

SOLUTIONS DELIVERED

Sarah Springer, MCR sspringer@mcri.com Dan Feldman, MCR dfeldman@mcri.com Greg Hogan, BAH hogan_gregory@bah.com MCR, LLC 390 N. Sepulveda Blvd., Suite 1050 El Segundo, CA 90245

Booz | Allen | Hamilton

CRITICAL THINKING.

Outline

- Acknowledgments
- Problem Statement
- Purpose
- Data Used in Analysis
- Process
- Schedule-/Cost-Estimating Relationship (SER/CER) results
- Developing Comprehensive Cost Model
- Crosschecks
- Strengths and Weaknesses of SERs/CERs
- Example
- Conclusions
- Way Forward
- References
- Acronyms

CRITICAL THINKING.

Acknowledgments

- Dr. Stephen Book, MCR
- Ray Covert, MCR
- Dr. Neal Hulkower, MCR
- Rick Garcia, MCR

CRITICAL THINKING

Problem Statement

- Software development has become an increasingly important part of acquisition for the DoD
- "Weapon Systems Acquisition Reform Act" of 2009 (WSARA) identifies the need for consideration of trade-offs and impact of cost, schedule and performance in our estimates
- Need for comprehensive software cost and schedule models and visibility into those models

CRITICAL THINKING.

Hypothesis

- Equivalent Source Lines of Code (ESLOC) is widely considered good quantitative measure of software size and effort
- ESLOC attempts to capture the relative effort of each software build, and is an obvious cost driver
- Resource loaded software schedules are also function of effort (i.e., ESLOC), and other factors such as development environment and constraints
- This implies relationships exist between ESLOC, cost, and duration
- In this study we developed a comprehensive joint cost and schedule model for software intensive Ground Programs

CRITICAL THINKING.

Why?

- Currently, academic and commercial software exist that estimates cost and schedule
 - Constructive Cost Model (COCOMO II)
 - Software Evaluation and Estimation of Resources- Software Estimation Model (SEER-SEM)
 - There are several others
- Why develop another software model that estimates cost and schedule?
 - Advantages of having insight into the data behind the model
 - Allows cost and schedule to be intrinsically "linked" without making any additional assumptions about the correlation between cost and schedule
 - Produces a joint probability curve

- Aerospace Corporation data (circa 2003-2004)
 - NOTE: Data provided in published Aerospace Corp. TOR 2004 (8311)-1; not shown in this briefing
 - Data Records Contain Data Categorized by
 - Operating Environment
 - Application Type
 - Software Language
 - ***** ESLOC, Developer Months, and Schedule Duration in Months
 - Data contain effort for software development phases of product design, code and Computer Software Configuration Item (CSCI) testing
 - Software requirements and system-level integration & test not included
- Results Crosschecked with the following
 - COCOMO II
 - Metrics developed from other data
- Ground Program-level Schedule-Estimating Relationship (SER) (C) 2010 MCR, LLC

CRITICAL THINKING.

Process, Chart 1 of 2

Normalize Data

- Computer Languages normalized using "rule of thumb" calibration factors
 - Conversion for Ada to equivalent lines of C++: 0.96 (0.96 * Ada SLOC = C++ equiv SLOC)
 - ✤ Converted Java to equivalent lines of C++: 1.22
- Stratify by operating environment, then by application type
- Analyze schedule duration by operating environment
 - Ground-only AND Ground plus Military Mobile data analyzed
 - Addition of Military Mobile data added degrees of freedom and results were found to be consistent with Ground data
 - 86 data points analyzed
 - Eight different application types

CRITICAL THINKING.

Process, Chart 2 of 2

- Regress data to derive relationships between ESLOC and both schedule (months) and effort (staff months)
 - Minimize standard percent error while constraining percent bias to zero (ZMPE)
 - Test variety of functional forms for every application type
 - Choose CER/SER with smallest standard error
- Crosscheck resulting CERs and SERs
- Develop joint cost and schedule model for Software development-intensive ground programs

CRITICAL THINKING.

Example: Mission-Planning SER

- Operating Environment: Ground and Military mobile
- Application Type: Mission-Planning
- Input is ESLOC; Output is schedule (months)

	Sched	ule Mor	nths = (ESLOC) 0.2862
--	-------	---------	----------	--------------	----------

SER Statistics						
Number of points	16					
Degrees of freedom	15					
SER form	$y = x^{b}$					
%SEE	10%					
R ²	77%					

CRITICAL THINKING

Example: Mission-Planning CER

Operating Environment: Ground and Military mobile
Application Type: Mission-Planning
Input is ESLOC; Output is effort (staff months)

V	veloper Months = 0.087 * (ESLOC) ^{0.7735}					
	CER Statisti	cs				
	Number of points	16				
	Degrees of freedom	15				
	SER form	y = ax ^b				
	%SEE	35%				
	R ²	64%				

CRITICAL THINKING

Scope of SERs/CERs, Chart 1 of 2

- Data excludes effort and schedule for Software Systems Engineering / Integration & Test (SEIT)
- Leveraged SEER / COCOMO II / DoD Data to account for all phases of software development
 - SEIT Effort factor: 15-55%, Schedule: 19-60%
 - Low end of range: portion of requirements and design accomplished in Phase A; prototype demonstrated
 - * High end of range: new technology being developed
 - Model SEIT factor as range based on knowledge of program

System Requirements Design	Software Requirements Analysis	Preliminary Design	Detailed Design	Code and Unit Test	Component Integration and Test	SW/HW I&T	System I&T
		Ad	ctivites covered	by Aerospace da	ita		

Schedule dependencies captured in schedule build-up

- Interface with outside programs or space vehicle
- (C) 2010 MCR, tLC Task dependencies and schedule margins

- Program CSCIs need to be mapped into given Aerospace CSCI classifications
- Risk
 - Establish ESLOC Range: Low, Most Likely, and High Values for each CSCI
 - Uncertainty around SEIT add-on factor
 - To model risks, use %SEE (Standard Error of the Estimate) of the relationship
 - Other Technical Risks
 - Database is robust and contains variety of programmatic risks
 - Other technical risks should be added only when a valid reason exists as to why they are not covered in historical database
- Schedule and Cost both driven by ESLOC assumptions

CRITICAL THINKING.

Crosschecks

- CERs / SERs crosschecked against the COCOMO II model
- Using planned Software build schedule to account for overlap / dependencies, CSCI level SERs combined to forecast total program duration
 - Resulting schedule estimate crosschecked with programlevel SER developed from analogous ground programs
 - Found to be within 3% of build-up schedule for our program
- Crosschecks suggest the comprehensive schedule model developed from using SERs is consistent with historical data outside the Aerospace database

Strengths

- The statistics are "good"
 - Under 30% SEE considered "great quality" CER/SER and between 30% and 60% SEE still has usefulness
 - SEEs for all SERs developed here are under 34% and all CERs are under 45%
- Mathematically modeled links between cost and schedule
- Not "black box": we have visibility into relationships

Weaknesses

- ESLOC is an imperfect measure of Software
- Does not account for the effects of schedule "compression"
- Schedules that are driven heavily by hardware development or other outside factors are most likely not an appropriate application for these SERs

Fictitious Example

- 4 CSCIs in 3 builds
- Most Likely Values shown
- Risk assessment discussed but specific bounds not shown

Inputs/Risk

- Most Likely ESLOC for each CSCI based on Cost Analysis Requirements Description (CARD) (program office) or independent assessment (oversight group)
- Low and High values for ESLOC based on risk assessment
- Triangular is typically the best distribution to use at this level

CSCI Name	Classification	ESLOC Build 1	ESLOC Build 2	ESLOC Build 3
CSCI 1	C&C	40,000	40,000	40,000
CSCI 2	Msn Planning	35,000	35,000	35,000
CSCI 3	Signal Processing	60,000	40,000	60,000
CSCI 4	Support	30,000	30,000	30,000

(C) 2010 MCR, LLC

- Classification of each CSCI determines which CER/SER to use
 - CERs and SERs are both applied to the ESLOC assumptions
 - Both schedule and software development cost are driven by ESLOC in model
 - Uncertainty around each CER/SER determined by standard error

CSCI Name	Classification	ESLOC Build 1	ESLOC Build 2	ESLOC Build 3
		40.000	40.000	40.000
CSCI 2	Msn Planning	35,000	35,000	35,000
CSCI 3	Signal Processing	60,000	40,000	60,000
CSCI 4	Support	30,000	30,000	30,000

CRITICAL THINKING.

Fictitious Program Example: Schedule

- Build schedule
 - 3 builds correspond with builds in previous chart
 - Each build's start date dependent on previous build
 - Linked in model to reflect program's build structure
 - Builds will often overlap
- Schedule for each build determined by the "long pole"
 - "Long pole" depends on size and complexity of each CSCI

CRITICAL THINKING.

Build Schedule

- Important to crosscheck proposed build schedule
 - Often the schedule for a build is determined by the "long pole" CSCI (critical path)
 - With the integration process required with most S/W items the bulk of code in that build could also drive the schedule
- First build schedule from bottom up and then crosscheck it with a top-down estimate
- In this example the build schedule was crosschecked with a program-level SER developed from 18 analogous programs

CRITICAL THINKING.

Program Level SER

Duration=2.1197*(KESLOC)^0.5210

- Program-Level SER developed from 18 programs
- Data points included from a variety of contractors
- Include Space/Ground programs

Cost and Schedule Density Curves

	Forecast
Statistics:	values
Trials	5,000
Mean	74
Median	73
Mode	
Standard Deviation	16
Variance	253
Skewness	0.3942
Kurtosis	2.92
Coeff. of Variability	0.2150

	Forecast
Statistics:	values
Trials	5,000
Mean	559,139
Median	549,457
Mode	
Standard Deviation	120,385
Skewness	0.4752
Kurtosis	3.22
Coeff. of Variability	0.2153

Schedule

- Mean duration of all builds within range given by COCOMO II output
 - * Post Architecture Model used
 - Nominal settings for all scale drivers and effort multipliers
- Program Level SER
 - ✤ Resulting mean duration for example 74 mos
 - Mean Program Level SER duration for example- 70 mos
 - ***** Within the percent standard error for the SER
- Other Program metrics

Calculated cost to schedule correlation = 0.63

70% cost and 70% schedule ≠ 70% Program!

CRITICAL THINKING.

Conclusions

- Software-intensive programs that have a detailed schedule at the CSCI level might be able to apply these parametric modeling techniques
 - Primary estimating methodology
 - Modeling techniques useful as a primary methodology for programs in earlier stages
 - Crosscheck
 - Resource- loaded schedules should be crosschecked with a parametric model to ensure that the detailed schedule is consistent with historical data

SERs not intended as a Planning Schedule

- More aggressive schedule (such as an Integrated Master Schedule) is typically used for planning
- But should have risk plans (margin) in place to cover schedule slips consistent with parametric estimate

CRITICAL THINKING.

- Analysis of additional operating environments
- Additional data collection and analysis of the data
- Examination of additional parameters (where possible)
- Incorporation of "Knee in the Curve" analysis for schedule compression
- Analysis of the impact of possible incremental development productivity decline
- SEIT Add-on factor specific to operating environment, application domain, and phase of program

CRITICAL THINKING.

References

- Gayek, J., et al., "Software Cost and Productivity Model," Aerospace Corporation, February 2004
- Boehm, B., et al., "Software cost estimation with COCOMO II" Englewood Cliffs, NJ: Prentice-Hall, 2000

(www.sunset.usc.edu/csse/research/COCOMOII/coco mo_main.html)

- SEER-SEM Manual, version 6.0.28, December 2002
- Covert, R. "Joint Cost, Schedule and Performance Risk Modeling Revisited" presented to Space Systems Cost Analysis Group, 2009

CRITICAL THINKING.

- CARD= Cost Analysis Requirements Description
- CER = Cost Estimating Relationship
- COCOMO = Constructive Cost Model
- CSCI= Computer Software Configuration Item
- ESLOC= Equivalent Source Lines of Code
- SEE = Standard Error of the Estimate
- SEER-SEM = Software Evaluation and Estimation of Resources- Software Estimation Model
- SER = Schedule Estimating Relationship
- SRDR= Software Resources Data Report
- S/W = Software
- WSARA = Weapon Systems Acquisition Reform Act

■ ZMPE= Zero Percent Bias, Minimum Percent Error (C) 2010 MCR, LLC

CRITICAL THINKING. SOLUTIONS DELIVERED.

CRITICAL THINKING.

- Operating Environment of interest: Ground programs
- Input is ESLOC; Output is schedule (months)
- Percent standard error ranges from 20-34%
- Data suggest economies of scale for software development schedules
 - Similar to COCOMO's nominal equation

	Cmd Cntl	Database	Msn Planning	Signal Proc	OS Exec	Support	Test
# Points	19	7	16	8	7	18	11
DF	17	6	15	6	5	17	9
SER Form	y = a+bx	$y = x^{b}$	$y = x^b$	y = a+bx	y = a+bx	y = x ^b	y = ax ^b
703EE	2.4	11.1%	10.4%	27.270	21.7%	55.9%	20.5%
R	95%	52%	77%	80%	53%	29%	64%
а	9.1903			11.5509	19.7798		0.1410
b	0.0003	0.2815	0.2862	0.0002	0.0002	0.2689	0.4879

*Command & Control is an additive error SER and is expressed as Standard Error, not %SEE

NOTE: Data in published Aerospace Corp. TOR 2004 (8311)-1; not shown in this briefing (C) 2010 MCR, LLC

CRITICAL THINKING.

- Operating Environment of interest- Ground programs
- Input is ESLOC; Output is effort (staff months)
- Percent standard error ranges from 20-45%
- Data suggests diseconomies of scale for software development cost

Similar to COCOMO's nominal equation

	Cmd Cntl	Database*	Msn Planning	Signal Proc*	OS Exec	Support	Test	Combination of Data**
# Points	19	7	16	8	7	18	11	86
DF	17	6	15	6	5	17	9	84
CER Form	y = ax ^b	y = a+bx	y = ax ^b	y = a+bx	y = a+bx	y = a+bx	y = ax ^b	y = ax ^b
%SEE	20%	69.5	35%	131.2	41%	45%	43%	45%
R ²	96%	55%	64%	66%	92%	83%	67%	68%
а	0.0012	28.7875	0.0870	65.9943	11.5000	34.6947	0.0004	0.0163
b	1.1633	0.0081	0.7735	0.0040	0.0113	0.0042	1.2930	0.9249

*Additive error CER and is expressed as Standard Error, not %SEE

****Combination of the data used in the separate CERs**

NOTE: Data in published Aerospace Corp. TOR 2004 (8311)-1; not shown in this briefing (C) 2010 MCR, LLC