Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

A New Software Estimating Framework:
25 Years and Thousands of Projects Later

Mike Ross
President & CEO
r2estimating, LLC
7755 E. Evening Glow Dr.
Scottsdale, AZ 85262-1295
480-488-8366
mike.ross@r2estimating.com
http://www.r2estimating.com

L2pbstract—It’s about time we in the software development community revisit the assumptions,
relationships, and flexibility contained in our currently-available software estimating models.
Most of the current models still implement fundamental relationships that are based on at least
25 years old data and assumptions. In the meantime, data from many thousands of projects have
since been collected and offer an opportunity to revisit old assumptions and relationships. This
paper documents the basis, assumptions, and derivations behind a set of general software effort,
duration, and defects estimating relationships that are based on the notion that software construc-
tion is the cumulative effect of people doing work (effort) over some duration (period of elapsed
calendar time) that produces a desired software product (size) and unwanted byproducts (de-
fects). This set of relationships is derived from several evidently-good correlations, the primary
three being: 1) effort generally increases with increasing size, 2) duration generally increases
with increasing effort, and 3) effort generally increases with increasing defects. This derivation
ultimately yields three limited tradeoff relationships: one between effort and duration, one be-
tween cost and duration, and one between defects and duration.

TABLE OF CONTENTS

R N =10] o0 ox i 1o] N P 2
2. OBSERVATIONS AND HYPOTHESEScccittttiiitieeeiiiiitiieeeeee e s s s ssnbbreeeeseesssssasassaeeseessssssssrsssessens 5
3. DEFINING EFFORT, DURATION, SIZE, AND PRODUCTIVITY .iiioctitiiiiiee et ssivrrreen e 9
4, EFFORT-DURATION TRADEOFF RELATIONSHIPcoiiitttiieieeeeesiiiitireeee e e e s s seiinrneeesee e s s snnnnnnes 10
5. DESCRIBING A PARTICULAR EFFORT-DURATION SOLUTIONcvttiiiiiieeeiiiiriiieee e ee s ssvsneens 15
6. MINIMUM DURATION 11titiiiiei it ittt e e e e et ssitbbreee e s e e s st ssabbbaeeeseessssssbbbaeessaeesssassstbbaseeeeeesssnsssrrees 18
7. MMINIMUM EFFORT Loutttiiiiiiii ittt bttt e s s s saab bt ae e s s s e s s s s bt bbb e e e s e e e s s saaabbbbe e e e s e e s s s ssbbrrees 21
T B = = =l o T OO PURRRRPPPP 24
9. SUMMARY AND CONCLUSION. ...uttttiiiiiiiiiiittbirirsie s e st isibbrseesssesssssssbbssssssaesssssssbtbssssssesssssssssssens 30
REFERENCES.......ciittttttttteeetiiiitttreeeeeessssiastbssaeeseessssasbsbseeeaeesssass b b baseesaessssasbbbbseeeeeesssasstbaeeseeeesssines 32
=L@ 112y =] = N P PRRPRTRPRPRNS 32

1 © 2007 r2Estimating, LLC. All rights reserved.
2Rev D, April 9, 2007

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

1. INTRODUCTION

Purpose

The purpose of this paper is to document the basis, assumptions, and derivations behind a set of
general software effort, duration, and defects estimating relationships that are based on the no-
tion that software construction is the cumulative effect of people doing work (effort) over some
duration (period of elapsed calendar time) that produces a desired software product (size) and
undesired byproducts (defects).

Scope

The derivations, assumptions, and resulting model described by this paper establish relationships
between size, efficiency, defect vulnerability, effort, duration, and defects and are henceforth
collectively referred to as the r2 Software Estimating Framework (r2SEF)™ and are imple-

mented in the r2ESTIMATOR™ estimating tool°.

Background

Most of our current software estimating models still implement fundamental relationships that
are based on at least 25 years old data and assumptions. In the meantime, data from many thou-
sands of projects have since been collected and offer an opportunity to revisit old assumptions
and relationships. To claim that this new data continues to “re-validate” these old assumptions
and relationships is to claim that software development as a process is static and is to ignore its
evolution with respect to management techniques, team behavior, host and target platforms, de-
velopment methodologies, functionality abstraction, etc. In fact, analysis of this new data against
these old relationships suggests that the underlying old assumptions are inappropriately restric-
tive. There are aspects of the old models that are held constant; the new data suggesting that
these aspects should be variable according to the particular organization proposing to do the
work and the type of project being proposed; i.e., one size does not necessarily fit all.

Current Model Types

To facilitate discussion of software estimating models, we suggest the following categorization
scheme which was inspired by Jensen?, introduced by Ross®, and updated to accommodate the
findings of this paper.

Type 0—Dart board, dice, roulette wheel, tarot cards, crystal ball, Ouija™ board.

Type 0.5—Engineering judgment.

3 r2ESTIMATOR™ is developed and distributed by r2ESTIMATING®, LLC; http://www.r2estimating.com.

* This categorization was inspired by and is very similar to that found in [6]; the difference is this categorization’s
emphasis on the existence of an effort-time tradeoff relationship as a type criteria.

1111 p. 2

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

Type 1—A univariate relationship that assumes total construction effort E. to be directly pro-
portional to a linear function of effective software size S, where the constant of proportionality

@ represents construction average productivity® (effective software size per unit of effort) and
the optional offset ¢ represents fixed (i.e., size-independent) effort.

EC=i+c (1)
w

Type 2—A pair of univariate independent power relationships: the first assumes total construc-
tion effort E. to be directly proportional to a power function of effective software size S, and

the second assumes total construction duration t. to be directly proportional to a power function
of construction effort E. where the constants of proportionality y, and y, represent complexity
scale factors’ (e.g., COCOMO [1], and derivatives).

Ec o f,(S.) and t; < f,(E) (2)
where

f,(x)=x* and f, (x)=x*

. . (3)
S Eo =4S and t, = y,EL

Type 3—A bivariate power relationship that assumes construction average productivity
@ =S, /E; isinversely proportional to a power function of the project’s maximum staffing rate®

2

& the maximum staffing rate assumed to be B = K/t.> where K is total life cycle effort
and is assumed to be E_./0.3839. The constant of proportionality c, represents an efficiency

scale factor” sometimes referred to as effective technology or process productivity (e.g., Jensen
[5], Putnam [10], and derivatives).

® Source of the ubiquitous lines per day and lines of code per person-month metrics.

" cOCOMO uses a system of units that measures effective software size in source lines of code (SLOC), effort in
person-months, and duration in calendar months.

8 This assumption is based on observations made by Norden [8] and elaborated for software development by Put-
nam [10] that suggest both construction and life cycle staffing follow the probability density function form of the
Rayleigh distribution. This assumption implies, as can be seen by the function’s first derivative (rate function), that
the project’s maximum staffing rate occurs at project start and is equal to life cycle effort divided by the square of
construction duration.

% Jensen [5] and Putnam [10] both use a system of units that measures effective software size in source lines of code
(SLOC), effort in person-years, and duration in calendar years.

3

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

wm; where f (x) = x*

f ()
o=c, F&la (4)

max

i a
SEM oD o E. :(—Se](Hj tc_(12aj

© ° T 0.3839%, 0.3839°C,

Type 4—A bivariate relationship that assumes the product of power expressions for both con-
struction effort E. and construction duration t. to be proportional to a power expression for

effective software size S, where the reciprocal of the constant of proportionality is assumed to
be an efficiency scale factor and where k,_ resolves the system of units being used; its value

being unity when effort is measured in person-weeks and duration is measured in calendar
weeks.

1
wer o _ Se Se | e
E. Etc‘=k orEC:{k j tc(] (5)

The remainder of this paper describes the derivation of a Type 4 model hereinafter referred to as
the r2 Software Estimating Framework (r2SEF).

Note that the Type 2 form can be converted to an instantiation of the Type 4 form by multiplica-
tively combining the two resultant equations in Equation (3).

Ec =Zl(se)a1 and t. zlz(Ec)az

W) (1 1 (6)
Ec[lal]tc[il] —(;Mz)[aﬂ s, or £, | Xz)f] >
L)
C
This Type 2 instantiation of Type 4 implies
1-a, 1 1
a, = and o, =— and 77 oc —————— (7)
) 2 t (7(17(2)[aij

Note also that the Type 3 form (resultant Equation (4)) can be viewed as an instantiation of the
Type 4 form where the exponents on effort and duration are constrained by the Rayleigh-based
assumption that construction average productivity is inversely proportional to a power function
of the project’s maximum staffing rate.

This Type 3 instantiation of Type 4 implies

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

o =1-aand ¢, =2a and 7 « 0.3839°¢, (8)

where for Jensen [5] a=0.5 and for Putnam [10] a=0.6.

2. OBSERVATIONS AND HYPOTHESES

Fundamental Observations

Intuition, personal experience, and analysis of historical project data (effort, duration, size, and
defects) using ordinary least squares (OLS) regression in log-log space yields the following ob-
servations:

¢ No free software—Effort (and hence cost) increases monotonically as a function of in-
creasing size (see Figure 1 below).

Company X Avionics Projects

Effort vs Effective Size

100000

H[H] (Power) =
r’=0.85 R*=0.78
-

10000 4

1000 1

Effort (person-weeks)

100 A

10 T — T T — T T
1000 10000 100000 1000000

Effective Size (SLOC)

Figure 1. Effort Increases as Size Increases'®

1012 is the square of the Pearson product-moment correlation coefficient between log(x) and log(y). R? is the square

of the Pearson product-moment correlation coefficient between the actual y;’s and the estimated y;’s (f(x;)’s), in this
case assuming a y-intercept of zero. [3] p. 94.

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

e No instant software—Duration increases monotonically as a function of increasing size
(see Figure 2 below).

Company X Avionics Projects

Duration vs Effective Size
1000 1

[H] (Power)
r’=0.64 R*=0.34 o=

100 A

Duration (weeks)

10 T — T T — T T ————T
1000 10000 100000 1000000
Effective Size (SLOC)

Figure 2. Duration Increases as Size Increases

¢ No perfect software—Effort increases monotonically as a function of increasing defect
count (see Figure 3 below).

Company X Avionics Projects

Effort vs Defects
100000

p[H] (Power) et
r’=0.91 R?*=0.63 o

10000 4

Effort (person-weeks)

1000 4~

10 100 1000
Defects Remaining at Delivery (count)

Figure 3. Effort Increases as Defects Increase

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

e Smaller teams are more productive—Productivity increases monotonically as a function
of decreasing team size (see Figure 4 below).

Company X Avionics Projects
Productivity versus Inverse Team Size
< 1000 q
%]
£ H[H] (Power)
< r*=0.67 R*=0.56 T
o PR+
“ii == ,«/:4,/‘ y = 101.49x>47%
g 100 - " 12 = 0.6674
5] .
o) -
-
n
u
2
2 104
o]
=] 1 -
=]
° -
2 .
0.001 0.010 0.100 1.000 10.000
Reciprocal Average Staff (1/ people)

Figure 4. Productivity Increases as Team Size Decreases

e Smaller teams produce fewer defects—Defect count increases monotonically as a func-
tion of increasing team size (see Figure 5 below).

Company X Avionics Projects
Defects vs Team Size
~ 1000 5
c]
3 u[H] (Power)
< r*=0.83 R*=0.49
>
2 100
o)]
a
%
(=]
c
= 10 1
£ 3
£
[
4
@
3 14
‘©]
a]
0 1 10 100 1000
Average Staff (people)

Figure 5. Defects Increase as Team Size Increases

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

Projects seek a balance—Irrespective of size, duration and effort are reasonably correlated,
which suggests some inherent equilibrium between the two (see Figure 6 below).

Company X Avionics Projects

Duration vs Effort
1000

U[H] (Power)
r’=0.74 R?*=0.58

100 A

Duration (weeks)

10

10 100 1000 10000 100000
Effort (person-weeks)

Figure 6. Equilibrium Between Duration and Effort

Fundamental Empirically-Verified Hypotheses

Software can be estimated as a multiplicative relationship between labor and time—The con-
struction of software requires people to do work over some period of time. For a given project
environment (people, process, and product):

e Adding effective software size increases the effort (implied by Figure 1) and/or duration
(implied by Figure 2).

e Adding effort increases the potential effective software size (implied by Figure 1) and/or
reduces the duration (implied by Figure 4 keeping in mind the inverse power relationship
between productivity and average staff where the exponent on reciprocal average staff is
less than 1).

e Adding duration increases the potential effective software size (implied by Figure 2)
and/or reduces the effort (implied by Figure 4 keeping in mind the inverse power rela-
tionship between productivity and average staff where the exponent on reciprocal aver-
age staff is less than 1).

Defects can be estimated as a ratio relationship between labor and time—Defects in a software
product are the unwanted byproduct of people attempting to do work over some period of time.
For a given project (people, process, and product):

e Adding effort increases the number of defects (implied by Figure 3).

e Adding duration decreases the number of defects (implied by Figure 5).

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

Combining the two above-mentioned hypotheses for a given project environment (people, proc-
ess, and product) implies the following intuitively-reasonable corollary truisms:

e Larger software products generally experience more defects than do smaller software
products.

e Attempting to achieve a compressed schedule by adding people to a given project gener-
ally increases the number of defects experienced.

e Relaxing the schedule constraint of a given project offers the opportunity, within limits,
to reduce cost (less effort) and improve product reliability (fewer defects).

3. DEFINING EFFORT, DURATION, SIZE, AND PRODUCTIVITY

Staffing, Duration, and Construction Duration

We first conceptually define staffing to be some function P of elapsed calendar time t that de-
scribes, for a particular instance of a software construction process, the application of people
over time within the software construction time interval. We define this time interval in absolute

terms as [T, Trnsn | Where T, and T, represent the start and finish dates of the construc-

tion process. In the interest of generalization, we prefer to use a T, -relative frame to describe
this interval; therefore, T, relativeto T, is T,.,— T, =0 and T, relativeto T, is
Tanisn— Tuat » the value of which we will represent as t. . The resulting T, -relative construction
interval is [0,t.]. Note that the value of t. represents not only the T,,, -relative point in time
where construction finishes, it also represents the duration (elapsed calendar time) of the con-
struction interval.

tart

Effort

With our conceptual definition of a staffing function P, we now define the concept of effort to
be some function E of elapsed calendar time t that describes, for a particular project, the accu-
mulated result of people doing work over elapsed time t.

EEIPdt (9)

Using Equation (9) as our definition of an effort function with respect to its associated staffing
function we can now define an instantaneous staffing function with respect to its associated ef-
fort function by solving Equation (9) for P.

dE:dedt
d (10)

P=—
dt

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

Construction Effort

We have already defined [0,t.] to be the T, -relative construction time interval where t.

start
represents construction duration. We now define construction effort E. to be the change in ef-
fort within this construction time interval.

E. =E(t.)-E(0) (11)

Effective Software Size

The software construction process transforms one abstraction (the desire or the requirements) to
another abstraction (the software product). Each and every abstraction, be it expressed in a natu-
ral language, a programming language, or even as graphic constructs; consists of expression
primitives that we refer to as expression units (EUs). We choose to define the notion of effective
software size S, of a particular abstraction to be the number (count) of EUs in the abstraction
that are considered to be directly related to the work associated with some software construction
activity; this work including that associated with developing new software plus that associated
with selecting, understanding, incorporating, changing, and/or verifying legacy software.

Average Construction Productivity
We can now define average software construction productivity @ to be the average amount of
effective software size S, that is transformed per unit of effort. In other words, average produc-

tivity is defined as the average effective software size developed per unit of effort; this being
done over the interval of construction [0,t.].

@ (12)

Se.
EC
4. EFFORT-DURATION TRADEOFF RELATIONSHIP

Software Construction Process Law

Software is made by people doing work over some period of time; the result being neither free,
instant, nor perfect. We have already shown that effort E. and duration t; increase monotoni-

cally (and in most cases non-linearly) as functions of increasing effective software size (see
Figure 1 and Figure 2). Our first empirically-verified hypothesis states that software can be es-
timated as a multiplicative relationship between effort and duration. We therefore propose the
following generalized relationship:

f. (Ec) f(to) o f(S,) or
f. (Ec) f, (t.) =bfs(S,)

where b represents the constant of proportionality.

(13)

10

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

Performing ordinary (linear) least squares (OLS) regression in log-log space on data from past
projects indicates that both effort and duration are reasonably correlated with effective software
size (see Figure 1 and Figure 2). These correlations can be generally and reasonably modeled by
power functions described as

f (x)=x* (14)

Substituting Equations (14) into Equation (13) yields
E"t.* =b(S,)* (15)

We then scale the resulting optimized exponent values a. and a, to force the exponent on size
to unity by letting

ag = a4

a =a,a

(16)

Note the distinction between the English letters “a” and the Greek letters « (alpha). Substituting
Equations (16) into Equation (15) yields

ECaEaS tca‘as — b(Se)as
o 0

E.%t." =b*’S,

We next introduce the concept of data sample mean efficiency 77 (Greek lower-case eta bar) and

choose to define it as being proportional to the reciprocal of the coefficient on effective software

size
B
b (18)
b(ai] _1
k.77

where k, is a proportionality constant that resolves the system of units being used; its value be-
ing unity when effort is measured in person-weeks and duration is measured in calendar weeks.

Substituting Equation (18) into Equation (17) yields

11

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

EcaEtcaI :[i_] Se
k
7777
(19)
a a Se
EC = 7
}777

Values for o, «,, and i_ in Equation (19) for a specific historical data set can be empirically
Tl

determined by performing two OLS regressions in log-log space on:

e Actual Effort versus Actual Effective software size (an example of which is shown in
Figure 1)

e Actual Duration versus Actual Effort (an example of which is shown in Figure 6)
The resulting two power functions are

Ec =bs,* (20)
and
t. =b,E.* (21)
Multiplicatively combining Equation (20) and Equation (21) yields
E.t. =bS,"b,E.*

e b6 s @

e
)

Finally, instantiating the general form Equation (19) with the regression-derived Equation (22)
implies the following assignments:

o =% (23)
Gl
a, = i (24)
a
s
7 =(@J)

12

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

Figure 7 tests the correlation implied by Equation (22) using the example data of Figure 1 and
Figure 6. Note the relatively high resulting r* and R* values which are indications of a reasona-
bly good estimating relationship.

Company X Avionics Projects

Effort-Duration Product vs Effective Size

<% 1000000 1 ML
o 1 wrHi (Powen) g
£ r’=0.86 R*=0.79 L %
w 1 7 '/{
&£ 100000 - T ey
o 3 e '/'/ /// %
H:’ o e /// / T -
o e
S 10000 4 . . =
£] .
c ~
o
s] .
3 1000 - I P
i -
100 ———— —— —
1000 10000 100000 1000000

Effective Size (SLOC)

Figure 7. Effort-Duration Product versus Size Correlation

Specific Efficiency

We now introduce the notion of a project’s specific efficiency n (Greek lower-case eta). Each
instance of the software construction process has a unique value for specific efficiency within the
context of a particular instantiation of Equation (19). Practically speaking, this means a value for
specific efficiency of a project relates that project to the other projects in the particular historical
data set for which Equation (19) has been instantiated and from which this value for specific
efficiency has been determined. This project-specific value for specific efficiency can be deter-
mined in one of two ways:

e Empirically—selected to be consistent with specific efficiency values calculated from the
final actuals of relevant previously-completed projects (often referred to as calibration) or

e Parametrically—calculated as the result of biasing mean efficiency 77 up or down as a

function of weighted and normalized environmental attributes (sometimes referred to as
parameters, effort drivers, or cost drivers), each having been shown to significantly influ-
ence a project’s specific efficiency.

n =i7] | Parameter, (26)

i=1

13

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

Effort-Duration Equation in Terms of the Software Product

If we instantiate Equation (19) (either empirically or parametrically) to fit the circumstances of a
particular project, we get

Bt =15 (27)
n

Equation (27) is the fundamental software productivity equation. It describes the tradeoff rela-
tionship between total construction effort and total construction duration as a function of the
project’s expected effective software size and the project’s expected specific efficiency.

Figure 8 illustrates an example of the software productivity equation instantiated for a particular
project’s tradeoff relationship exponents o, and ¢, and for its effective software size S, and its

specific efficiency 7.

”o EFFORT vrs. SCHEDULE TRADEOFF For a given
Size and

_ Efficiency
2 16 —
3
3
5
w12
o
a
]
]
208
o
2]
3
o
=
£ 04
o
b
w

0.0

90 100 110 120 130 140 150 160 170
Schedule (calendar weeks)

Figure 8. Example Project Tradeoff Curve (Software Productivity Law)

Solving for Construction Effort
Solving Equation (27) for construction effort we get

. :(s J(ai] o8

kr] 77tC “

14

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

Solving for Construction Duration
Solving Equation (27) for construction duration we get

. :(S,][i] 29

k;777 EC -

Solving for Efficiency (Calibration Form)
Solving Equation (27) for specific efficiency we get

S
e r——— (30)
k,E.et.™

Solving for Effective Software Size
Solving Equation (27) for effective software size we get

S, =k E "t " (31)

5. DESCRIBING A PARTICULAR EFFORT-DURATION SOLUTION

Management Stress

The notion of management stress was suggested by Jensen [5] and described as the inherent
equilibrium between effort and duration for the software construction process, this equilibrium
being independent of effective software size and specific efficiency and being constrained by the
earlier-described Rayleigh-shape staffing assumption (see footnote 8).

We choose to redefine this notion of management stress by eliminating the Rayleigh-shape staff-
ing assumption constraint and by more-generally postulating that construction effort E. is pro-

portional to some function f of construction duration t. . In other words, for the set of all pro-

jects, ignoring the variety of effective software sizes and of specific efficiencies, as the construc-
tion duration increases, the construction effort increases and vice versa. Stated mathematically

Ec o f(t.) or

E. =bf (1) (32

where b represents the constant of proportionality.

Performing OLS regression in log-log space (Iog(EC) versus log(t.)) (inverting the regression

shown earlier in Figure 6) on various past project data sets (neither stratified by size nor effi-
ciency) indicates that construction effort increases monotonically (and in most cases non-
linearly) as a function of increasing construction duration (see Figure 9 below). This correlation

15

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

can be generally and reasonably modeled by a power function of the form f = x*. Substituting
t. for x yields f(tc):tca. Finally, substituting this into Equation (32) and renaming a to y
(Greek lower-case gamma) yields

E. =bt.” (33)
Company X Avionics Projects
Effort vs Duration
100000 1
1 u[H] (Power)
r’=0.74

0

¥ 10000 1

[]
Z
ey
o
%

& 1000 -

<]
i

100 1

10 T T T T —" T T T T T T T T T
10 100 1000
Duration (weeks)

Figure 9. Effort Increases as Duration Increases

Note that Type 2 models such as COCOMO [1] imply y =1/a, . Note also that Jensen [5] and
Putnam [10] both assume y =3 (a constant).

Practically speaking, Equation (33) implies that as the construction duration is increased, the
resultant construction effort increases, this increase characterized by the parameters » and b .

From a practical standpoint, » represents the economy or diseconomy associated with higher

construction durations and b is directly related to the data sample mean management stress M .
This proportionality resolves as follows

boc M
34
N (34)

k, M

where k,, is a proportionality constant that resolves the system of units being used,; its value

being unity when effort is measured in person-weeks and duration is measured in calendar
weeks.

16

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

Specific Management Stress

We now introduce the notion of a project’s specific management stress M . Given a data set with
a sample mean management stress of M and an economy of », each instance of the software

construction process has unigque specific management stress M , this value being tied to that par-
ticular data set and its value for y . Specific management stress is limited by environmental (per-

sonnel, process, and product) characteristics; this limit can be determined empirically or para-
metrically (similar to the previously-described process for determining specific efficiency). A
parametric determination takes the form of

M =M [Parameter, (35)

i=1

Size-Independent Effort-Duration Equation

If we perform the above-described regression analysis on the final actuals from a reasonably
relevant set of completed software construction instances, determine the resultant values for pa-

rameters » and b, use Equation (34) to determine M , and then parametrically instantiate Equa-
tion (33) with Equation (35), the result is:

E. =k, Mll[(Parameteri)
i=1

E. =kyMt.” or (36)
1
(3](J
= or
kM
M =Fc
kMtC;/

Equation (36) is the fundamental software management stress equation. It describes the rela-
tionship between total construction effort and total construction duration for a given project. It
will be used in the next two sections to isolate particular effort-duration solutions for given ef-
fective software size and specific efficiency. It will also be used later in the paper as the basis for
determining the feasible limits of the software productivity equation (minimum duration solution
and minimum effort solution).

Solving for Construction Duration

Substituting the solved-for-effort form of Equation (36) into Equation (27) we get construction
duration, this being a function of the specific management stress, the effective software size, and
the specific efficiency.

17

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

) -

(o fe s e
()

Solving for the Construction Effort Associated with a Particular Construction
Duration

Substituting the solved-for-time form of Equation (36) into Equation (37) we get the construc-
tion effort associated with a given construction duration as a function of the effective manage-
ment stress, the effective software size, and the specific efficiency.

(kfin j[ij) (leM j(miia‘] [ks_n J(]
J[m;a,]

(37)

(38)

E, = (ky M) (S—

k,77

6. MINIMUM DURATION

Brooks’ Law

Adding manpower to a late software project makes it later. [4] Each and every instance of the
software construction process, by its nature (divisibility or potential for concurrency), can effec-
tively handle only so much management stress (only so many people); therefore, there exists, for
each and every instance of the software construction process, some minimum achievable con-
struction duration. Software construction, like the aging of a fine wine, takes time and cannot be
rushed beyond a certain point.** Jensen [5], Putnam [10], and others have analyzed historical
project data and concluded that this certain point can be defined in terms of a project’s maxi-
mum achievable specific management stress given its degree of technical difficulty.

Maximum-Achievable Specific Management Stress

For each instance of the software construction process (a given project with given effective soft-
ware size and given specific efficiency), there exists a maximum-achievable specific manage-
ment stress value M, . In other words, each project, by its nature (divisibility or potential for

concurrency), can effectively handle only so many additional people at a given time.

1 Analogy frequently used by Dr. Randy Jensen in numerous presentations on this topic.

18

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

Qualitatively, maximum-achievable specific management stress is proportional to some function
of a project’s potential for parallelism; specifically, the speed with which the problem can be
decomposed (divided and assigned to additional staff, the resulting work being performed in
parallel). Keeping in mind the typical inverse relationship between maximum specific manage-
ment stress and technical difficulty, this implies that more difficult projects (lower possible spe-
cific management stress values) tend toward serial task dependencies while less difficult projects
(higher possible specific management stress values) allow for more parallel task dependencies.

Mathematically, the notion of a maximum-achievable value for specific management stress
M., can be expressed as

M >M (39)

max

Since this notion of a maximum-achievable value is somewhat theoretical, we suggest a conser-
vatively-reasonable value for M . in estimation situations is the y-intercept of the +1o trend

line (e.g., the first dashed line above the solid line in Figure 9) of the OLS regression applied to
log(E.) versus log(t.) from the relevant historical data set.

Substituting Equation (36) into Equation (39) yields

1Y/ - = or
Kute” (40)
E.<M_ k,t.~

Figure 10 shows the region excluded by Equation (40) in red given a value for maximum spe-
cific management stress M, . Note that the curve described by the margin between the red re-

gion and the white region is the minimum duration limiting function (Equation (40) as an equal-
ity).

19

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

2o EFFORT vrs. SCHEDULE TRADEOFF For a given
JJ Size and

R Impossible Efficiency
216 —
8
%
o
12
a
]
]
B 08
3]
!
£
£ 04
(=]
£
i}

0.0

90 100 110 120 130 140 150 160 170
Schedule (calendar weeks)

Figure 10. Minimum Duration Limit

Since maximum-achievable specific management stress M. bounds the maximum amount of

parallelism that can be incorporated into project scheduling, Equation (40) implies the existence
of a minimum-achievable duration t with associated effort EtCm, .

C min in

Solving for Minimum Construction Duration

Instantiating Equation (37) with t.,.. and M. we get the minimum construction duration, this

being a function of the maximum-achievable specific management stress, the effective software
size, and the specific efficiency.

NI A @

kM M max k7]77

Solving for Effort Associated with Minimum Construction Duration

Instantiating Equation (38) with E__and M, we get the effort associated with the minimum

construction duration, this being a function of the maximum-achievable specific management
stress, the effective software size, and the specific efficiency.

tC min

= (KM ey)[mflaxj(S J[yj (42)

K, 77

20

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

Figure 11 shows the minimum construction duration and its associated effort as one of the solu-
tions on the effort versus schedule (duration) tradeoff curve. Note that the minimum duration
solution is defined as the intersection of the fundamental software productivity equation (Equa-
tion (28)) and the Brooks’ Law or minimum duration limiting function (Equation (40) as an

equality)).
EFFORT vrs. SCHEDULE TRADEOFF For a given
20
IL Size and
nossible Efficiency

1.6 —

1.2

Effort (thousands of person-weeks)

0.8 \
0.4 AN

N Minimum Time
0.0

90 100 110 120 130 140 150 160 170

Schedule (calendar weeks)

Figure 11. Minimum Duration Solution

7. MINIMUM EFFORT

Parkinson’s Law

Work expands so as to fill the time available for its completion. [9] Theoretically, a specific in-
stance of a software construction process is not limited by some maximum construction duration.
Rare is the software engineer who complains about having too much time to develop software.
However, we submit that there exists, for each and every project, some duration that yields
maximum productivity; i.e., some duration that represents the most efficient combination of pro-
ject decomposition and corresponding use of labor.

Minimum-Practical Specific Management Stress

For each instance of the software construction process, we submit that maximum productivity
occurs at some point of minimum-practical specific management stress. This point of minimum
practical specific management stress M ;. defines the optimum use of people over time, and

represents a practical limit to the benefit of schedule relaxation.

21

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com
Mathematically, the notion of a minimum value for specific management stress M .. can be
expressed as
M. <M (43)

Since this notion of a minimum-practical value is somewhat theoretical, we suggest a conserva-
tively-reasonable value for M, in estimation situations is the y-intercept of the —1o trend line

(e.g., the first dashed line below the solid line in Figure 9) of the OLS regression applied to
log(E.) versus log(t.) from the relevant historical data set.

Substituting Equation (36) into Equation (43) yields

M . < Ec or
Ky te” (44)

E.>M_ k,t.~

min

Figure 12 shows the region excluded by Equation (44) in yellow given a value for minimum spe-
cific management stress M ... Note that the curve described by the margin between the yellow

region and the white region is the minimum effort limiting function (Equation (44) as an equal-

ity).
. EFFORT vrs. SCHEDULE TRADEOFF For a given
IL Size and

R possible Efficiency
16 —
&
3
c
® 1.2
2
o Impractical
e 08
(1]
: |
2 ;
£ 04
=]
=
w

0.0

90 100 110 120 130 140 150 160 170
Schedule (calendar weeks)

Figure 12. Minimum Effort Limit

Since minimum specific management stress M, bounds the minimum effective amount of pro-
ject parallelism that can be assumed before Parkinson’s law overrides the cost benefit of sched-

22

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

ule relaxation, Equation (44) implies the existence of a minimum-achievable effort E with

associated duration t;_ .

C min

Solving for Minimum Construction Effort

Instantiating Equation (38) with E.,, and M, we get the minimum construction effort, this

being a function of the minimum specific management stress, the effective software size, and the
specific efficiency.

(o[(=)
ECmin = (kM M min) 1o (k ;J (45)
n

Solving for Duration Associated with Minimum Construction Effort

Instantiating Equation (37) with t.__and M, we get the duration associated with the mini-

in

mum construction effort, this being a function of the minimum specific management stress, the
effective software size, and the specific efficiency.

1 [w:iaJ S, [ﬁJ
oo = L K M i] (k;ﬂ?] (46)

Figure 13 shows the minimum construction effort and its associated duration as one of the solu-
tions on the effort versus schedule (duration) tradeoff curve. Note that the minimum effort solu-
tion is defined as the intersection of the fundamental software productivity equation (Equation
(28)) and the Parkinson’s Law or minimum effort limiting function (Equation (44) as an equal-

ity)).

23

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

EFFORT vrs. SCHEDULE TRADEOFF For a given

Size and
Efficiency

2.0

aossiILIe

1.6 —

1.2

Impract cal

0.8

Effort (thousands of person-weeks)

0.4 —
Minimum Effort
0.0
90 100 110 120 130 140 150 160 170
Schedule (calendar weeks)
Figure 13. Minimum Effort Solution

8. DEFECTS
Taxonomy

In order to derive the defects estimating portion of our evolving model it is useful to establish
definitions of the terminology associated with software reliability. For the most part, we choose
to adopt Musa’s [7] definitions with minor modification:

Failure—*...departure of the external results of system operation from user [desires].”*?

Fault—"...defective, missing, or extra [expression unit] or set of related [expression units] that
is the cause of one or more actual or potential failures.”**

Error—*...incorrect or missing action by a person or persons that causes a fault in a program.”**

Problem or Issue—The documented observation of some undesired aspect or aspects of a soft-
ware product and/or its related documentation; typically contained in the form of an artifact; e.g.,
problem report, trouble report, issue report, etc. Problems, according to this definition, are very
imprecise (such is the nature of problem reporting systems) and can contain, within their scope,
various combinations of failures, faults, errors, and suggested enhancements. Duplicates and
overlaps are not uncommon.

2171 p. 208
B 71p. 213
14

[7]p. 215

24

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

Defect—The documented result of a problem review process that seeks to identify and isolate the
fault(s) associated with a particular problem. This definition implies a review process with one
of its objectives being to achieve a near one-to-one correspondence between defects and faults.

Unacceptable Defect—A defect, the removal of which, is considered a necessary condition for
software product acceptance (e.g., certification, customer buy-off, general availability, contract
satisfaction, etc.).

Defect Occurrence Function

We first conceptually define cumulative defect occurrence to be some function ®@ (Greek upper-
case phi) of elapsed calendar time t that describes, for a particular project, the accumulation of
discovered defects over elapsed calendar time within the software construction time interval

o]

Defect Occurrence Rate Function

With our conceptual definition of cumulative defect occurrence @, we now define the concept
of defect occurrence rate (sometimes referred to as instantaneous defect occurrence) to be some
function @ of elapsed calendar time t that describes, for a particular project, the rate that de-
fects are being discovered at a particular point in time within the construction time interval

[0t].
_d
= (47)
which implies
® = | et (48)

Software Construction Process Law (Revisited)

Software is made by people doing work over some period of time; the result being neither free,
instant, nor perfect. We have already concluded, from our fundamental observations, that defect

count @, ,, (number of defects discovered during the T,,,, -relative time interval [t,,t,]) in-

creases monotonically (and in most cases non-linearly) as a function of increasing effort. Practi-
cally speaking, this implies that the software construction process has two primary outputs: the

deliverable product software and the defects that it contains; i.e., defects, like code, can be con-
sidered products (albeit undesirable) of the process. Our second empirically-verified hypothesis
(introduced earlier in this paper) states that defects can be estimated as a ratio relationship be-
tween labor and time. We therefore propose the following generalized relationship:

25

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

g (Ec)

TSRANE
e (

9 (Ec)

0. () =bg, (%,b])

(49)

where b represents the constant of proportionality.

Performing OLS regression in log-log space on data from past projects indicates that both effort
and duration can change non-linearly as functions of total defects. This nonlinear behavior is
best predicted (yields the highest correlation) by power functions described as

g (x)=x* (50)

Substituting Equations (50) into Equation (49) yields
Ect. ™ =bay, (51)
We then scale the exponents to force the exponent on total defects to unity by letting

A =P8,

(52)
—& =@a,
Substituting Equations (52) into Equation (51) yields
EC‘/’Eaa)tC("taw — bqa'b]am
[L] (53)
EC‘/JEtcﬁl’t :b ap

Doy

We next introduce the concept of data sample mean defect vulnerability S[ayb] (Greek lower-case

delta bar) and choose to define it as being proportional to the reciprocal of the coefficient on
total defects

-

Pl
N~

(54)

O
N
Pl
N~

H

26

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

where k; is a proportionality constant that resolves the system of units being used; its value be-
ing unity when effort is measured in person-weeks and duration is measured in calendar weeks.

Substituting Equation (54) into Equation (53) yields

1
Bt = = ab
[ko‘%b] }Zf .

a,b]

EC‘/’E tC (L q
K,

[ab]

(55)

Values for ¢, ¢,, and E in Equation (55) for a specific historical data set can be empiri-
6%a,b]

cally determined by performing two OLS regressions in log-log space on:

e Actual Effort versus Actual Defects (an example of which is shown in Figure 3)
e Actual Duration versus Actual Effort (an example of which is shown in Figure 6)
The resulting two power functions are

E. =b,&.® (56)
and
te =b,E.”® (57)

Ratio combining Equation (56) and Equation (57) yields

E. ba®
tC b2 EC *
Ve (59)

Finally, instantiating the general form Equation (55) with the regression-derived Equation (58)
implies the following assignments:

(59)

27

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

0 = _[ij (60)
8
()

Figure 14 tests the correlation implied by Equation (58) using the example data of Figure 3 and
Figure 6. Note the relatively high resulting r* and R* values which are indications of a reasona-
bly good estimating relationship.

Company X Avionics Projects

Effort-Duration Ratio vs Defects

1000 5 e

M[H] (Power) R =°
r*=0.85 R*=0.49 R

100 -

w{ -

Effort-Duration Ratio (E[C]"a[E]/t[C]"a[t])

1 10 100 1000

Defects Remaining at Delivery (count)

Figure 14. Effort-Duration Ratio versus Defects Correlation

Specific Defect Vulnerability
We now introduce the notion of a project’s specific defect vulnerability 5[a’b] (Greek lower-case

delta). Each instance of the software construction process has a unique value for specific defect
vulnerability that is driven by environmental (personnel, process, and product) characteristics.
This project-specific value for specific defect vulnerability can be determined in one of two
ways:

e Empirically—selected to be consistent with specific defect vulnerability values calcu-
lated from the final actuals of relevant previously-completed projects (often referred to as
calibration) or

28

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

o Parametrically—calculated as the result of biasing mean defect vulnerability E[a]b] up or

down as a function of weighted and normalized environmental attributes (sometimes re-
ferred to as parameters, effort drivers, or cost drivers), each having been shown to sig-
nificantly influence a project’s specific defect vulnerability.

o)

[a5]

= 5[a’b]1i:1[Parameter, (62)

Effort-Duration Equation in Terms of Defects Produced

If we instantiate Equation (55) (either empirically or parametrically) to fit the circumstances of a
particular project, we get

E.%t " = Qa,b] (63)
ké‘é‘[a,b]

Equation (63) is the fundamental software defect propensity equation. It describes the relation-
ship between total construction effort and total construction duration as a function of the pro-
ject’s expected defect count and the project’s expected specific defect vulnerability.™

Solving for Construction Effort

E. = [JA}[WEJ (64)

O, it

[a,b]™C

Solving for Construction Duration

1

- [?L]m (65)

é‘[a,b] ECan

Solving for Defects
dfa,b] = kééia,b] S (66)

Solving for Defect Vulnerability (Calibration Form)

PR U (67)

[a.b] k(; Ecwe tc(/’t

15 The fairly general way in which defect count and defect vulnerability are defined allow for defect count to be
specified within any range in the software construction process. Note that the scale of defect vulnerability is always
associated with the particular defect count range. Note also that it is possible to use defect density at some particular
point in the construction process in place of defect count as long as defect vulnerability is scaled accordingly.

29

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

Solving for Defects as a Function of Duration and Independent of Effort
Substituting the solved-for-effort form of Equation (36) into Equation (66) yields

d?a,b] = kb‘é‘[a,b] (kM Mt.”)(/)E t.”

(68)
Qa,b] = kb‘é‘[a,b] (kM M)(pE 1:C(WEH/)I)
Solving for Duration Independent of Effort
Solving Equation (68) for construction duration t. yields
[7‘/’5:[*%]
te = Ten (69)
k()‘é‘[a,b] (kM M)wE

Defects with Respect to Minimum Duration

Substituting Equation (64) into Equation (40) and solving for expected number of discovered
defects during construction @, ; yields

1
T Ly

KsSpitc” (70)

d%a,b] < k55[a,b] (M maka)qu tC(WEWt)

Defects with Respect to Minimum Effort

Substituting Equation (64) into Equation (44) and solving for expected number of discovered
defects during construction @. yields

9. SUMMARY AND CONCLUSION

Purpose and Scope Revisited

This paper documents the basis, assumptions, and derivations behind a set of general software
effort, duration, and defects estimating relationships that are based on the notion that software
construction is the application of effort (labor) over some duration (period of elapsed calendar
time) that produces a desired software product (size) and undesired byproducts (defects). The
derivations, assumptions, and resulting model described by this paper establish relationships
between size, efficiency, effort, duration, and defects and are collectively referred to as the Ross
Software Estimating Framework.

30

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

Areas for Further Study

The following are the author’s observations and suggest possible opportunities for enhancing
RSEF capabilities:

e The behavior of most currently-available software project estimating models (e.g.,
COCOMO 81 [1], COCOMO 11 [2], Jensen [5], and Putnam [10]) can be emulated by the
RSEF equations given a corresponding instantiation of the RSEF variables ., «,, 7,

o, ¢, M., M., and M__ . Instantiation values can be derived by algebraic ma-

nipulation of the particular model’s estimating equation(s). We reasonably assume that
the ability to emulate the behavior of multiple models plus the ability to estimate based
on relevant historical data (both possible with the RESF) should provide increased over-
all estimate credibility.*

e The primary independent variables effective software size, specific efficiency, and defect
vulnerability are uncertain until project completion. This suggests a stochastic dimension
to the problem; i.e., effective software size, specific efficiency, and defect vulnerability
should all be treated as random variables. The results of this treatment should be distribu-
tions of possible outcomes for effort, duration, cost, and discovered defects with associ-
ated confidence probabilities.

e Labor (the motive force), effective software size (the evolving product), and discovered
defects are each dynamic; i.e., they can vary as the project progresses. This implies esti-
mates at completion and estimates to complete are similarly dynamic. While the model
described in this paper is adequate to estimate values for the total software construction
process, it begs for a time-range differential calculus approach to provide in-process es-
timates once the project is under way.

oy recurring theme in recent International Society of Parametric Analysts conferences (particularly the “Renew
Your Training” segments) has been the desire for multiple estimating model cross-checking in order to enhance
estimate credibility and confidence.

31

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

REFERENCES

[1]

Boehm, B., Software Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs, NJ,
1981.

[2] Boehm, B. [et al.], Software Cost Estimation with COCOMO |1, Prentice-Hall, Inc., Upper
Saddle River, NJ, 2000.

[3] Book, S.A.and Young, P.H., “The Trouble with R Journal of Parametrics, VVol. 25, No. 1
(Summer 2006).

[4] Brooks, F., The Mythical Man-Month, 20" Anniversary Edition, Addison-Wesley Publish-
ing Company, Reading, MA, 1975, 1995.

[5] Jensen, R., “An Improved Macrolevel Software Development Resource Estimation
Model,” Software Engineering, Inc.

[6] Jensen, R., “Software Estimating Models: Three Viewpoints,” CrossTalk, The Journal of
Defense Software Engineering, STSC, Hill AFB, UT, May 1997.

[7] Musa, J., Software Reliability Engineering: More Reliable Software Faster and Cheaper,
2", Edition, AuthorHouse, Bloomington, IN, 2004.

[8] Norden, P., “Project Life Modeling: Background and Application of Life Cycle Curves,”
Software Life Cycle Management Workshop, Sponsored by USACSC, Airlie, VA, August
1977.

[9] Parkinson, C., Parkinson’s Law: The Pursuit of Progress, John Murray, London, UK,
1958.

[10] Putnam, L. Software Cost Estimating and Life-Cycle Control: Getting the Software Num-
bers, Computer Society Press, IEEE Computer Society, New York, NY, 1980.

[11] Ross, M., “Software Project Dynamics: A Productivity versus Staffing Approach,” Proc.
ISPA 2006 Conference, May 2006.

BIOGRAPHY

Mike Ross has over 30 years of experience in software engineering as a developer, manager,

process champion, consultant, instructor, and award-winning international
speaker. Mr. Ross is currently the President and CEO of r2Estimating,
LLC. Mr. Ross’s previous experience includes three years as Chief Engineer of
Galorath Inc. (makers of the SEER suite of estimation tools), seven years with
Quantitative Software Management, Inc. (makers of the SLIM suite of software
estimating tools) where he was Vice President of Education Services, and 17
years with Honeywell Air Transport Systems (formerly Sperry Flight Systems)
and 2 years with Tracor Aerospace where he developed or managed the devel-

opment of embedded software for avionics systems installed various commercial airplanes and
for expendable countermeasures systems installed in various military aircraft. He also co-
founded Honeywell Air Transport Systems’ SEPG, served as its focal for software project man-
agement process improvement, and served as a Honeywell corporate SEI CMM assessor. Mr.
Ross did his undergraduate work at the United States Air Force Academy and Arizona State
University, receiving a Bachelor of Science in Computer Engineering.

32

