
 1

A New Software Estimating Framework: 
25 Years and Thousands of Projects Later 

Mike Ross 
President & CEO 

r2Estimating, LLC 
7755 E. Evening Glow Dr. 

Scottsdale, AZ  85262-1295 
480-488-8366 

mike.ross@r2estimating.com 
http://www.r2estimating.com 

 
1,2Abstract—It’s about time we in the software development community revisit the assumptions, 
relationships, and flexibility contained in our currently-available software estimating models. 
Most of the current models still implement fundamental relationships that are based on at least 
25 years old data and assumptions. In the meantime, data from many thousands of projects have 
since been collected and offer an opportunity to revisit old assumptions and relationships. This 
paper documents the basis, assumptions, and derivations behind a set of general software effort, 
duration, and defects estimating relationships that are based on the notion that software construc-
tion is the cumulative effect of people doing work (effort) over some duration (period of elapsed 
calendar time) that produces a desired software product (size) and unwanted byproducts (de-
fects). This set of relationships is derived from several evidently-good correlations, the primary 
three being: 1) effort generally increases with increasing size, 2) duration generally increases 
with increasing effort, and 3) effort generally increases with increasing defects. This derivation 
ultimately yields three limited tradeoff relationships: one between effort and duration, one be-
tween cost and duration, and one between defects and duration. 

TABLE OF CONTENTS 

1. INTRODUCTION.........................................................................................................................2 
2. OBSERVATIONS AND HYPOTHESES ..........................................................................................5 
3. DEFINING EFFORT, DURATION, SIZE, AND PRODUCTIVITY ....................................................9 
4. EFFORT-DURATION TRADEOFF RELATIONSHIP ...................................................................10 
5. DESCRIBING A PARTICULAR EFFORT-DURATION SOLUTION ...............................................15 
6. MINIMUM DURATION .............................................................................................................18 
7. MINIMUM EFFORT .................................................................................................................21 
8. DEFECTS .................................................................................................................................24 
9. SUMMARY AND CONCLUSION.................................................................................................30 
REFERENCES..................................................................................................................................32 
BIOGRAPHY ...................................................................................................................................32 

                                                 
 
1 © 2007 r2Estimating, LLC. All rights reserved. 
2 Rev D, April 9, 2007 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 2

1. INTRODUCTION 

Purpose 
The purpose of this paper is to document the basis, assumptions, and derivations behind a set of 
general software effort, duration, and defects estimating relationships that are based on the no-
tion that software construction is the cumulative effect of people doing work (effort) over some 
duration (period of elapsed calendar time) that produces a desired software product (size) and 
undesired byproducts (defects). 

Scope 
The derivations, assumptions, and resulting model described by this paper establish relationships 
between size, efficiency, defect vulnerability, effort, duration, and defects and are henceforth 
collectively referred to as the r2 Software Estimating Framework (r2SEF)™ and are imple-
mented in the r2ESTIMATOR™ estimating tool3. 

Background 
Most of our current software estimating models still implement fundamental relationships that 
are based on at least 25 years old data and assumptions. In the meantime, data from many thou-
sands of projects have since been collected and offer an opportunity to revisit old assumptions 
and relationships. To claim that this new data continues to “re-validate” these old assumptions 
and relationships is to claim that software development as a process is static and is to ignore its 
evolution with respect to management techniques, team behavior, host and target platforms, de-
velopment methodologies, functionality abstraction, etc. In fact, analysis of this new data against 
these old relationships suggests that the underlying old assumptions are inappropriately restric-
tive. There are aspects of the old models that are held constant; the new data suggesting that 
these aspects should be variable according to the particular organization proposing to do the 
work and the type of project being proposed; i.e., one size does not necessarily fit all. 

Current Model Types 
To facilitate discussion of software estimating models, we suggest the following categorization 
scheme which was inspired by Jensen4, introduced by Ross5, and updated to accommodate the 
findings of this paper. 

Type 0—Dart board, dice, roulette wheel, tarot cards, crystal ball, Ouija™ board. 

Type 0.5—Engineering judgment. 

                                                 
 
3 r2ESTIMATOR™ is developed and distributed by r2ESTIMATING®, LLC; http://www.r2estimating.com. 
4 This categorization was inspired by and is very similar to that found in [6]; the difference is this categorization’s 
emphasis on the existence of an effort-time tradeoff relationship as a type criteria. 
5 [11] p. 2. 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 3

Type 1—A univariate relationship that assumes total construction effort CE  to be directly pro-
portional to a linear function of effective software size eS  where the constant of proportionality 
ϖ  represents construction average productivity6 (effective software size per unit of effort) and 
the optional offset c  represents fixed (i.e., size-independent) effort. 

 e
C

SE c
ϖ

= +  (1) 

Type 2—A pair of univariate independent power relationships: the first assumes total construc-
tion effort CE  to be directly proportional to a power function of effective software size eS  and 
the second assumes total construction duration Ct  to be directly proportional to a power function 
of construction effort CE  where the constants of proportionality 1χ  and 2χ  represent complexity 
scale factors7 (e.g., COCOMO [1], and derivatives). 

 ( ) ( )1 2 and C e C CE S t E∝ ∝f f  (2) 

where 

 
( ) ( )1 2

1 2

1 2

1 2

 =  and =

 and 

a a

a a
C e C C

x x x x

E S t Eχ χ∴ = =

f f
 (3) 

Type 3—A bivariate power relationship that assumes construction average productivity 
e CS Eϖ ≡  is inversely proportional to a power function of the project’s maximum staffing rate8 

maxP& , the maximum staffing rate assumed to be 2
max CP K t≡&  where K  is total life cycle effort 

and is assumed to be / 0.3839CE . The constant of proportionality kc  represents an efficiency 
scale factor9 sometimes referred to as effective technology or process productivity (e.g., Jensen 
[5], Putnam [10], and derivatives). 

                                                 
 
6 Source of the ubiquitous lines per day and lines of code per person-month metrics. 
7 COCOMO uses a system of units that measures effective software size in source lines of code (SLOC), effort in 
person-months, and duration in calendar months. 
8 This assumption is based on observations made by Norden [8] and elaborated for software development by Put-
nam [10] that suggest both construction and life cycle staffing follow the probability density function form of the 
Rayleigh distribution. This assumption implies, as can be seen by the function’s first derivative (rate function), that 
the project’s maximum staffing rate occurs at project start and is equal to life cycle effort divided by the square of 
construction duration. 
9 Jensen [5] and Putnam [10] both use a system of units that measures effective software size in source lines of code 
(SLOC), effort in person-years, and duration in calendar years. 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 4

 

( ) ( )

( )

max

max

1
21

1 2 1

1  where 

1

 or 
0.3839 0.3839

a

k a

aa
a a ae e

C C C Ca a
k k

x x
P

c
P

S SE t E t
c c

ϖ

ϖ

⎛ ⎞
⎜ ⎟ ⎛ ⎞−⎝ ⎠ −⎜ ⎟− −⎝ ⎠

∝ =

=

⎛ ⎞
∴ = = ⎜ ⎟

⎝ ⎠

&

&

f
f

 (4) 

Type 4—A bivariate relationship that assumes the product of power expressions for both con-
struction effort CE  and construction duration Ct  to be proportional to a power expression for 
effective software size eS  where the reciprocal of the constant of proportionality is assumed to 
be an efficiency scale factor η  and where kη  resolves the system of units being used; its value 
being unity when effort is measured in person-weeks and duration is measured in calendar 
weeks. 

 

1

 or 
t

E
EtE e e

C C C C
S SE t E t

k k

αα
ααα

η ηη η

⎛ ⎞
−⎜ ⎟
⎝ ⎠

⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠
 (5) 

The remainder of this paper describes the derivation of a Type 4 model hereinafter referred to as 
the r2 Software Estimating Framework (r2SEF). 

Note that the Type 2 form can be converted to an instantiation of the Type 4 form by multiplica-
tively combining the two resultant equations in Equation (3). 

 

( ) ( )

( ) ( )

1 2

1

2
2

1
1 1

1

1

1 2

111 1 1
1 2

1 2 1

 and 

 or 

a a
C e C C

a
a

a
aa a ea

C C e C

a
C

E S t E

S
E t S E

t

χ χ

χ χ
χ χ

⎛ ⎞
⎜ ⎟
−⎝ ⎠⎛ ⎞

⎛ ⎞ ⎛ ⎞− ⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

= =

⎛ ⎞
⎜ ⎟

∴ = = ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (6) 

This Type 2 instantiation of Type 4 implies 

 
( ) 1

2
1

1 1
1 2

1 1 1 and  and E t

a

a
a a

α α η
χ χ

⎛ ⎞
⎜ ⎟
⎝ ⎠

−
= = ∝  (7) 

Note also that the Type 3 form (resultant Equation (4)) can be viewed as an instantiation of the 
Type 4 form where the exponents on effort and duration are constrained by the Rayleigh-based 
assumption that construction average productivity is inversely proportional to a power function 
of the project’s maximum staffing rate. 

This Type 3 instantiation of Type 4 implies 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 5

 1  and 2  and 0.3839a
E t ka a cα α η= − = ∝  (8) 

where for Jensen [5] 0.5a ≡  and for Putnam [10] 0.6a ≡ . 

2. OBSERVATIONS AND HYPOTHESES 

Fundamental Observations 
Intuition, personal experience, and analysis of historical project data (effort, duration, size, and 
defects) using ordinary least squares (OLS) regression in log-log space yields the following ob-
servations: 

• No free software—Effort (and hence cost) increases monotonically as a function of in-
creasing size (see Figure 1 below). 

 

10

100

1000

10000

100000

1000 10000 100000 1000000
Effective Size (SLOC)

Company X Avionics Projects

Effort vs Effective Size

Ef
fo

rt
 (p

er
so

n-
w

ee
ks

)

μ[H] (Power) 
r²=0.85  R²=0.78

 

Figure 1.  Effort Increases as Size Increases10 

                                                 
 
10 r2 is the square of the Pearson product-moment correlation coefficient between log(x) and log(y). R2 is the square 
of the Pearson product-moment correlation coefficient between the actual yi’s and the estimated yi’s (f(xi)’s), in this 
case assuming a y-intercept of zero. [3] p. 94. 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 6

• No instant software—Duration increases monotonically as a function of increasing size 
(see Figure 2 below). 

10

100

1000

1000 10000 100000 1000000
Effective Size (SLOC)

Company X Avionics Projects

Duration vs Effective Size
D

ur
at

io
n 

(w
ee

ks
)

μ[H] (Power) 
r²=0.64  R²=0.34

 

Figure 2.  Duration Increases as Size Increases 

• No perfect software—Effort increases monotonically as a function of increasing defect 
count (see Figure 3 below). 

100

1000

10000

100000

10 100 1000
Defects Remaining at Delivery (count)

Company X Avionics Projects

Effort vs Defects

Ef
fo

rt
 (p

er
so

n-
w

ee
ks

)

μ[H] (Power) 
r²=0.91  R²=0.63

 

Figure 3.  Effort Increases as Defects Increase 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 7

• Smaller teams are more productive—Productivity increases monotonically as a function 
of decreasing team size (see Figure 4 below). 

y = 101.49x0.4789

r2 = 0.6674

1

10

100

1000

0.001 0.010 0.100 1.000 10.000
Reciprocal Average Staff (1 / people)

Company X Avionics Projects

Productivity versus Inverse Team Size
Pr

od
uc

tiv
ity

 (E
SL

O
C

 p
er

 p
er

so
n-

w
ee

k)

μ[H] (Power) 
r²=0.67  R²=0.56

 

Figure 4.  Productivity Increases as Team Size Decreases 

• Smaller teams produce fewer defects—Defect count increases monotonically as a func-
tion of increasing team size (see Figure 5 below). 

0

1

10

100

1000

0 1 10 100 1000
Average Staff (people)

Company X Avionics Projects

Defects vs Team Size

D
ef

ec
ts

 R
em

ai
ni

ng
 a

t D
el

iv
er

y 
(c

ou
nt

)

μ[H] (Power) 
r²=0.83  R²=0.49

 

Figure 5.  Defects Increase as Team Size Increases 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 8

Projects seek a balance—Irrespective of size, duration and effort are reasonably correlated, 
which suggests some inherent equilibrium between the two (see Figure 6 below). 

10

100

1000

10 100 1000 10000 100000
Effort (person-weeks)

Company X Avionics Projects

Duration vs Effort
D

ur
at

io
n 

(w
ee

ks
)

μ[H] (Power) 
r²=0.74  R²=0.58

 

Figure 6.  Equilibrium Between Duration and Effort 

Fundamental Empirically-Verified Hypotheses 
Software can be estimated as a multiplicative relationship between labor and time—The con-
struction of software requires people to do work over some period of time. For a given project 
environment (people, process, and product): 

• Adding effective software size increases the effort (implied by Figure 1) and/or duration 
(implied by Figure 2). 

• Adding effort increases the potential effective software size (implied by Figure 1) and/or 
reduces the duration (implied by Figure 4 keeping in mind the inverse power relationship 
between productivity and average staff where the exponent on reciprocal average staff is 
less than 1). 

• Adding duration increases the potential effective software size (implied by Figure 2) 
and/or reduces the effort (implied by Figure 4 keeping in mind the inverse power rela-
tionship between productivity and average staff where the exponent on reciprocal aver-
age staff is less than 1). 

Defects can be estimated as a ratio relationship between labor and time—Defects in a software 
product are the unwanted byproduct of people attempting to do work over some period of time. 
For a given project (people, process, and product): 

• Adding effort increases the number of defects (implied by Figure 3). 

• Adding duration decreases the number of defects (implied by Figure 5). 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 9

Combining the two above-mentioned hypotheses for a given project environment (people, proc-
ess, and product) implies the following intuitively-reasonable corollary truisms: 

• Larger software products generally experience more defects than do smaller software 
products. 

• Attempting to achieve a compressed schedule by adding people to a given project gener-
ally increases the number of defects experienced. 

• Relaxing the schedule constraint of a given project offers the opportunity, within limits, 
to reduce cost (less effort) and improve product reliability (fewer defects). 

3. DEFINING EFFORT, DURATION, SIZE, AND PRODUCTIVITY 

Staffing, Duration, and Construction Duration 
We first conceptually define staffing to be some function P  of elapsed calendar time t  that de-
scribes, for a particular instance of a software construction process, the application of people 
over time within the software construction time interval. We define this time interval in absolute 
terms as [ ]start finishT ,T  where startT  and finishT  represent the start and finish dates of the construc-
tion process. In the interest of generalization, we prefer to use a startT -relative frame to describe 
this interval; therefore, startT  relative to startT  is start startT T 0− =  and finishT  relative to startT  is 

finish startT T− , the value of which we will represent as Ct . The resulting startT -relative construction 
interval is [ ]0, Ct . Note that the value of Ct  represents not only the startT -relative point in time 
where construction finishes, it also represents the duration (elapsed calendar time) of the con-
struction interval. 

Effort 
With our conceptual definition of a staffing function P , we now define the concept of effort to 
be some function E  of elapsed calendar time t  that describes, for a particular project, the accu-
mulated result of people doing work over elapsed time t . 

 E P dt≡ ∫  (9) 

Using Equation (9) as our definition of an effort function with respect to its associated staffing 
function we can now define an instantaneous staffing function with respect to its associated ef-
fort function by solving Equation (9) for P . 

 
E P

P E

d d dt

d
dt

=

=

∫
 (10) 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 10

Construction Effort 
We have already defined [ ]0, Ct  to be the startT -relative construction time interval where Ct  
represents construction duration. We now define construction effort CE  to be the change in ef-
fort within this construction time interval. 

 ( ) ( )E E 0C CE t≡ −  (11) 

Effective Software Size 
The software construction process transforms one abstraction (the desire or the requirements) to 
another abstraction (the software product). Each and every abstraction, be it expressed in a natu-
ral language, a programming language, or even as graphic constructs; consists of expression 
primitives that we refer to as expression units (EUs). We choose to define the notion of effective 
software size eS  of a particular abstraction to be the number (count) of EUs in the abstraction 
that are considered to be directly related to the work associated with some software construction 
activity; this work including that associated with developing new software plus that associated 
with selecting, understanding, incorporating, changing, and/or verifying legacy software. 

Average Construction Productivity 
We can now define average software construction productivity ϖ  to be the average amount of 
effective software size eS  that is transformed per unit of effort. In other words, average produc-
tivity is defined as the average effective software size developed per unit of effort; this being 
done over the interval of construction [ ]0, Ct . 

 e

C

S
E

ϖ ≡  (12) 

4. EFFORT-DURATION TRADEOFF RELATIONSHIP 

Software Construction Process Law 
Software is made by people doing work over some period of time; the result being neither free, 
instant, nor perfect. We have already shown that effort CE  and duration Ct  increase monotoni-
cally (and in most cases non-linearly) as functions of increasing effective software size (see 
Figure 1 and Figure 2). Our first empirically-verified hypothesis states that software can be es-
timated as a multiplicative relationship between effort and duration. We therefore propose the 
following generalized relationship: 

 
( ) ( ) ( )
( ) ( ) ( )

E t S

E t S

orC C e

C C e

E t S

E t b S

∝

=

f f f

f f f
 (13) 

where b  represents the constant of proportionality. 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 11

Performing ordinary (linear) least squares (OLS) regression in log-log space on data from past 
projects indicates that both effort and duration are reasonably correlated with effective software 
size (see Figure 1 and Figure 2). These correlations can be generally and reasonably modeled by 
power functions described as 

 

( )
( )
( )

E

t

S

 E

t

S

a

a

a

x x

x x

x x

≡

≡

≡

f

f

f

 (14) 

Substituting Equations (14) into Equation (13) yields 

 ( ) StE
aaa

C C eE t b S=  (15) 

We then scale the resulting optimized exponent values Ea  and ta  to force the exponent on size 
to unity by letting 

 E E S

t t S

a a
a a

α
α
≡
≡

 (16) 

Note the distinction between the English letters “a” and the Greek letters α  (alpha). Substituting 
Equations (16) into Equation (15) yields 

 
( )

1

SE S t S

StE

aa a
C C e

a
C C e

E t b S

E t b S

α α

αα
⎛ ⎞
⎜ ⎟
⎝ ⎠

=

=
 (17) 

We next introduce the concept of data sample mean efficiency η  (Greek lower-case eta bar) and 
choose to define it as being proportional to the reciprocal of the coefficient on effective software 
size 

 

1

1

1

1

s

s

a

a

b

b
kη

η

η

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∝

=

 (18) 

where kη  is a proportionality constant that resolves the system of units being used; its value be-
ing unity when effort is measured in person-weeks and duration is measured in calendar weeks. 

Substituting Equation (18) into Equation (17) yields 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 12

 

1
tE

tE

C C e

e
C C

E t S
k

SE t
k

αα

η

αα

η

η

η

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

=

 (19) 

Values for Eα , tα , and 1
kηη

 in Equation (19) for a specific historical data set can be empirically 

determined by performing two OLS regressions in log-log space on: 

• Actual Effort versus Actual Effective software size (an example of which is shown in 
Figure 1) 

• Actual Duration versus Actual Effort (an example of which is shown in Figure 6) 

The resulting two power functions are 

 1
1

a
C eE b S=  (20) 

and 

 2
2

a
C Ct b E=  (21) 

Multiplicatively combining Equation (20) and Equation (21) yields 

 

1 2

2

1 1

1

1 2

1 1

1

1 2

1

a a
C C e C

a
a a e

C C

a

E t b S b E

SE t

b b

⎛ ⎞ ⎛ ⎞−
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

=

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (22) 

Finally, instantiating the general form Equation (19) with the regression-derived Equation (22) 
implies the following assignments: 

 2

1

1
E

a
a

α −
=  (23) 

 
1

1
t a

α =  (24) 

 
1

1

1 2

1 a

b b
η

⎛ ⎞
⎜ ⎟
⎝ ⎠⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (25) 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 13

Figure 7 tests the correlation implied by Equation (22) using the example data of Figure 1 and 
Figure 6. Note the relatively high resulting 2r  and 2R  values which are indications of a reasona-
bly good estimating relationship. 

100

1000

10000

100000

1000000

1000 10000 100000 1000000
Effective Size (SLOC)

Company X Avionics Projects

Effort-Duration Product vs Effective Size

Ef
fo

rt
-D

ur
at

io
n 

Pr
od

uc
t (

E[
C

]^
a[

E]
*t

[C
]^

a[
t])

μ[H] (Power) 
r²=0.86  R²=0.79

 

Figure 7.  Effort-Duration Product versus Size Correlation 

Specific Efficiency 
We now introduce the notion of a project’s specific efficiency η  (Greek lower-case eta). Each 
instance of the software construction process has a unique value for specific efficiency within the 
context of a particular instantiation of Equation (19). Practically speaking, this means a value for 
specific efficiency of a project relates that project to the other projects in the particular historical 
data set for which Equation (19) has been instantiated and from which this value for specific 
efficiency has been determined. This project-specific value for specific efficiency can be deter-
mined in one of two ways: 

• Empirically—selected to be consistent with specific efficiency values calculated from the 
final actuals of relevant previously-completed projects (often referred to as calibration) or 

• Parametrically—calculated as the result of biasing mean efficiency η  up or down as a 
function of weighted and normalized environmental attributes (sometimes referred to as 
parameters, effort drivers, or cost drivers), each having been shown to significantly influ-
ence a project’s specific efficiency. 

 
1

n

i
i

Parameterη η
=

= ∏  (26) 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 14

Effort-Duration Equation in Terms of the Software Product 
If we instantiate Equation (19) (either empirically or parametrically) to fit the circumstances of a 
particular project, we get 

 tE e
C C

SE t
k

αα

ηη
=  (27) 

Equation (27) is the fundamental software productivity equation. It describes the tradeoff rela-
tionship between total construction effort and total construction duration as a function of the 
project’s expected effective software size and the project’s expected specific efficiency. 

Figure 8 illustrates an example of the software productivity equation instantiated for a particular 
project’s tradeoff relationship exponents Eα  and tα  and for its effective software size eS  and its 
specific efficiency η . 

For a given 
Size and 
Efficiency

 

Figure 8.  Example Project Tradeoff Curve (Software Productivity Law) 

Solving for Construction Effort 
Solving Equation (27) for construction effort we get 

 

1

E

t

e
C

C

SE
k t

α

α
ηη

⎛ ⎞
⎜ ⎟
⎝ ⎠⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (28) 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 15

Solving for Construction Duration 
Solving Equation (27) for construction duration we get 

 

1

t

E

e
C

C

St
k E

α

α
ηη

⎛ ⎞
⎜ ⎟
⎝ ⎠⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (29) 

Solving for Efficiency (Calibration Form) 
Solving Equation (27) for specific efficiency we get 

 
tE

e

C C

S
k E t αα
η

η =  (30) 

Solving for Effective Software Size 
Solving Equation (27) for effective software size we get 

 tE
e C CS k E t αα

ηη=  (31) 

5. DESCRIBING A PARTICULAR EFFORT-DURATION SOLUTION 

Management Stress 
The notion of management stress was suggested by Jensen [5] and described as the inherent 
equilibrium between effort and duration for the software construction process, this equilibrium 
being independent of effective software size and specific efficiency and being constrained by the 
earlier-described Rayleigh-shape staffing assumption (see footnote 8). 

We choose to redefine this notion of management stress by eliminating the Rayleigh-shape staff-
ing assumption constraint and by more-generally postulating that construction effort CE  is pro-
portional to some function f  of construction duration Ct . In other words, for the set of all pro-
jects, ignoring the variety of effective software sizes and of specific efficiencies, as the construc-
tion duration increases, the construction effort increases and vice versa. Stated mathematically 

 
( )
( )

orC C

C C

E t

E b t

∝

=

f

f
 (32) 

where b represents the constant of proportionality. 

Performing OLS regression in log-log space ( ( )log CE  versus ( )log Ct ) (inverting the regression 
shown earlier in Figure 6) on various past project data sets (neither stratified by size nor effi-
ciency) indicates that construction effort increases monotonically (and in most cases non-
linearly) as a function of increasing construction duration (see Figure 9 below). This correlation 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 16

can be generally and reasonably modeled by a power function of the form ax=f . Substituting 

Ct  for x  yields ( ) a
C Ct t=f . Finally, substituting this into Equation (32) and renaming a  to γ  

(Greek lower-case gamma) yields 

 C CE bt γ=  (33) 

10

100

1000

10000

100000

10 100 1000
Duration (weeks)

Company X Avionics Projects

Effort vs Duration

Ef
fo

rt
 (p

er
so

n-
w

ee
ks

)

μ[H] (Power) 
r²=0.74

 

Figure 9.  Effort Increases as Duration Increases 

Note that Type 2 models such as COCOMO [1] imply 21 aγ ≡ . Note also that Jensen [5] and 
Putnam [10] both assume 3γ ≡  (a constant). 

Practically speaking, Equation (33) implies that as the construction duration is increased, the 
resultant construction effort increases, this increase characterized by the parameters γ  and b . 
From a practical standpoint, γ  represents the economy or diseconomy associated with higher 
construction durations and b  is directly related to the data sample mean management stress M . 
This proportionality resolves as follows 

 
M

b M
b k M
∝

=
 (34) 

where Mk  is a proportionality constant that resolves the system of units being used; its value 
being unity when effort is measured in person-weeks and duration is measured in calendar 
weeks. 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 17

Specific Management Stress 
We now introduce the notion of a project’s specific management stress M . Given a data set with 
a sample mean management stress of M  and an economy of γ , each instance of the software 
construction process has unique specific management stress M , this value being tied to that par-
ticular data set and its value for γ . Specific management stress is limited by environmental (per-
sonnel, process, and product) characteristics; this limit can be determined empirically or para-
metrically (similar to the previously-described process for determining specific efficiency). A 
parametric determination takes the form of 

 
1

n

i
i

M M Parameter
=

= ∏  (35) 

Size-Independent Effort-Duration Equation 
If we perform the above-described regression analysis on the final actuals from a reasonably 
relevant set of completed software construction instances, determine the resultant values for pa-
rameters γ  and b , use Equation (34) to determine M , and then parametrically instantiate Equa-
tion (33) with Equation (35), the result is: 

 

( )
1

1

 or

=  or

C C

n

C M i C
i

C M C

C
C

M

C

M C

E bt

E k M Parameter t

E k Mt

Et
k M

EM
k t

γ

γ

γ

γ

γ

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

=

=

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

=

∏
 (36) 

Equation (36) is the fundamental software management stress equation. It describes the rela-
tionship between total construction effort and total construction duration for a given project. It 
will be used in the next two sections to isolate particular effort-duration solutions for given ef-
fective software size and specific efficiency. It will also be used later in the paper as the basis for 
determining the feasible limits of the software productivity equation (minimum duration solution 
and minimum effort solution). 

Solving for Construction Duration 
Substituting the solved-for-effort form of Equation (36) into Equation (27) we get construction 
duration, this being a function of the specific management stress, the effective software size, and 
the specific efficiency. 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 18

 

( )
1

1

E t

E

E tE t

e
M C C

e
C

M

Sk Mt t
k

St
k M k

α αγ

η

α
γα αγα α

η

η

η

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ++ ⎝ ⎠⎝ ⎠

=

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (37) 

Solving for the Construction Effort Associated with a Particular Construction 
Duration 
Substituting the solved-for-time form of Equation (36) into Equation (37) we get the construc-
tion effort associated with a given construction duration as a function of the effective manage-
ment stress, the effective software size, and the specific efficiency. 

 

( )

11

1
E

E tE t

E tt

E t

C e

M M

e
C M

E S
k M k M k

SE k M
k

α
γα αγ γα α

η

γ
γα αα

γα α

η

η

η

⎛ ⎞⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟ ++ ⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟

+⎛ ⎞ ⎝ ⎠
⎜ ⎟

+⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

 (38) 

6. MINIMUM DURATION 

Brooks’ Law 
Adding manpower to a late software project makes it later. [4] Each and every instance of the 
software construction process, by its nature (divisibility or potential for concurrency), can effec-
tively handle only so much management stress (only so many people); therefore, there exists, for 
each and every instance of the software construction process, some minimum achievable con-
struction duration. Software construction, like the aging of a fine wine, takes time and cannot be 
rushed beyond a certain point.11 Jensen [5], Putnam [10], and others have analyzed historical 
project data and concluded that this certain point can be defined in terms of a project’s maxi-
mum achievable specific management stress given its degree of technical difficulty. 

Maximum-Achievable Specific Management Stress 
For each instance of the software construction process (a given project with given effective soft-
ware size and given specific efficiency), there exists a maximum-achievable specific manage-
ment stress value maxM . In other words, each project, by its nature (divisibility or potential for 
concurrency), can effectively handle only so many additional people at a given time. 

                                                 
 
11 Analogy frequently used by Dr. Randy Jensen in numerous presentations on this topic. 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 19

Qualitatively, maximum-achievable specific management stress is proportional to some function 
of a project’s potential for parallelism; specifically, the speed with which the problem can be 
decomposed (divided and assigned to additional staff, the resulting work being performed in 
parallel). Keeping in mind the typical inverse relationship between maximum specific manage-
ment stress and technical difficulty, this implies that more difficult projects (lower possible spe-
cific management stress values) tend toward serial task dependencies while less difficult projects 
(higher possible specific management stress values) allow for more parallel task dependencies. 

Mathematically, the notion of a maximum-achievable value for specific management stress 
maxM  can be expressed as 

 maxM M≥  (39) 

Since this notion of a maximum-achievable value is somewhat theoretical, we suggest a conser-
vatively-reasonable value for maxM  in estimation situations is the y-intercept of the 1σ+  trend 
line (e.g., the first dashed line above the solid line in Figure 9) of the OLS regression applied to 

( )log CE  versus ( )log Ct  from the relevant historical data set. 

Substituting Equation (36) into Equation (39) yields 

 max

max

orC

M C

C M C

EM
k t

E M k t

γ

γ

≥

≤

 (40) 

Figure 10 shows the region excluded by Equation (40) in red given a value for maximum spe-
cific management stress maxM . Note that the curve described by the margin between the red re-
gion and the white region is the minimum duration limiting function (Equation (40) as an equal-
ity). 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 20

ImpossibleImpossible

For a given 
Size and 
Efficiency

 

Figure 10.  Minimum Duration Limit 

Since maximum-achievable specific management stress maxM  bounds the maximum amount of 
parallelism that can be incorporated into project scheduling, Equation (40) implies the existence 
of a minimum-achievable duration minCt  with associated effort 

minCt
E . 

Solving for Minimum Construction Duration 
Instantiating Equation (37) with minCt  and maxM  we get the minimum construction duration, this 
being a function of the maximum-achievable specific management stress, the effective software 
size, and the specific efficiency. 

 

1

min
max

1
E

E tE t
e

C
M

St
k M k

α
γα αγα α

ηη

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ++ ⎝ ⎠⎝ ⎠ ⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (41) 

Solving for Effort Associated with Minimum Construction Duration 
Instantiating Equation (38) with 

minCt
E  and maxM  we get the effort associated with the minimum 

construction duration, this being a function of the maximum-achievable specific management 
stress, the effective software size, and the specific efficiency. 

 ( )
min max

E tt

E t
C

e
t M

SE k M
k

γ
γα αα

γα α

ηη

⎛ ⎞
⎜ ⎟

+⎛ ⎞ ⎝ ⎠
⎜ ⎟

+⎝ ⎠
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (42) 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 21

Figure 11 shows the minimum construction duration and its associated effort as one of the solu-
tions on the effort versus schedule (duration) tradeoff curve. Note that the minimum duration 
solution is defined as the intersection of the fundamental software productivity equation (Equa-
tion (28)) and the Brooks’ Law or minimum duration limiting function (Equation (40) as an 
equality)). 

ImpossibleImpossible

Minimum Time

For a given 
Size and 
EfficiencyImpossibleImpossible

Minimum Time

For a given 
Size and 
Efficiency

 

Figure 11.  Minimum Duration Solution 

7. MINIMUM EFFORT 

Parkinson’s Law 
Work expands so as to fill the time available for its completion. [9] Theoretically, a specific in-
stance of a software construction process is not limited by some maximum construction duration. 
Rare is the software engineer who complains about having too much time to develop software. 
However, we submit that there exists, for each and every project, some duration that yields 
maximum productivity; i.e., some duration that represents the most efficient combination of pro-
ject decomposition and corresponding use of labor. 

Minimum-Practical Specific Management Stress 
For each instance of the software construction process, we submit that maximum productivity 
occurs at some point of minimum-practical specific management stress. This point of minimum 
practical specific management stress minM  defines the optimum use of people over time, and 
represents a practical limit to the benefit of schedule relaxation. 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 22

Mathematically, the notion of a minimum value for specific management stress minM  can be 
expressed as 

 minM M≤  (43) 

Since this notion of a minimum-practical value is somewhat theoretical, we suggest a conserva-
tively-reasonable value for minM  in estimation situations is the y-intercept of the 1σ−  trend line 
(e.g., the first dashed line below the solid line in Figure 9) of the OLS regression applied to 

( )log CE  versus ( )log Ct  from the relevant historical data set. 

Substituting Equation (36) into Equation (43) yields 

 min

min

orC

M C

C M C

EM
k t

E M k t

γ

γ

≤

≥

 (44) 

Figure 12 shows the region excluded by Equation (44) in yellow given a value for minimum spe-
cific management stress minM . Note that the curve described by the margin between the yellow 
region and the white region is the minimum effort limiting function (Equation (44) as an equal-
ity). 

ImpracticalImpractical

ImpossibleImpossible

For a given 
Size and 
Efficiency

 

Figure 12.  Minimum Effort Limit 

Since minimum specific management stress minM  bounds the minimum effective amount of pro-
ject parallelism that can be assumed before Parkinson’s law overrides the cost benefit of sched-

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 23

ule relaxation, Equation (44) implies the existence of a minimum-achievable effort minCE  with 
associated duration 

minCEt . 

Solving for Minimum Construction Effort 
Instantiating Equation (38) with minCE  and minM  we get the minimum construction effort, this 
being a function of the minimum specific management stress, the effective software size, and the 
specific efficiency. 

 ( )min min

E tt

E t
e

C M
SE k M

k

γ
γα αα

γα α

ηη

⎛ ⎞
⎜ ⎟

+⎛ ⎞ ⎝ ⎠
⎜ ⎟

+⎝ ⎠
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (45) 

Solving for Duration Associated with Minimum Construction Effort 
Instantiating Equation (37) with 

minCEt  and minM  we get the duration associated with the mini-
mum construction effort, this being a function of the minimum specific management stress, the 
effective software size, and the specific efficiency. 

 
min

1

min

1
E

E tE t

C

e
E

M

St
k M k

α
γα αγα α

ηη

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ++ ⎝ ⎠⎝ ⎠ ⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 (46) 

Figure 13 shows the minimum construction effort and its associated duration as one of the solu-
tions on the effort versus schedule (duration) tradeoff curve. Note that the minimum effort solu-
tion is defined as the intersection of the fundamental software productivity equation (Equation 
(28)) and the Parkinson’s Law or minimum effort limiting function (Equation (44) as an equal-
ity)). 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 24

ImpracticalImpractical

ImpossibleImpossible

For a given 
Size and 
Efficiency

Minimum Effort

ImpracticalImpractical

ImpossibleImpossible

For a given 
Size and 
Efficiency

Minimum Effort

 

Figure 13.  Minimum Effort Solution 

8. DEFECTS 

Taxonomy 
In order to derive the defects estimating portion of our evolving model it is useful to establish 
definitions of the terminology associated with software reliability. For the most part, we choose 
to adopt Musa’s [7] definitions with minor modification: 

Failure—“…departure of the external results of system operation from user [desires].”12 

Fault—“…defective, missing, or extra [expression unit] or set of related [expression units] that 
is the cause of one or more actual or potential failures.”13 

Error—“…incorrect or missing action by a person or persons that causes a fault in a program.”14 

Problem or Issue—The documented observation of some undesired aspect or aspects of a soft-
ware product and/or its related documentation; typically contained in the form of an artifact; e.g., 
problem report, trouble report, issue report, etc. Problems, according to this definition, are very 
imprecise (such is the nature of problem reporting systems) and can contain, within their scope, 
various combinations of failures, faults, errors, and suggested enhancements. Duplicates and 
overlaps are not uncommon. 
                                                 
 
12 [7] p. 208 
13 [7] p. 213 
14 [7] p. 215 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 25

Defect—The documented result of a problem review process that seeks to identify and isolate the 
fault(s) associated with a particular problem. This definition implies a review process with one 
of its objectives being to achieve a near one-to-one correspondence between defects and faults. 

Unacceptable Defect—A defect, the removal of which, is considered a necessary condition for 
software product acceptance (e.g., certification, customer buy-off, general availability, contract 
satisfaction, etc.). 

Defect Occurrence Function 
We first conceptually define cumulative defect occurrence to be some function Φ  (Greek upper-
case phi) of elapsed calendar time t  that describes, for a particular project, the accumulation of 
discovered defects over elapsed calendar time within the software construction time interval 
[ ]0, Ct . 

Defect Occurrence Rate Function 
With our conceptual definition of cumulative defect occurrence Φ , we now define the concept 
of defect occurrence rate (sometimes referred to as instantaneous defect occurrence) to be some 
function Φ& of elapsed calendar time t  that describes, for a particular project, the rate that de-
fects are being discovered at a particular point in time within the construction time interval 
[ ]0, Ct . 

 d
dt

Φ ≡ Φ&  (47) 

which implies 

 dtΦ = Φ∫ &  (48) 

Software Construction Process Law (Revisited) 
Software is made by people doing work over some period of time; the result being neither free, 
instant, nor perfect. We have already concluded, from our fundamental observations, that defect 
count [ , ]a bΦ  (number of defects discovered during the startT -relative time interval [ ],a bt t ) in-
creases monotonically (and in most cases non-linearly) as a function of increasing effort. Practi-
cally speaking, this implies that the software construction process has two primary outputs: the 
deliverable product software and the defects that it contains; i.e., defects, like code, can be con-
sidered products (albeit undesirable) of the process. Our second empirically-verified hypothesis 
(introduced earlier in this paper) states that defects can be estimated as a ratio relationship be-
tween labor and time. We therefore propose the following generalized relationship: 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 26

 

( )
( ) [ ]( )
( )
( ) [ ]( )

E
,

t

E
,

t

orC
a b

C

C
a b

C

E
t

E
b

t

Φ

Φ

Φ

Φ

∝

=

g
g

g

g
g

g

 (49) 

where b  represents the constant of proportionality. 

Performing OLS regression in log-log space on data from past projects indicates that both effort 
and duration can change non-linearly as functions of total defects. This nonlinear behavior is 
best predicted (yields the highest correlation) by power functions described as 

 

( )
( )
( )

E

t

 E

t

a

a

a

x x

x x

x x Φ
Φ

≡

≡

≡

g

g

g

 (50) 

Substituting Equations (50) into Equation (49) yields 

 [ ],
tE aa a

C C a bE t b ΦΦ− =  (51) 

We then scale the exponents to force the exponent on total defects to unity by letting 

 E E

t t

a a
a a

Φ

Φ

ϕ
ϕ

≡
− ≡

 (52) 

Substituting Equations (52) into Equation (51) yields 

 
[ ]

[ ]

,

1

,

tE

tE

aa a
C C a b

a
C C a b

E t b

E t b

ΦΦ Φ

Φ

ϕϕ

ϕϕ

Φ

Φ
⎛ ⎞
⎜ ⎟
⎝ ⎠

=

=
 (53) 

We next introduce the concept of data sample mean defect vulnerability [ ],a bδ  (Greek lower-case 
delta bar) and choose to define it as being proportional to the reciprocal of the coefficient on 
total defects 

 

[ ]

[ ]

,1

1

,

1

1

s

s

a b

a

a

a b

b

b
kδ

δ

δ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∝

=

 (54) 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 27

where kδ  is a proportionality constant that resolves the system of units being used; its value be-
ing unity when effort is measured in person-weeks and duration is measured in calendar weeks.  

Substituting Equation (54) into Equation (53) yields 

 [ ]
[ ]

[ ]

[ ]

,
,

,

,

1
tE

tE

C C a b
a b

a b
C C

a b

E t
k

E t
k

ϕϕ

δ

ϕϕ

δ

Φ
δ

Φ

δ

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

=

 (55) 

Values for Eϕ , tϕ , and 
[ ],

1

a bkδδ
 in Equation (55) for a specific historical data set can be empiri-

cally determined by performing two OLS regressions in log-log space on: 

• Actual Effort versus Actual Defects (an example of which is shown in Figure 3) 

• Actual Duration versus Actual Effort (an example of which is shown in Figure 6) 

The resulting two power functions are 

 3
3

a
C CE bΦ=  (56) 

and 

 2
2

a
C Ct b E=  (57) 

Ratio combining Equation (56) and Equation (57) yields 

 

3

2

2

3 3

3

3

2

1 1

1

2

3

a
C C

a
C C

a
a a C

C C

a

E b
t b E

E t
b
b

Φ

Φ
⎛ ⎞ ⎛ ⎞+

−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

=

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (58) 

Finally, instantiating the general form Equation (55) with the regression-derived Equation (58) 
implies the following assignments: 

 2

3

1
E

a
a

ϕ +
=  (59) 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 28

 
3

1
t a

ϕ
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 (60) 

 
3

1

2

3

ab
b

δ

⎛ ⎞
⎜ ⎟
⎝ ⎠⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (61) 

Figure 14 tests the correlation implied by Equation (58) using the example data of Figure 3 and 
Figure 6. Note the relatively high resulting 2r  and 2R  values which are indications of a reasona-
bly good estimating relationship. 

1

10

100

1000

1 10 100 1000
Defects Remaining at Delivery (count)

Company X Avionics Projects

Effort-Duration Ratio vs Defects

Ef
fo

rt
-D

ur
at

io
n 

R
at

io
 (E

[C
]^

a[
E]

/t[
C

]^
a[

t])

μ[H] (Power) 
r²=0.85  R²=0.49

 

Figure 14.  Effort-Duration Ratio versus Defects Correlation 

Specific Defect Vulnerability 
We now introduce the notion of a project’s specific defect vulnerability [ ],a bδ  (Greek lower-case 
delta). Each instance of the software construction process has a unique value for specific defect 
vulnerability that is driven by environmental (personnel, process, and product) characteristics. 
This project-specific value for specific defect vulnerability can be determined in one of two 
ways: 

• Empirically—selected to be consistent with specific defect vulnerability values calcu-
lated from the final actuals of relevant previously-completed projects (often referred to as 
calibration) or 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 29

• Parametrically—calculated as the result of biasing mean defect vulnerability [ ],a bδ  up or 
down as a function of weighted and normalized environmental attributes (sometimes re-
ferred to as parameters, effort drivers, or cost drivers), each having been shown to sig-
nificantly influence a project’s specific defect vulnerability. 

 [ ] [ ], ,
1

n

ia b a b
i

Parameterδ δ
=

= ∏  (62) 

Effort-Duration Equation in Terms of Defects Produced 
If we instantiate Equation (55) (either empirically or parametrically) to fit the circumstances of a 
particular project, we get 

 [ ]

[ ]

,

,

tE a b
C C

a b

E t
k

ϕϕ

δ

Φ

δ
=  (63) 

Equation (63) is the fundamental software defect propensity equation. It describes the relation-
ship between total construction effort and total construction duration as a function of the pro-
ject’s expected defect count and the project’s expected specific defect vulnerability.15 

Solving for Construction Effort 

 [ ]

[ ]

1

,

,

E

t

a b
C

Ca b

E
k t

ϕ

ϕ
δ

Φ

δ

⎛ ⎞
⎜ ⎟
⎝ ⎠

−

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (64) 

Solving for Construction Duration 

 [ ]

[ ]

1

,

,

t

E

a b
C

Ca b

t
k E

ϕ

ϕ
δ

Φ

δ

⎛ ⎞
⎜ ⎟
⎝ ⎠⎛ ⎞

⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (65) 

Solving for Defects 
 [ ] [ ], ,

tE
C Ca b a bk E t ϕϕ

δΦ δ=  (66) 

Solving for Defect Vulnerability (Calibration Form) 

 [ ]
[ ],

, tE

a b
a b

C Ck E t ϕϕ
δ

Φ
δ =  (67) 

                                                 
 
15 The fairly general way in which defect count and defect vulnerability are defined allow for defect count to be 
specified within any range in the software construction process. Note that the scale of defect vulnerability is always 
associated with the particular defect count range. Note also that it is possible to use defect density at some particular 
point in the construction process in place of defect count as long as defect vulnerability is scaled accordingly. 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 30

Solving for Defects as a Function of Duration and Independent of Effort 
Substituting the solved-for-effort form of Equation (36) into Equation (66) yields 

 [ ] [ ] ( )
[ ] [ ] ( ) ( )

, ,

, ,

E t

E E t

M C Ca b a b

M Ca b a b

k k Mt t

k k M t

ϕ ϕγ
δ

ϕ γϕ ϕ
δ

Φ δ

Φ δ +

=

=
 (68) 

Solving for Duration Independent of Effort 
Solving Equation (68) for construction duration Ct  yields 

 [ ]

[ ] ( )

1

,

,

E t

E

a b
C

Ma b

t
k k M

γϕ ϕ

ϕ
δ

Φ

δ

⎛ ⎞
⎜ ⎟

+⎝ ⎠⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 (69) 

Defects with Respect to Minimum Duration 
Substituting Equation (64) into Equation (40) and solving for expected number of discovered 
defects during construction [ ],a bΦ  yields 

 
[ ]

[ ]

[ ] [ ] ( ) ( )

1

,
max

,

max, ,

E

t

E E t

a b
M C

Ca b

M Ca b a b

M k t
k t

k M k t

ϕ
γ

ϕ
δ

ϕ γϕ ϕ
δ

Φ

δ

Φ δ

⎛ ⎞
⎜ ⎟
⎝ ⎠

+

⎛ ⎞
⎜ ⎟ ≤
⎜ ⎟
⎝ ⎠

≤

 (70) 

Defects with Respect to Minimum Effort 
Substituting Equation (64) into Equation (44) and solving for expected number of discovered 
defects during construction CΦ  yields 

9. SUMMARY AND CONCLUSION 

Purpose and Scope Revisited 
This paper documents the basis, assumptions, and derivations behind a set of general software 
effort, duration, and defects estimating relationships that are based on the notion that software 
construction is the application of effort (labor) over some duration (period of elapsed calendar 
time) that produces a desired software product (size) and undesired byproducts (defects). The 
derivations, assumptions, and resulting model described by this paper establish relationships 
between size, efficiency, effort, duration, and defects and are collectively referred to as the Ross 
Software Estimating Framework. 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 31

Areas for Further Study 
The following are the author’s observations and suggest possible opportunities for enhancing 
RSEF capabilities: 

• The behavior of most currently-available software project estimating models (e.g., 
COCOMO 81 [1], COCOMO II [2], Jensen [5], and Putnam [10]) can be emulated by the 
RSEF equations given a corresponding instantiation of the RSEF variables Eα , tα , γ , 

Eϕ , tϕ , minM , nomM , and maxM . Instantiation values can be derived by algebraic ma-
nipulation of the particular model’s estimating equation(s). We reasonably assume that 
the ability to emulate the behavior of multiple models plus the ability to estimate based 
on relevant historical data (both possible with the RESF) should provide increased over-
all estimate credibility.16  

• The primary independent variables effective software size, specific efficiency, and defect 
vulnerability are uncertain until project completion. This suggests a stochastic dimension 
to the problem; i.e., effective software size, specific efficiency, and defect vulnerability 
should all be treated as random variables. The results of this treatment should be distribu-
tions of possible outcomes for effort, duration, cost, and discovered defects with associ-
ated confidence probabilities. 

• Labor (the motive force), effective software size (the evolving product), and discovered 
defects are each dynamic; i.e., they can vary as the project progresses. This implies esti-
mates at completion and estimates to complete are similarly dynamic. While the model 
described in this paper is adequate to estimate values for the total software construction 
process, it begs for a time-range differential calculus approach to provide in-process es-
timates once the project is under way. 

                                                 
 
16 A recurring theme in recent International Society of Parametric Analysts conferences (particularly the “Renew 
Your Training” segments) has been the desire for multiple estimating model cross-checking in order to enhance 
estimate credibility and confidence. 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com



 32

REFERENCES 

[1] Boehm, B., Software Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs, NJ, 
1981. 

[2] Boehm, B. [et al.], Software Cost Estimation with COCOMO II, Prentice-Hall, Inc., Upper 
Saddle River, NJ, 2000. 

[3] Book, S.A. and Young, P.H., “The Trouble with R2,” Journal of Parametrics, Vol. 25, No. 1 
(Summer 2006). 

[4] Brooks, F., The Mythical Man-Month, 20th Anniversary Edition, Addison-Wesley Publish-
ing Company, Reading, MA, 1975, 1995. 

[5] Jensen, R., “An Improved Macrolevel Software Development Resource Estimation 
Model,” Software Engineering, Inc. 

[6] Jensen, R., “Software Estimating Models: Three Viewpoints,” CrossTalk, The Journal of 
Defense Software Engineering, STSC, Hill AFB, UT, May 1997. 

[7] Musa, J., Software Reliability Engineering: More Reliable Software Faster and Cheaper, 
2nd. Edition, AuthorHouse, Bloomington, IN, 2004. 

[8] Norden, P., “Project Life Modeling: Background and Application of Life Cycle Curves,” 
Software Life Cycle Management Workshop, Sponsored by USACSC, Airlie, VA, August 
1977. 

[9] Parkinson, C., Parkinson’s Law: The Pursuit of Progress, John Murray, London, UK, 
1958. 

[10] Putnam, L. Software Cost Estimating and Life-Cycle Control: Getting the Software Num-
bers, Computer Society Press, IEEE Computer Society, New York, NY, 1980. 

[11] Ross, M., “Software Project Dynamics: A Productivity versus Staffing Approach,” Proc. 
ISPA 2006 Conference, May 2006. 

BIOGRAPHY 

Mike Ross has over 30 years of experience in software engineering as a developer, manager, 
process champion, consultant, instructor, and award-winning international 
speaker. Mr. Ross is currently the President and CEO of r2Estimating, 
LLC. Mr. Ross’s previous experience includes three years as Chief Engineer of 
Galorath Inc. (makers of the SEER suite of estimation tools), seven years with 
Quantitative Software Management, Inc. (makers of the SLIM suite of software 
estimating tools) where he was Vice President of Education Services, and 17 
years with Honeywell Air Transport Systems (formerly Sperry Flight Systems) 
and 2 years with Tracor Aerospace where he developed or managed the devel-

opment of embedded software for avionics systems installed various commercial airplanes and 
for expendable countermeasures systems installed in various military aircraft. He also co-
founded Honeywell Air Transport Systems’ SEPG, served as its focal for software project man-
agement process improvement, and served as a Honeywell corporate SEI CMM assessor. Mr. 
Ross did his undergraduate work at the United States Air Force Academy and Arizona State 
University, receiving a Bachelor of Science in Computer Engineering. 

 

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com




