Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com

Software Development Schedule Realism: Prediction Band Tool

NORTHROP GRUMMAN

DEFINING THE FUTURE

June 2007

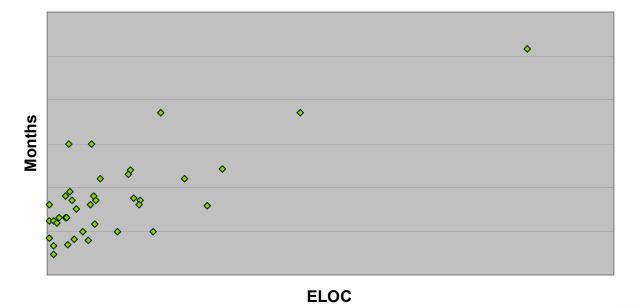
Allison Converse, Jeff Jaekle, Eric Druker Intelligence Group (TASC) Northrop Grumman Corporation

Outline

- Purpose
- Data Collection & Normalization
 - Code Language Adjustment
- Regression Analysis
- Prediction Bands
- Schedule Realism Prediction Band Tool
- Alternate Data Application
- Examples
- Conclusions
- Future Research

Purpose

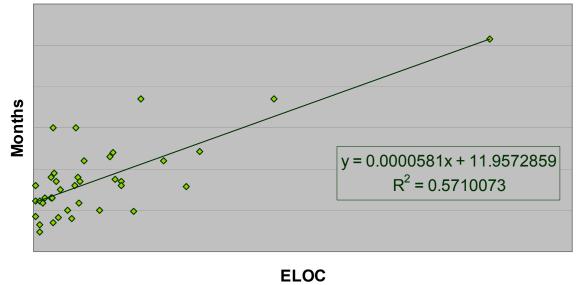
- The schedule realism tool provides:
 - A methodology for producing schedule distributions based on historical programs for similar programs
 - The tool can be easily updated to incorporate additional data as it becomes available
 - A schedule prediction band for a proposed software development program based on ELOC
 - Having this prediction band allows the user to determine:
 - A suggested schedule length
 - This length can be chosen to reflect a level of risk acceptable to decision makers
 - The probability that a proposed software development schedule will be met
 - Upside/Most Likely/Downside scenarios for the final schedule
 - A new schedule prediction as ELOC changes


Application:

 Knowing both the probability of achieving a proposed schedule and the schedule length for an associated level of risk is invaluable when decision makers consider schedule changes, risk mitigation plans, funding and other decisions

Data Collected

- Collected 39 data points from completed Automated Information System (AIS) Segment software development releases
 - Final Schedule was scatter-plotted against ELOC at Complete
 - Final Schedule is defined in Months
 - Start date: Requirements Review
 - End date: Pre-Ship Review (PSR)
 - ELOC at Complete break outs by code language are known

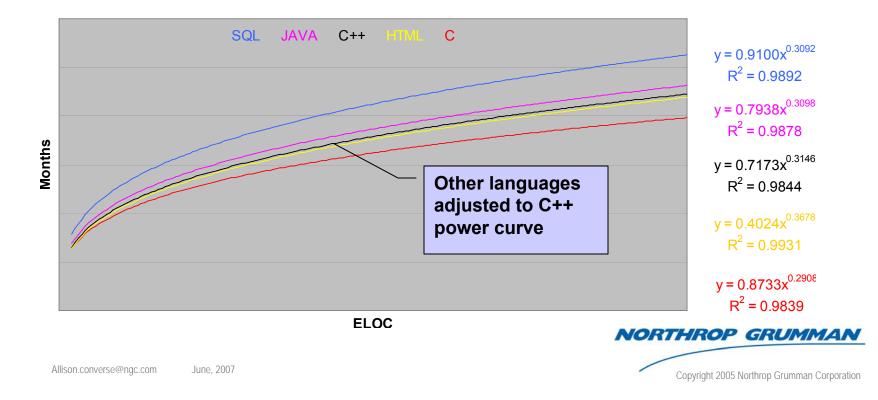


Unadjusted ELOC vs. Months

Code Language Adjustments

- The data graphed below is the raw ELOC data
 - A linear, statistically significant regression exists
 - Regression line equation: y = 5.81E-05*x + 11.96
- The data shown includes bias due to code language
 - Time per line of code differs based on programming language
 - For example, it takes longer to code one line of SQL than it does to code one line of C++
 - The steps by which the data was adjusted and the results of the normalization are shown on the following slides

Unadjusted ELOC vs. Months

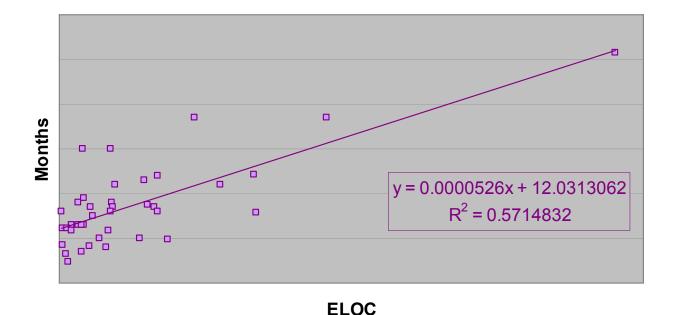

Code Language Adjustments (cont'd)

- A commercially available software cost estimating tool was used to determine the power curves for the five most common languages in the data set (SQL, Java, C++, HTML, C)
 - Graphs of the power curves for C++, C, HTML, Java and SQL can be seen on the following slide
- C++ was chosen as the baseline language
 - The majority of the code within the data set was C++
 - As seen on the following graph, the C++ power curve is the middle curve.
 - Normalizing to the middle curve minimizes the effect of potential errors in the curves as adjustments are minimized
- For the languages that were present in the data set but not adjusted (D, IDL, JSP and Scripts), the amount of code in the data set was negligible

Code Language Adjustments (cont'd)

- The commercially available software cost estimating tool was used with all settings at notional except language
- For all five language, 15 incremental values of ELOC were entered
- The resulting output for each language was fit with a power curve
 - The corresponding equations are then use to determine a correction for language (detailed on the following slide)
- The resultant power curves are shown below:

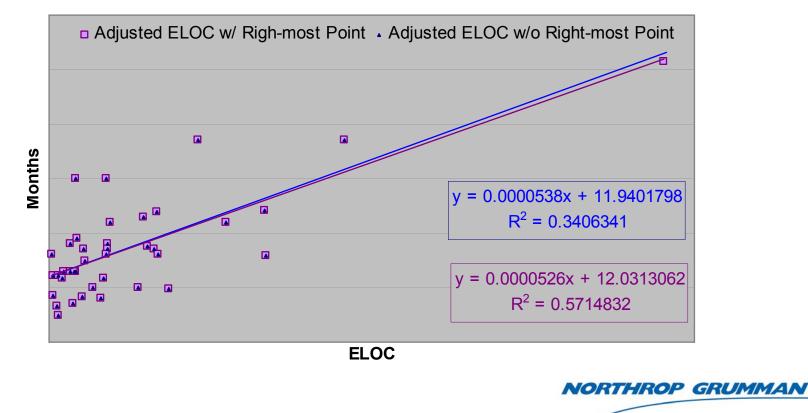
Code Language Power Curves: Months vs ELOC


Code Language Adjustments (cont'd)

- Use the power curves from the graph on the previous slide to convert the other code languages to the equivalent in C++
 - Find the Power curve for C++
 - Number of months = a*(C++ ELOC)^b
 - Find the Power curve for other language
 - Number of months = c*(Other ELOC)^d
 - So at a set number of months n
 - n = a*(C++ ELOC)^b, n = c*(Other ELOC)^d
 - a*(C++ ELOC)^b = c*(Other ELOC)^d
 - C++ ELOC = (c/a) ^(1/b) *(Other ELOC) ^(d/b)
- The results were as follows:
 - C++ ELOC = 2.13 * (SQL ELOC) ^{0.98}
 - C++ ELOC = 1.38 * (Java ELOC) ^{0.98}
 - C++ ELOC = 1.87 * (HTML ELOC) ^{0.92}
 - C++ ELOC = 0.16 * (C ELOC) ^{1.17}

Regression of Adjusted Data

- All C, HTML, Java & SQL ELOC were converted into equivalent C++ ELOC
- A linear relationship was found between ELOC and the Final Schedule
- Regression line equation: y = 5.26E-05*x + 12.03
 - p-Value = 2.63E-08, statistically significant
 - Checked for bias from the right-most data point, no bias exists (Shown on the following slide)

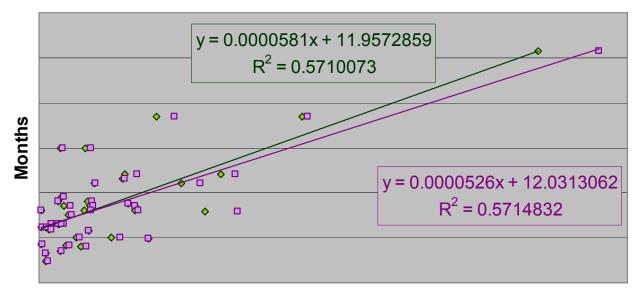


Adjusted ELOC vs. Months

Regression of Adjusted Data (cont'd)

- As expected, the R² decreases
- Without the right-most point the regression is still statistically significant
- The difference between the two equations is minimal

Bias of Right-most data point: ELOC vs. Months



Copyright 2005 Northrop Grumman Corporation

Unadjusted vs. Adjusted

- Normalizing the data to a common language did not significantly alter the regression, but did improve it slightly
 - Unadjusted R² of 0.5710 vs. Adjusted R² of 0.5715
- A comparison of the two regressions can be seen below:

Unadjusted vs Adjusted: ELOC vs. Months

Prediction Bands

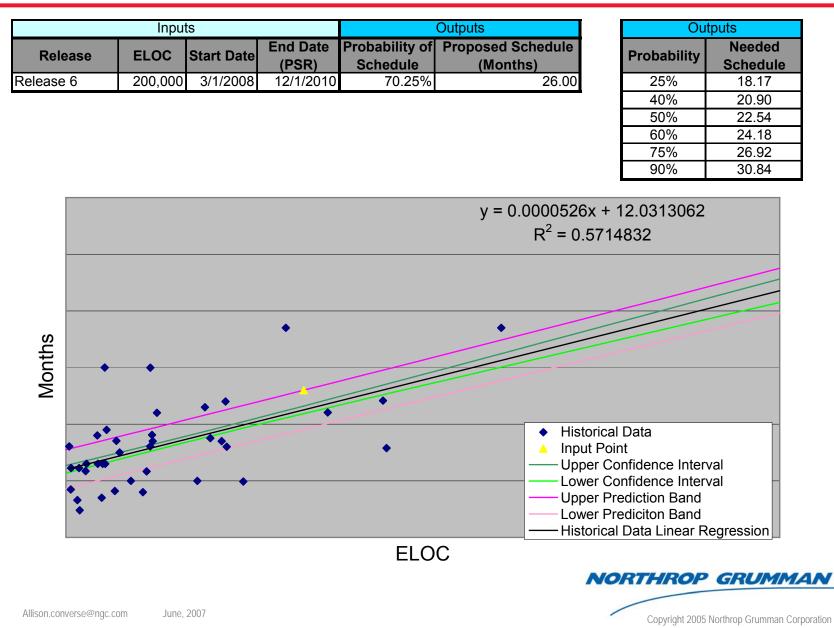
- A Confidence Interval determines the probability that a true value is within a certain range
- A Prediction Interval is a Confidence Interval for Y at a fixed X
 - Since the Prediction Interval is for Y at a fixed X, the probability of the value being within a certain range includes the error in the coefficients of the regression equation in addition to the error of the equation itself
 - As a Prediction Interval accounts for more error than a Confidence Interval, the range of a Prediction Interval will be larger than the range of a Confidence Interval
- A series of Prediction Intervals forms a Prediction Band about the Regression line
 - The smallest range for a Prediction Interval will occur at the mean X value
 - This will be reflected in the Prediction Bands which will be arced about the regression
- Used in the Schedule Realism Tool, Prediction Bands:
 - Calculate the probability that the Proposed Schedule will be less than or equal to the Actual Schedule
 - Allow decision makers to propose a schedule with a desired confidence

Prediction Band Calculation

Where:

- Ŷ = The y-value calculated from the regression line at the given x-value
- t_{α,df} = The Student t distribution
- SEE = Standard Error of the Estimate
- n = The number of observations
- X = The observed x-values
- X_{bar} = The mean of the observed x-values

Schedule Realism Prediction Band Tool


- The Inputs and Outputs of the tool can be seen in a screen shot of the tool on the following slide
 - Inputs
 - Adjusted ELOC
 - It should be noted that using the tool with ELOC outside the range of data tends to provide very wide prediction bands and should be avoided
 - Proposed Start Date (Requirements Review)
 - Proposed End Date (PSR)
 - Outputs
 - Probability of achieving the proposed schedule
 - Probability that actual schedule is less than or equal to proposed schedule
 - The associated schedules (in months) for predetermined probabilities
 - The schedules are predicted by the tool based on the ELOC input

Methodology of the tool

- For the given ELOC, prediction intervals are calculated at every 0.005 α-level
- The proposed schedule is then matched to an end point of a prediction interval and the corresponding α-level is determined
 - Below the regression line, the probability is $0.5 (1-\alpha)/2$
 - Above the regression line, the probability is $0.5 + (1-\alpha)/2$

Schedule Realism Prediction Band Tool Screenshot

Application for Alternate Data Sets

- The methodology used to create tool can be applied to any program if the right information is available
- Data required:
 - Schedule Duration
 - A statistically significant schedule driver
 - The regression statistics from the regression

Example 1

- Example 1 No Code Growth Applied
 - Proposed Schedule = 18 Months
 - 90,000 C++ ELOC New Code
 - 10,000 Java ELOC Reused Code
 - 60% New Code Growth factor

Prediction Band Tool Results

- Convert ELOC to C++ equivalent
 - 90,000 + 10,000*Code adjustment function
 - 90,000 + 11,991
 - 101,991 ELOC
- Input 101,991 ELOC and 18 Months into the tool
- From the regression line 101,991 ELOC would have a 19.45 Month schedule
- Calculate the intersecting Prediction Band
 - Probability of 39.75% of completing the release within 18 months

Example 2

- Example 2 Code Growth Applied
 - Proposed Schedule = 18 Months
 - 90,000 C++ ELOC New Code
 - 10,000 Java ELOC Reused Code
 - 60% New Code Growth factor

Prediction Band Tool Results

- Convert ELOC to C++ equivalent
 - (90,000*1.6) +10,000*Code adjustment function
 - **144,000 + 11,991**
 - 155,991 ELOC
- Input 155,991 ELOC and 18 Months into the tool
- From the regression line 155,991 ELOC would have a 23.08 Month schedule
- Calculate the intersecting Prediction Band
 - Probability of 18.75% of completing the release within 18 months.

Future Research

- Instead of length of schedule (months), use effort (hours) to measure the development time
 - Calculate the prediction bands using hours from Contract Performance Report (CPR) data to develop the historical data set
- Improve the range of the data to make the tool applicable to a wider range of release sizes
 - Develop a separate tools for small releases
 - The historical data currently available does not include many segments with short schedule lengths
 - Tool is only as good as the scope of the historical data, so larger data points are needed to make the tool applicable to larger efforts
- Consolidate the Schedule Realism Prediction Band Tool from this paper with the tool developed in the 2007 SCEA Paper: "Software Estimation Through the Use of Earned Value Data" (Jaekle, Greene, et al.) to produce a statistically based distribution of cost and schedule based on ELOC

Conclusions

- For the AIS data set, a linear relationship exists between ELOC and Schedule
 - Regression line equation: $y = 5.81E-05^*x + 11.96$
- Normalizing for code language does not impact the regression significantly
 - Normalized regression line equation: y = 5.26E-05*x + 12.03
 - Improves the regression slightly but remains a linear relationship

The linear relationship of ELOC and Schedule is unexpected

The commonly used equation for predicting software development effort (in this case schedule) is a power equation in the form of: effort = a*size^b

A tool was created which:

- Can be used for any data set that has a statistically significant schedule driver
- Produces schedule distributions based on historical programs for similar programs
- Calculates a prediction band for a proposed software development schedule based on ELOC, which allows the user to determine:
 - A suggested schedule length for a level of risk acceptable to decision makers
 - The probability that a proposed schedule will be met
 - Upside/Most Likely/Downside scenarios for the final schedule
 - A new schedule prediction as ELOC changes

References

- "Schedule Realism Analysis," Blackburn, Chelson and Eng, AMC Study, April, 2002
- "Schedule and Cost Growth," Coleman, Summerville and Dameron, SCEA, 2002
- "Software Estimation Through the Use of Earned Value Data," Jaekle, Greene, et al., SCEA, 2007

