern California
Center for Systems and Software Engineering

What is a “System of Systems”
• Very large systems developed by creating a framework or

architecture to integrate constituent systems.
• SoS constituent systems independently developed and managed

– New or existing systems in various stages of development/evolution
– May include a significant number of COTS products
– Have their own purpose
– Can dynamically come and go from SoS

• SoS exhibits emergent behavior not otherwise achievable by
component systems

• Typical domains
– Business: Enterprise-wide and cross-enterprise integration to support core

business enterprise operations across functional and geographical areas
– Military: Dynamic communications infrastructure to support operations in a

constantly changing, sometimes adversarial, environment

Based on Mark Maier’s SoS definition [Maier, 1998]

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

University of Southern California
Center for Systems and Software Engineering

Types of “System of Systems”
• Virtual [Maier, 1998]

– Lacks a central management authority and a clear SoS purpose
– Often ad hoc and may use a service-oriented architecture where the

constituent systems are not necessarily known

• Collaborative [Maier, 1998]
– Constituent system engineering teams work together more or less voluntarily

to fulfill agreed upon central purposes
– No SoSE team to guide or manage activities of constituent systems

• Acknowledged [Dahmann, 2008]
– Have recognized objectives, a designated manager, and resources at the

SoS level (SoSE team)
– Constituent systems maintain their independent ownership, objectives,

funding, and development approaches

• Directed [Maier, 2008]
– SoS centrally managed by a government, corporate, or Lead System

Integrator (LSI) and built to fulfill specific purposes
– Constituent systems maintain ability to operate independently, but evolution

subordinated to centrally managed purpose

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

University of Southern California
Center for Systems and Software Engineering

ICM Showing Multi-Build Software in DSOS

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

University of Southern California
Center for Systems and Software Engineering

MBASE/RUP/ICM-Sw Concurrent Activities

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

University of Southern California
Center for Systems and Software Engineering

Incremental Development
Productivity Decline (IDPD)

• Overview
– The “Incremental Productivity Decline” (IDPD) factor represents the

percentage of decline in software producibility from one increment to
the next.

– The decline is due to factors such as previous-increment breakage
and usage feedback, increased integration and testing effort.

– Another source of productivity decline is that maintenance of reused
previous build software is not based on equivalent lines of software
credited during the previous build, but on the full amount of reused
software.

• Build 1: 200 KSLOC new, 200K Reused@20% yields a
240 K ESLOC “count” for estimation models.

• Build 2: there are 400 KSLOC of Build 1 to maintain and integrate
– Such phenomena may cause the IDPD factor to be higher for some

builds and lower for others.

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

University of Southern California
Center for Systems and Software Engineering

Incremental Development
Productivity Decline (IDPD)

• Example: Site Defense BMD Software
– 5 builds, 7 years, $100M
– Build 1 productivity over 300 SLOC/person month
– Build 5 productivity under 150 SLOC/PM

• Including Build 1-4 breakage, integration, rework
• 318% change in requirements across all builds
• IDPD factor=20% productivity decrease per build

– Similar trends in later unprecedented systems
– Not unique to DoD: key source of Windows Vista

delays

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

University of Southern California
Center for Systems and Software Engineering

IDPD Ranges

• Some savings: more experienced personnel (5-
20%)
– Depending on personnel turnover rates

• Some increases: code base growth, diseconomies
of scale, requirements volatility, user requests
– Breakage, maintenance of full code base (20-40%)
– Diseconomies of scale in development, integration (10-

25%)
– Requirements volatility; user requests (10-25%)

• Best case: 20% more effort (IDPD=6%)
• Worst case: 85% (IDPD=23%)

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

University of Southern California
Center for Systems and Software Engineering

Effects of IDPD on
Number of Increments

• Model relating productivity decline
to number of builds needed to reach
8M SLOC Full Operational Capability

• Assumes Build 1 production of 2M
SLOC @ 100 SLOC/PM
– 20000 PM/ 24 mo. = 833

developers
– Constant staff size for all builds

• Analysis varies the productivity
decline per build
– Extremely important to determine

the incremental development
productivity decline (IDPD) factor
per build

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

University of Southern California
Center for Systems and Software Engineering

Conclusion

• Staffing stability helps to improve team cohesion and
developer experience, thus provide positive
contribution to productivity outcome

• Design deficiency and code breakage causes
productivity declines
– If the original design is insufficient to accommodate additional

modules, and a re-architecting effort was necessary to put this
project back on track

– Inserting new code into the previous build adds effort to read,
analyze, and test both the new and old code in order to ensure
nothing is broken, this extra effort may be mitigated by
experienced staff

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

University of Southern California
Center for Systems and Software Engineering

Q & A

• Questions?
• Comments?
• Thank you very much

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

