
1

Improving Software Cost
Estimates Using the Univariate

Model
Brian Opaska

OPS Consulting

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

2

Outline

• Background on Univariate (Linear) Method
• Improvement Techniques

–Code Count Metric
–Actual SLOC Analysis
–SLOC Normalization

• Summary

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

3

Outline

• Background on Univariate (Linear) Method
• Improvement Techniques

–Code Count Metric
–Actual SLOC Analysis
–SLOC Normalization

• Summary

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

4

Background (1/2)

• Software effort was traditionally seen as a
linear function based on the size of the product,
where size could be SLOC or Function Points

• Software effort = Software Product Size x
Productivity Factor (unit of effort per size)

• Quick and easy calculation
• Traceable back to actuals

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

5

Background (2/2)

• Productivity factor is usually a composite
factor based on historical actuals
– Single factor can be derived from multiple

languages
– Group of factors based on actuals from

specific languages

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

6

Outline

• Background on Univariate (Linear) Method
• Improvement Techniques

– Code Count Metric
– Actual SLOC Analysis
– SLOC Normalization

• Summary

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

7

Univariate Method
Improvement Techniques

• Three techniques to improve the
consistency and accuracy of the
Univariate Method
– Using a reliable code counting sizing metric
– Performing thorough analysis of actual

SLOC count
– Normalizing the SLOC

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

8

• SLOC counts are typically used as the sizing metric in the univariate model
• Physical SLOC definition (physical measure):

– “Counts of physical lines describe size in terms of the physical length of
the code as it appears when printed for people to read”1

– “Sets of coded instructions terminated by pressing the enter key of a
computer keyboard”2

• Logical SLOC definition (instructions):
– “Counts of logical statements … attempt to characterize size in terms of

the number of software instructions, irrespective of their relationship to
the physical formats in which they appear”1

What to Count?
Physical/Logical SLOC Definitions

1Software Size Measurement: A Framework for Counting Source Statements – Robert Park
2Software Cost Estimation with COCOMO II – Barry W. Boehm

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

9

• What to count?
– Recommend Physical SLOC to be used as the sizing metric
– Physical SLOC = Total Lines – Comment Only Lines – Blank Lines

• Why Physical SLOC?
– Advantages of using Physical SLOC

• Easy to count
– Clear beginning and ending points

• Consistency of counts
– Physical SLOC consistent across code counting tools
– For Logical SLOC, CodeCount™ [4] results are approximately 150% higher than

the RSM counts [5], and are 110% higher than the LocMetrics [6] numbers3

• Rules for determining when logical statements begin and end are complex
and are different for every source language1

– Languages such as Perl, Python, JavaScript

Sizing Metric

3A SLOC Counting Standard - Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, Barry Boehm
1Software Size Measurement: A Framework for Counting Source Statements – Robert Park

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

10

• Universal counting standard for Logical SLOC is not available
• How many logical lines of code are in the in the following example?

if A then B else C endif;

• SEI developed a framework to establish precise definitions for the SLOC metrics
– User must decide on how to treat many special and language-specific cases

.

Logical SLOC Counting Example

Source: Software Size Measurement: A Framework for Counting Source Statements – Robert Park

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

11

How to Count?

• How to count?
– Code counters should be used

• Counters include CodeMetrics™, CodeCount™, etc.
• Why Code Counters?

– Produce consistent, accurate SLOC counts
– Results can be summarized quickly and easily
– Can detect duplicate source files
– File structure outputs can be used to further analyze code

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

12

Actual SLOC Analysis
Sizing Completed Projects

• Projects generally composed of new code, reused
code (with or without modifications) and automatically
translated code2

• Origin of the code must be determined
– New development and modified code should be included
– Duplicate, pre-existing, COTS/GOTS/FOSS, and other prior

code that has not been modified should not be included in
actual SLOC count

– Amount of code actually developed would be misstated and
would not reflect the code that was actually developed

2Software Cost Estimation with COCOMO II – Barry W. Boehm

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

13

SLOC Analysis
Example

• Given:
– Total Physical SLOC = 20K comprised of:

• New Development SLOC = 10K
• COTS SW SLOC = 5K
• FOSS SLOC = 5K

– Development Hours = 10K -> Consistency in collecting over same time period

• Productivity Calculation:
– Incorrect: 10K hours / 20K SLOC = 0.5 hr/SLOC
– Correct: 10K hours / (20K – 5K – 5K) SLOC = 1.0 hr/SLOC

Productivity Factor Could Be Severely Overstated if
COTS/GOTS/FOSS Code is Included!

SW Req’ts
Analysis Detail Design Coding & CSU

Test CSC Integ & Test CSCI TestPrelim Design

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

14

SLOC Analysis
Tips for Sizing Completed Projects

• The following code must be identified and removed
– Duplicate code
– Pre-existing code
– COTS/GOTS/FOSS/libraries

• Use file structure outputs from Code counting tools:
– 1) Identify files associated with COTS/GOTS/FOSS

software and remove associated SLOC from Physical count
– 2) Examine file structure from one sw release to the next for

changes in structure and counts
• Identify code that may have been added/modified/deleted

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

15

SLOC Normalization (1/3)

• Vast majority of U.S. software projects contain at least 2
programming languages

• Some languages generate more functionality per line of code
than others7

• Because historical productivity data is typically not available by
language, actual SLOC counts should be normalized to a
‘standard’ language
– Industry does not track effort by language

7Software Estimation: Demystifying the Black Art – Steve McConnell

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

16

SLOC Normalization (2/3)

• Normalization should occur to account for productivity
variances relating to the development language(s)
used

• Resulting productivity factor will be based on
normalized SLOC counts

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

17

SLOC Normalization (3/3)

• Example of how SLOC count can vary by language

.MODEL Small

.STACK 100h

.DATA
msg db 'Hello, world!$'

.CODE
start:
mov ah, 09h
lea dx, msg
int 21h
mov ax,4C00h
int 21h
end start

IDENTIFICATION DIVISION.
PROGRAM-ID. HELLO.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
MAIN SECTION.
DISPLAY "Hello World!"
STOP RUN.

class HelloWorld {
public static void main(String
args[]){
System.out.println("Hello World!");
}
}

print "Hello World!\n";
Assembly COBOL Java Perl#

1
2
3
4
5
6
7
8
9
10
11
12

12 lines of code 8 lines of code 5 lines of code 1 line of code

Increased Functionality Per LOC

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

18

Sample FP to SLOC Conversions

Language
Caper
Jones8 QSM

David
Consulting

C 128 148 225
C++ 53 60 80
COBOL 107 73 175
Java 53 60 80
PERL 21 60 50

Ratios of Equivalent Java SLOC

Language
Caper
Jones8

Statements
Relative to

Java
C 128 2.42 to 1
C++ 53 1 to 1
COBOL 107 2.02 to 1
Java 53 1 to 1
PERL 21 1 to 2.52

Note:
• Code should be normalized to most prominent language

• More research should occur in the future to develop a better conversion table

Sample Normalization Table

8Backfiring (UFP to SLOC Conversion) Table – T Capers Jones, 1996

Example of normalization table based
on Java using FP to SLOC Conversion
table for relationships

C Conversion: 128 / 53 = 2.42

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

19

SLOC Normalization Example
Developing Productivity Factor

Actuals Need to be Normalized!

Productivity Factor Calculation:

Language
Physical
SLOC

Statements
Relative to

Java
Java Equiv

SLOC
C 10,000 2.42 to 1 4,141
COBOL 5,000 2.02 to 1 2,477
Java 5,000 1 to 1 5,000
Total 20,000 11,617

Unnormalized Productivity Factor: 10,000 hours / 20,000 SLOC = 0.5 hr/SLOC

Normalized Productivity Factor: 10,000 hours / 11,617 SLOC = 0.86 hr/SLOC

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

20

SLOC Normalization
Future Estimates

• Future software estimates need to include a
normalization step to be consistent with the basis
used to develop the factor

• Process should include:
(1) Obtain SLOC estimate
(2) Normalize SLOC
(3) Multiply Normalized SLOC by Productivity Factor

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

21

Note: Units estimated software product size should be consistent with
units that were used to develop the factor (Physical SLOC/Logical SLOC)

Estimated SLOC to be Developed

Language
SLOC

Developed
Java Equiv

SLOC
C 10,000 4,141
COBOL 10,000 4,953
Total 20,000 9,094

Java Normalized Productivity Factor = 0.86

Total Effort = 9,094 Java SLOC x 0.86 hr per Java SLOC
= 7,821 Development Hours

SLOC Normalization
Future Estimates Example

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

22

Outline

• Background on Univariate (Linear) Method
• Improvement Techniques

–Code Count Metric
–Actual SLOC Analysis
–SLOC Normalization

• Summary

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

23

Summary

• Use Code Counters for accurate counts
• Use Physical SLOC as the sizing metric
• Perform thorough analysis of actuals
• Normalize SLOC

– Developing productivity factor
– Determining future estimates

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

24

References
• [1] Software Size Measurement: A Framework for Counting Source Statements –

Robert Park, Carnegie Mellon University, 1996
• [2] Software Cost Estimation with COCOMO II – Barry W. Boehm, et al. Prentice

Hall PTR, 2000
• [3] A SLOC Counting Standard - Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan,

Barry Boehm, Center for Systems and Software Engineering, University of Southern
California 2007

• [4] CodeCount™, USC’s Center for Systems and Software Engineering.
http://csse.usc.edu

• [5] RSM, M Squared Technologies™, http://msquaredtechnologies.com/index.htm
• [6] LocMetrics, http://www.locmetrics.com
• [7] Software Estimation: Demystifying the Black Art – Steve McConnell, Microsoft

Press, 2006
• [8] Backfiring (UFP to SLOC Conversion) Table – T Capers Jones, 1996

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

25

Questions

25

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

