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Abstract 
This paper describes a data-driven method for estimating the cost and schedule of developing software items. This 
method correlates the estimates of cost and schedule such that constraining (reducing or increasing) the budget will 
impact the estimated schedule and constraining (relaxing or compressing) the schedule will impact the estimated 
cost. This method provides estimates of cost and schedule that are probabilistic (i.e., provide a range of possible 
outcomes with associated probabilities of attainment); a capability that is essential to analyzing the impact that 
affordability and budget constraints have on program cost and schedule and their associated risks. This method 
incorporates a software development Cost and Duration Estimating Relationship (CDER) system of two equations 
that can be easily calibrated to any historical data set that includes the size, effort, and duration of several complet-
ed software items. The paper includes a practical example of developing a software development CDER from an 
example data set. It also includes various forms of the equations that can be used to perform analyses such as joint 
confidence level (JCL), minimum time solution, minimum effort solution, compressed schedule solution, time as an 
independent variable, effort as an independent variable, cost as an independent variable, and average staff as an 
independent variable to name a few. 

Introduction 
This paper describes the r2 Software Estimating Framework (r2SEF), a data-driven method for 
joining, correlating, and calibrating software Cost Estimating Relationships (CERs) and corre-
sponding Schedule Estimating Relationships (SERs) to construct Cost and Duration Estimating 
Relationship (CDER) systems of two equations. These equations are probabilistic (i.e., provide a 
range of possible outcomes with associated probability of attainment) and can be calibrated to 
any historical data set that includes the size, effort, and duration of several completed Software 
Items (SIs). The paper then describes a simple method for determining joint and conditional 
probabilities (confidence levels) of estimated cost and schedule based on these relationships and 
a specific example historical data set. The paper concludes with equation forms that can be used 
to perform a variety of analyses such as Joint Confidence Level (JCL), minimum time solution, 
minimum effort solution, compressed schedule solution, time as an independent variable, effort 
(cost) as an independent variable, and average staff as an independent variable. All of these solu-
tions can be presented as distributions (S-curves) or as single values with an associated probabil-
ity of attainment (confidence level). 

Software CDER Basics 

Generalized Software CDER System of Equations 
A Software CDER (Ross, 2008) is a system of two fundamental equations that have the follow-
ing general forms1: 

• Work Relation 
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where 

E  ≡  Random variable representing the range and distribution of possible out-
comes of Effort (labor); typically measured in units of person-months or 
person-hours. Effort combined with a given labor rate yields cost. 

T  ≡  Random variable representing the range and distribution of possible out-
comes of duration (Time); typically measured in units of calendar months. 
Duration combined with a start date or a finish date yields schedule. 

D  ≡  Random variable representing the range and distribution of possible values 
of Difficulty; a unitless factor that scales Size units to Work units. The Dif-
ficulty factor quantifies the amount of work necessary to develop one unit of 
non-linear software size.2 Each and every calibrated CDER has a unique 
range and distribution of possible difficulty values. 

S  ≡  Random variable representing the range and distribution of possible out-
comes of software Size; typically measured in some type of software sizing 
unit that directly relates to the amount of work that must be done to develop 
the software. Examples of such units are Effective Source Lines of Code 
(ESLOC) and Unadjusted Function Points (UFP). 

, ,E T Sα α α  ≡  Effort nonlinearity (Greek alpha subscript E), duration (Time) nonlinearity  
(Greek alpha subscript T), and size nonlinearity (Greek alpha subscript S). 
Each and every calibrated CDER has a unique set of constant values for the-
se exponents. 

• Intensity Relation 
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−

↔

= ×

=

Cost Schedule

Effort Intensity Duration
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 (2) 

where 

I  ≡  Random variable representing the range and distribution of possible out-
comes of Intensity; a unitless factor that correlates nonlinear duration units 
to units of effort irrespective of size and difficulty. The intensity factor 
quantifies the magnitude of effort with respect to the magnitude of duration. 
A project that expends a relatively large amount of effort over a relatively 
short period of time (i.e., requires a relatively large team of people) is said to 
have high intensity whereas a project that expends a relatively small amount 
of effort over a relatively long period of time (i.e., requires a relatively small 
team of people) is said to have low intensity. Compressing the schedule (re-
ducing the duration) for developing an SI by increasing the team size in or-
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der to meet some schedule goal or constraint increases its intensity. For most 
SI developments, increasing the project’s intensity tends to increase the ef-
fort (cost) necessary to complete the project. This tendency implies that in-
creasing a project’s intensity tends to reduce its productivity (its size per 
unit of effort). Additionally, for most SI developments, increasing the inten-
sity also tends to increase the total number of defects that the project team 
must find and fix (Ross, 2008).3 Each and every calibrated CDER has a 
unique range and distribution of possible intensity values. 

ETα  ≡  Effort-duration tradeoff nonlinearity (Greek alpha subscript ET). Each and 
every calibrated CDER has a unique constant value for its time-effort 
tradeoff nonlinearity. 

Constructing a Calibrated Software CDER from Historical Data 
How do we calibrate the generalized Equations (1) and (2) above to model the behavior of a 
specific set of developed SI historical data in order to estimate the development of future SIs? By 
calibration we mean determining unique constant values for the exponents 

   and , , ,E T S ETα α α α  and unique ranges and distributions for the random variables  and D I . 
Obviously, any data-driven methodology must start with some data. In this case we require a list 
of completed SI actual size values S  with lists of corresponding actual effort values E  and actu-
al duration (time) values T ; these three lists we collectively refer to as an historical data set. A 
primary objective when organizing historical data sets is to maximize the similarity between in-
cluded SIs while at the same time maximizing the number of SIs (data points) included in the set. 
This objective, while often difficult to achieve, is nonetheless intended to both reduce the amount 
of variability and to increase the statistical significance of the relationships that are derived from 
the historical data set. 

It is possible to construct a software CDER system of equations that is specifically cali-
brated to a particular historical data set of sizes, efforts, and durations of completed software 
items by performing the three power function regressions described below. For each regression, 
the paper first describes its associated assumptions, theory, and mathematics. These descriptions 
are followed by an example using the data set contained in the Appendix, Table 1. 

First Regression: Effort as a Power Function of Size 

Theory 

The first regression deals with the notion of the cost inefficiency associated with developing a 
particular SI. We begin by assuming that the amount of effort E  expended to develop an SI (and 
hence its cost) is proportional to some function its size S , that function being reasonably mod-
eled as a power function of the form ( )f ax x=  (Ross, 2008). This assumption can be described 
mathematically as: 

 ( ) ( )Inefficiency Inefficiencyf f 1aE S E S E Sω ω∝ → = → =  (3)4 
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The scale factor ω  (Greek omega) of size quantifies the cost inefficiency present in the 
software development process. Inefficiency within this context can be thought of as the inverse 
notion of productivity. For a given size, greater inefficiency results in more effort (and hence 
more cost) while lower inefficiency results in less effort (and hence less cost). The exponent of 
size 1a  quantifies the nonlinearity associated with cost inefficiency. An 1a  value of greater than 
1 implies proportionally more effort (cost) as the size goes up (a diseconomy of scale) while an 

1a  value of less than 1 implies proportionally less effort as the size goes up (an economy of 
scale). 

The first step in the calibration process is to determine the data-set-specific constant val-
ue of the exponent 1a . This can be done by performing the power form of an appropriate regres-
sion function ( )regressionmethodr ,< > Y X  where Y  is a list of values representing the regressand 

(dependent variable; in this case effort E ) and where X  is a corresponding list of values repre-
senting the regressor (independent variable; in this case size S ). Regression methods that are 
suitable for this purpose include Log-transformed Ordinary Least Squares (Log OLS) regression 
(USAF, 2007 pp. 52,53), Minimum Unbiased Percentage Error (MUPE) regression (USAF, 
2007 pp. 56-58), and Zero Percent Bias – Minimum Percentage Error (ZMPE) regression 
(USAF, 2007 pp. 58,59). Each of these regression methods yields a vector ,a b  where a  rep-

resents the regressed power function’s exponent and where b  represents the mean value of the 
regressed power function’s scale factor. The first regression can therefore be described as: 

 ( )1 regressionmethoda ω < >
 = <historicaldatasetname>

E S<regressionmethod>, r ,  (4) 

The second step in the calibration process is to compute a list of inefficiencies ω  that 
corresponds to the S  and E  lists we already have as part of the historical data set. We can rear-
range the factors in Equation (3) to get 1aE Sω = ; therefore 
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 (5) 

where 

ω  ≡  SI-ordered list of Inefficiency values; one for each SI in the data set 

E  ≡  SI-ordered list of Effort values; one for each SI in the data set 

S  ≡  SI-ordered list of Size values; one for each SI in the data set 

1a  ≡  The exponent value yielded by performing the regression in Equation (4) 

N  ≡  Number of SIs in the data set 
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Example 

In order to demonstrate a practical example of performing this first regression (first and second 
steps above) we use the effort list E  and size list S  from the data set contained in the Appendix, 
Table 1 which is a Military Ground C/C++ stratification of the Aerospace Corporation (2004) 
Software Cost and Productivity Model database. We must first choose a particular regression 
method and stick with it throughout the calibration process. The author, while favoring both 
MUPE and ZMPE, chooses to use ZMPE in this case because it eliminates bias as part of optimi-
zation criteria (not the case with Log OLS) and because of its ease of implementation in Mi-
crosoft Excel with the Solver add-in (the MUPE optimization process is more complex).5 The 
regression can be stated mathematically as 

 ( )ZMPE, r ,1 ZMPEa ω = Aerospace2004:MilitaryGroundC/C++
E S  (6) 

and results in 1 03731a = . . The subsequently-computed inefficiency list ω  is contained in the 
Appendix, Table 2. A graphic representation of the regression is shown in Figure 1 below. 

10

100

1,000

10,000

1,000 10,000 100,000 1,000,000

Ef
fo

rt 
(p

er
so

n-
m

on
th

s)

Size (ESLOC)

History

Regression Mean

Regression Mean *(1+σ)^+1

Regression Mean *(1+σ)^-1

Regression Mean *(1+σ)^+2

Regression Mean *(1+σ)^-2

Regression Mean *(1+σ)^+3

Regression Mean *(1+σ)^-3

<user-defined data point 1>

<user-defined data point 2>

<user-defined data point 3>

<user-defined data point 4>

Effort vs Size
n=29  Power ZMPE [x,y]: y=(4.333E-03)*x^(1.037E+00)  SEE=51%  BIAS=0%  R²=0.75  PRED(25)=48%  MMRE=36%

Aerospace 2004: Military Ground C/C++

 

Figure 1:  Power regression of effort vs. size using the ZMPE regression method 
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Second Regression: Effort as a Power Function of Duration 

Theory 

The second regression deals with the notion of the intensity associated with a given SI develop-
ment. We continue the calibration process by assuming that the amount of effort expended to 
develop an SI (and hence its cost) is proportional to some function of its duration (its schedule), 
that function also being reasonably modeled as a power function of the form ( )f ax x=  (Ross, 
2008). 

 ( ) ( )Intensity Intensityf f 2aE T E I T E IT∝ → = → =  (7) 

The scale factor of duration I  quantifies the intensity present in the software develop-
ment process, the concept of intensity having already been described earlier in this paper as 
quantifying the magnitude of effort with respect to the magnitude of duration. 

The third and fourth steps in the calibration process are essentially the same as the first 
and second steps except this time they are applied to the effort list E  and the duration list T . 
The third step yields a value for the exponent 2a  and the fourth step yields a list of project inten-
sities I . 

Example 

The third step above can be applied to our example by using the effort list and the duration list 
from the same example data set (Appendix, Table 1) which yields 2 20202a = . . The fourth step 
results in the subsequently-computed intensity list I shown in the Appendix, Table 2. A graphic 
representation of the regression is shown in Figure 2 below. 
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Figure 2:  Power regression of effort vs. duration using the ZMPE regression method 

Third Regression: Inefficiency as a Power Function of Intensity 

Theory 

The third regression deals with the notion of the difficulty associated with developing a particu-
lar SI with given inefficiency and intensity. We complete the calibration process by assuming 
that the amount of inefficiency present in the development of some SI is proportional to some 
function its intensity, that function again being reasonably modeled as a power function of the 
form ( )f ax x= . 

 ( ) ( )Difficulty Difficultyf f 3aI E D I DIω ω∝ → = → =  (8) 

This proportionality assumption effectively correlates the notion of inefficiency with the 
notion of intensity and therefore ensures that we end up with a CDER where the estimated effort 
and estimated duration are correlated (positively or negatively) in a way that is consistent with 
the supporting historical data. Choosing a power function to model this correlation allows for the 
possibility that this correlation is nonlinear for a particular data set. 

The scale factor D  in Equation (8) quantifies the difficulty present in developing the giv-
en SI, the concept of difficulty having already been described earlier in this paper as being the 
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resources  necessary (nonlinear effort and nonlinear duration) to develop one unit of non-linear 
software size. 

The fifth and sixth steps in the calibration process are essentially the same as the first and 
second steps except this time they are applied to the previously-computed inefficiency list ω  and 
the previously-computed intensity list I . The fifth step yields a value for the exponent 3a  and 
the sixth step yields a list of project difficulties D . 

Example 

The fifth and sixth steps above can be applied to our example by using the inefficiency list and 
its corresponding intensity list (Appendix, Table 2), these lists having been computed in the pre-
viously-described calibration steps from the data set in the Appendix, Table 1. The resulting ex-
ponent is 0 19323a = . . The resulting difficulty list D  is shown in the Appendix, Table 2. A 
graphic representation of the regression is shown in Figure 3 below. 
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Figure 3:  Power regression of inefficiency vs. intensity using the ZMPE regression method 
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Consolidating the Exponents 

Theory 

The seventh step of the calibration process produces a calibrated version of general Equation (1) 
and the eight step produces a calibrated version of general Equation (2). 

With respect to the seventh step, we need calibrated values for the exponents 
  and , ,E T Sα α α . We use the following algebra to relate   and , ,1 2 3a a a  from Steps 1, 3, and 5 

above to   and , ,E T Sα α α  in general Equation (1): 
Solving for ω  in Equation (3) yields 

 1

1

a
a

EE S
S

ω ω= → =  (9) 

Solving for I  in Equation (7) yields 

 2

2

a
a
EE IT I

T
= → =  (10) 

Substituting ω  and I  in Equation (8) with the equivalent of ω  in Equation (9) and the 
equivalent of I  in Equation (10) yields 

 1
3 3

2 3 3 2 31 1

1 2 1 2 3 3

a a
a a a a aa a

a a a a a a
E E E E ED D T DS E T DS

S T S T E
−  = → = → = → =       

 (11) 

Next we let 

 1  and , and E 3 T 2 3 S 1a a a aα α α≡ − ≡ ≡  (12) 

and substitute each for their equivalents in Equation (11) to get 

 SE TE T DSαα α =  (13) 

Note that Equation (13) becomes a calibrated version of generalized Equation (1) when 
we perform the above-described substitutions with the calibrated values for   and , ,1 2 3a a a  from 
the first, third, and fifth steps of the calibration process and use the calibrated list D  from the 
sixth step of the regression process to get 

 SE T αα α =E T DS  (14) 

Regarding the eighth step, we let ET 2aα ≡  and substitute ETα  for 2a  in Equation (7) to 
get  

 ETE ITα=  (15) 

Note that Equation (15) becomes a calibrated version of Equation (2) when, we perform 
the above-described substitution with the calibrated value for 2a  from the third step of the cali-
bration process and the calibrated list I  from the fourth step of the calibration process to get 

 ETα=E IT  (16) 
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Example 

Applying the seventh step of the calibration process to our example we compute 
1 1 0 1932 0 8068E 3aα ≡ − = − =. . , compute 2 2020 0 1932 0 4255T 2 3a aα ≡ = × =. . . , use 

1 0373S 1aα ≡ = .  from the first step of the calibration process, and use the example difficulty list 
D  shown in the Appendix, Table 2 to get 

 0 8068 0 4255 1 0373 = E T DS. . .
†

 (17)6 

Applying the eighth step of the calibration process to our example we use 
2 2020ET 2aα ≡ = .  from the third step of the calibration process and use the example intensity 

list I  shown in the Appendix, Table 2 to get 

 2 2020 = E IT .
†

 (18) 

Creating Calibrated List CDFs 

Theory 

Recall that part of the calibration process is to determine, for Equations (1) and (2), unique rang-
es and distributions for the random variables  and D I  from a given historical data set. Specifical-
ly, in order to support yet-to-be-described probabilistic cost and schedule analysis, we would like 
these random variables to be defined by their Cumulative Distribution Functions (CDFs). The 
fourth and sixth steps above have already produced lists I  and D  respectively that represent 
samples of their corresponding distributions. We could attempt to approximate the CDFs by fit-
ting some known continuous CDF (e.g., normal, lognormal, beta, triangular, etc.) to each sample 
list. We choose, instead, to produce discrete CDFs from the sample lists by first sorting each list 
in ascending order and then determining the percentile rank of each sample within its corre-
sponding list. The results are discrete CDF approximations of  and D I  which we label  and ′ ′D I  
respectively.  and ′ ′D I  are lists of two-element vectors; each vector’s first element is a sample 
value and each vector’s second element is the sample’s percentile rank. 

Example 

The ninth and tenth steps of the calibration process are to produce lists  and ′ ′D I  from lists D  
and I  (Appendix, Table 2) respectively using the previously-described percentile rank process. 
The resulting difficulty CDF ′D  and the resulting intensity CDF ′I  are shown in the Appendix, 
Table 3. 

Summarized Steps of the Calibration Process 

(1) Regress 1aω = <datasetname>
E S  to get the value of 1a . 

(2) Compute ω  as [ ] 1
1

Na
i i ii i

E Sω
=

 
= = 

 <datasetname>
ω  using the value of 1a  from (1). 
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(3) Regress 2aI = <datasetname>
E T  to get the value of 2a . 

(4) Compute I  as [ ]
2

1

Na
i i ii i

I E T
=

 
= = 

 <datasetname>
I  using the value of 2a  from (3). 

(5) Regress 3aD = <datasetname>
ω I  using the list ω  from (2) and the list I  from (4) to get 

the value of 3a . 

(6) Compute D  as [ ] 1
3

Na
i i ii i

D Iω
=

 
= = 

 <datasetname>
D  using the list ω  from (2), the list I  

from (4), and the value of 3a  from (5). 

(7) Compute [ ]1E 3aα = − <datasetname>  using the value of 3a  from (6). 

(8) Compute [ ]T 2 3a aα = <datasetname>  using the value of 2a  from (3) and 3a  from (6). 

(9) Compute [ ] ( )[ ] ( )( )[ ] 1

N

i i i
i

↑ ↑
=

 
′≅ = 

  <datasetname>

I I II sort ,PercentileRank sort  

(10) Compute [ ] ( )[ ] ( )( )[ ] 1

N

i i i
i

↑ ↑
=

 
′≅ = 

  <datasetname>

D D DD sort ,PercentileRank sort  

Performing the process summarized above on the example set of stratified historical SI 
data (Aerospace Corporation, 2004) shown in the Appendix, Table 1 yields the calibrated re-
sources-work relation illustrated Figure 4 below. 
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E ̂  0.81 * T ̂  0.43 = 5.519E-03 * S ^ 1.04 @ mean Difficulty

E = 3.268E-01 * T ̂  2.20 @ mean Intensity

Est Productivity = 105.65 @ mean ESLOC;  106.40 @ median ESLOC

 

Figure 4:  Example resources-work relation – nonlinear effort and nonlinear duration as a func-
tion of mean difficulty and nonlinear size 

Incorporating Probability in CDER Mathematics 

Single-point CDERs 
Up until this point, we have been treating the independent variables representing intensity I , 
size S , and difficulty D  as either certain; i.e., single-point values or as lists of samples. If we 
treat all these variables as single-point values, we have the single-point CDER system of equa-
tions 

 ( ) ( )E T SE T DSα α α=Eaf Taf  (19) 

and 

 ( ) ETE I T α= Taf Eaf  (20) 

where 

Eaf  ≡  Effort Adjustment Factor; the factor that converts effort associated with the 
portion of the Software Development Life Cycle (SDLC) covered by the da-
ta set to effort associated with the entire SDLC (ATP through acceptance of 
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the system; referred to as all-all effort because it covers all activities and all 
disciplines); for the example data set used in this paper 1 44.=Eaf . 

Taf  ≡  Time (duration) Adjustment Factor; the factor that converts duration associ-
ated with the portion of the SDLC covered by the data set to duration asso-
ciated with the entire SDLC (referred to as all-all duration because it covers 
all activities and all disciplines); for the example data set used in this paper 

1 37.=Taf . 

E  ≡  All-all effort. 

T  ≡  All-all duration. 

If we rearrange the factors in Equation (19) to solve for effort E , our system of equations 
becomes 

 ( ) ( )( )1 1E T ESE DS T
α α αα −= Taf Eaf  (21) 

and 

 ( ) ETE I T α= Taf Eaf  (22) 

Since both Equations (21) and (22) yield effort E  as some function of duration T , they 
can be easily graphed in the same two-dimensional space. If we calibrate Equations (21) and (22) 
to the data set (Aerospace Corporation, 2004) that we have been using as an example, assume 
mean difficulty and mean intensity which are 0.005519 and 0.3268 respectively as shown in Fig-
ure 4, and assume an SI with a mean effective software size of 127,571 ESLOC7, we get the spe-
cific CDER system of equations 

 ( )( )( ) ( )( )1 0 80681 0373 1 0 4255 0 80680 005519 127 571 1 37 1 44E T −=
.. . .. , . .  (23) 

and 

 ( )2 20200 3268 1 37 1 44E T= .. . .  (24) 

Figure 5 below is a graph of Equations (21) and (22). The intersection of the two curves 
represents the CDER single-point solution; i.e., the value of effort E  and the value of duration 
T  that, together, satisfy both equations of the CDER. 
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Example
Aerospace 2004: Military Ground C/C++
Size = 127,571 ESLOC @ mean
Difficulty = 5.519E-03 @ mean
Work = 1.092E+03 @ mean
Intensity = 3.269E-01 @ mean
Effort = 1,267 pm
Duration = 49.5 mos
Productivity = 100.7 ESLOC/pm
Avg Staffing = 25.6 FTE people

 

Figure 5  Single-point CDER – work and intensity functions using single-point values 

The example CDER solution can also be found algebraically. Since the CDER solution 
implies both Equations (21) and (22) must be simultaneously true, we can first substitute E  in 
Equation (21) with the equivalent of E  in Equation (22) and solve for T  to get 

 
( ) ( ) ( )( )

( ) ( ) ( ) ( )

1 1

11

EET T ES

ET E TE ET E T S

I T DS T

T I DS

αα α αα

α α αα α α α α

−

+− +

=

→ =

Taf Eaf Taf Eaf

Taf
 (25) 

We can then substitute T  in Equation (22) with the equivalent of T  in Equation (25) and solve 
for E  to get 

 
( ) ( ) ( ) ( )

( ) ( ) ( )

11
ET

ET E TE ET E T S

ET ET E TT ET E T S

E I I DS

E I DS

α
α α αα α α α α

α α α αα α α α α

+− +

++

  
=   

  

→ =

Taf Taf Eaf

Eaf

 (26) 

If we calibrate Equations (25) and (26) to the Military Ground C/C++ data set that we 
have been using as an example, assume mean intensity and difficulty, and assume an SI with a 
mean effective software size of 127,571 ESLOC, we get 
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( ) ( )( )( )

( )( )( ) ( )( )( )

1 0 8068 2 2020 0 8068 0 4255

1 2 2020 0 8068 0 42551 0373

0 3268

0 005519 127 571 1 37

49 5 calendar months

T

T

− +

+

=

∴ =

. . . .

. . ..

.

. , .

.

 (27) 

and 

 

( )( )( )

( )( )( ) ( )( )( )

0 4255 2 2020 0 8068 0 4255

2 2020 2 2020 0 8068 0 42551 0373

0 3268

0 005519 127 571 1 44

1 267 person-months

E

E

+

+

=

∴ =

. . . .

. . . ..

.

. , .

,

 (28) 

Note that the solved values for duration T  and effort E  in Equations (27) and (28) are 
the same as those shown for the CDER solution in Figure 5 above (each arrow points to the solu-
tion value corresponding to its respective axis). 

Uncertainty about Intensity, Size, Difficulty, Effort, and Duration 
Unfortunately, until project completion, we have exact values for neither intensity, nor size, nor 
the difficulty of the SI being estimated; these values are uncertain; i.e., they have ranges of pos-
sible outcomes. We, therefore, choose to represent intensity, size, and difficulty as random varia-
bles I , S , and D , and our estimation process must therefore include modeling the distribution 
function for each. From the S  and D  distributions we define the size×difficulty product (the 
work distribution Ψ ) as 

 Sα≡Ψ DS  (29) 

The choice of specific distributions for I , S , and D  is a subject worthy of debate and a 
future paper. The author currently takes the position that when the data from a statistically-
significant number of past projects exists, it is best to create a discrete mapping between the met-
ric’s range values and their corresponding cumulative probabilities8 (i.e., a Cumulative Distribu-
tion Function (CDF) list) rather than assume some mathematically defined distribution such as 
normal, lognormal, or triangular. For the example scenario used in this paper I , S , and D  are 
modeled this way, the intensity and difficulty range values coming directly from the example 
regression process described above and the size range values coming from a fictitious estimate of 
growth-adjusted Effective Source Lines of Code (ESLOC)9 with CDF as shown in the Appendix, 
Table 4. Arithmetic operations involving random variables represented as CDF lists are per-
formed row-wise on versions of these CDF lists that have been randomly shuffled, the resulting 
list then being percentile ranked to yield the desired CDF list result. We have used this random 
variable arithmetic process 
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 [ ]

( )[ ] ( )[ ]( )[ ]
( )[ ] ( )[ ]( )[ ]

1

S

S

N

i i i

i

i i i
i

α

α

↑

↑
=

 
× 

 
′≅ =   ×      <datasetname>

D S

Ψ
D S

Ψ

sort shuffle shuffle ,

PercentileRank sort shuffle shuffle
(30) 

to compute the CDF list Sα = Ψ DS
†

; the result is contained in the Appendix, Table 4. 

Work and Intensity Confidence Level (Attainment Probability) as Fields 
Recall that the relationship between our two dependent variables effort and duration is based on 
the expected size×difficulty product (expected work Ψ ) and the intensity I ; both of which we 
now treat as a random variables. 

Our work relationship curve can now be described as a probability field (see Figure 6 below). 
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Figure 6:  Work relation as a probability field 

We can do the same thing with the intensity relationship as is shown in Figure 7 below. 
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Figure 7:  Intensity relation as a probability field 

We can overlay Figure 6 and Figure 7, as is shown in Figure 8 below, to see how these two rela-
tions interact and to get a feel for the estimating scenario’s solution space (range of possible out-
comes with associated confidence levels (attainment probabilities). 
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Figure 8:  Work and intensity probability fields 

Figure 6, Figure 7, and Figure 8 above show specific members (decade probability field lines) of 
the represented field. The mathematical expressions for describing any work or intensity field 
line are: 

1) Work 

 
( ) ( )( )( )( )
( ) ( )( )( )( )

1

1

     and
E

T

T
E

p T p T

p E p E

αα

αα

−

−

=

=

Ψ

Ψ

Ψ

Ψ

Taf

Eaf

-1

-1

E | , F

T | , F
 (31) 

2) Intensity 

 

( ) ( )( )( )

( ) ( )
( )( )

1

     andET

ET

p T p T

E
p E

p

α

α

=

 
 =
  
 

I

I

I

I

Taf

Eaf

-1

-1

E | , F

T | ,
F

 (32) 

where 

Ψ  ≡  Work random variable 

I  ≡  Intensity random variable 

p  ≡  Probability of attainment (confidence level) 
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( )-1F pΨ  ≡  Inverse CDF (quantile function) of work random variable Ψ  at probability 
p  

( )-1F pI  ≡  Inverse CDF (quantile function) of intensity random variable I  at probabil-
ity p  

Random Variable forms of CDER Equations 
These are a collection of probabilistic equations that form the basis of a data-driven parametric 
joint cost and schedule estimating model (Ross, 2007a). 

Bivariate Estimating Form 

 E Tα α =E TΨ  (33) 

Work and Intensity Equations Solved for Effort 

 ( ) 11 T E
E

α α α−=E TΨ  (34) 

and 

 ETα=E IT  (35) 

Work and Intensity Equations Solved for Duration 

 ( ) 11 E T
T

α α α−=T EΨ  (36) 

and 

 ( )1 11 ET
ET

α α−T = I E  (37) 

Intensity-Correlated CER and SER Equations 
These intensity-correlated CER and SER equations facilitate finding the appropriate distributions 
of effort and duration at some known intensity. 

Cost (Effort) Estimating Relationship (CER) 

 ( ) ( )T ET E T ET ET E Tα α α α α α α α+ +=E IΨ  (38) 

Schedule (Duration) Estimating Relationship (SER) 

 ( ) ( ) ( )11 E ET E T ET E T
α α α α α α α+ +−=T IΨ  (39) 

Intensity-Correlated CER and SER Equations for Intensity 
We provide solved-for-intensity forms of the CER and SER equations to facilitate finding inten-
sity associated with some particular solution or distribution of solutions. These equations make it 
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possible to find the duration that corresponds (correlates) to a particular effort solution and vice 
versa. 

Cost (Effort) Estimating Relationship (CER) 

 ( ) ( )1 ET T ET E T T
α α α α α α+−=IΨ E  (40) 

Schedule (Duration) Estimating Relationship (SER) 

 ( )( )1 1 ET E T E
E

α α α αα +−=IΨ T  (41) 

Joint Confidence Level (JCL) 

Theory 
Joint Confidence Level (JCL), also known as joint probability, is simply the probability or likeli-
hood that two or more events will occur simultaneously. Suppose we have two events, actual 
cost being less than or equal to predicted cost and actual schedule being less than or equal to 
predicted schedule. Since it is desirable that both these events turn out to be true, we might like 
to know, in addition to the individual probabilities of occurrence, the probability that both will 
occur. Expressed mathematically 

 ( ) ( ) or P , PJCL A B A B≡ ∧  (42) 

where A  and B  represent the occurrence of the two events. 

We can represent actual cost and schedule as random variables E  and T  respectively 
since their outcomes are uncertain; i.e., there is some range of possible outcomes. We treat pre-
dicted (estimated) cost and schedule as given specific values Ê  and T̂  respectively. We rewrite 
the JCL Equation (42) with these variables as 

 ( ) ( )( )ˆ ˆP E T≤ ∧ ≤E T  (43) 

where 

 Boolean (logical) AND operator∧ ≡  
Note that the two events in Equation (43) are each represented as a Boolean expression, 

the expressions being separated by a Boolean operator. This results in an overall expression that 
can evaluate to one of only two possible outcomes for a given pair of E  and T  draws, TRUE or 
FALSE. Therefore, the result of ( ) ( )ˆ ˆE T≤ ∧ ≤E T  is a random variable we will call J  that can 

be modeled as a discrete distribution of TRUE and FALSE (1 and 0) values. A list approxima-
tion of j can be described as 

 ( ) ( ) ( ) ( )
1

ˆ ˆ ˆ ˆ N
i i i i

E T E T
=

≡ ≤ ∧ ≤ → ≅ = ≤ ∧ ≤J E TJ E T J  (44) 

We can define a CDF FJ  on the random variable J  such that 
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( ) ( )

( )

{ }

1
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0 0 (FALSE)
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0 1

F F
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N

i
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x x x
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x
N

x
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=
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≅ = ¬ < <
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 ¬ + =
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∑

J J

J J

JJ
(45) 

where 

 Boolean (logical) NOT operator¬ ≡  

JCL can now be defined as 

 ( )

( ) ( ) ( )

1

1

1 1 1

1JCL (% of the  elements that evaluate to TRUE)

1 100 (a  element must evaluate to either TRUE or FALSE)

1 1 1100  and by substitution JCL 100

%

% %

N

i
i

N

i i
i

N N N

i i i
i i i

N

N

N N N

=

=

= = =

≡

¬ + ≡

∴ = − ¬ = − ¬

∑

∑

∑ ∑ ∑

J J

J J J

J J J

 (46) 

Example 

Suppose we are asked, “What is the probability that the system can be delivered within the 
budgeted cost and schedule?” We are told that the system was budgeted at the effort and dura-
tion positions derived from mean work and mean intensity. We therefore would like to know the 
JCL (joint cost and schedule probability) of staying within the cost and schedule budget. Figure 
9, Figure 10, and Figure 11 below provide a graphic illustration of the effort and duration JCL 
using our example calibrated CDER and example size distribution. 
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Figure 9:  Scatter Diagram of Monte Carlo draws using example calibrated CDER and example 
size distribution 
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Example
Aerospace 2004: Military Ground C/C++
Size = 127,571 ESLOC @ mean
Difficulty = 5.519E-03 @ mean
Work = 1.092E+03 @ mean
Intensity = 3.268E-01 @ mean
Effort = 1,269 pm @ 62%ile; 1,240 @ mean
Duration = 49.5 mos @ 51%ile; 51.9 @ mean
Productivity = 100.5 ESLOC/pm @ 59%ile;

103.2 @ mean
Avg Staffing = 25.6 FTE people @ 66%ile;

23.2 @ mean

 

Figure 10:  Scatter Diagram of Monte Carlo Draws with mean work and intensity curves; red 
lines indicate the budget positions 
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Count the points within this rectangle (914) 
and divide by the total number of points (2001).
JCL( E , T | I ) = 914 / 2001 = 46%

 

Figure 11:  Illustration of area where Monte Carlo draws satisfy both constraints 

Since it is not practical to actually count points on a scatter diagram, the JCL Boolean random 
variable CDF shown in Figure 12 and the mathematics shown in Equation (47) applied to lists of 
draws from the relevant random variables can be used to yield the same solution. 
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Figure 12:  CDF of JCL Boolean random variable 
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 (47) 

Conditional Confidence Level (CCL) 
Conditional Confidence Level (CCL), also known as conditional probability, is simply the prob-
ability or likelihood of some event given the occurrence of some other event. Suppose we have 
two events, actual cost being less than or equal to predicted cost and an assumption that actual 
schedule will equal the predicted schedule. Conversely we could have two events, actual sched-
ule being less than or equal to predicted schedule and an assumption that actual cost will equal 
the predicted cost. Expressed mathematically 

 ( )CCL (Conditional Probability) 1 (TRUE)P |A B≡ =  (48) 

(read the probability that A will be true given that B is true) 

or 

 ( )CCL (Conditional Probability) 1 (TRUE)P |B A≡ =  (49) 

(read the probability that B will be true given that A is true) 

where A  and B  represent the occurrence of the two events. 
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As with JCL, we can represent actual cost and schedule as random variables E  and T  
respectively since their outcomes are uncertain; i.e., there is some range of possible outcomes. 
We treat predicted (estimated) cost and schedule as given specific values Ê  and T̂  respectively. 
We rewrite the CCL Equations (48) and (49) with these variables as 

 ( )ˆ ˆP |E T≤E  (50) 

or 

 ( )ˆ ˆP |T E≤T  (51) 

A common requirement of cost analysts is the ability to perform what-if or excursion 
analysis from some baseline estimating scenario. Performing these kinds of analyses generally 
implies the use of some form of conditional probability; i.e., solving for one or more variables 
conditional on some other variable(s) being assumed to take on some specific value(s). Our de-
fined system of correlated estimating relationships offers the opportunity to perform these kinds 
of analyses by taking advantage of the fact that the CER and SER are correlated by intensity. If 
we treat intensity as having a specific value rather than as a random variable, we can use intensi-
ty as a gradient function across the work probability field. Figure 13, Figure 14, and Figure 15 
illustrate how this process works. Equations (52), (53), (54), and (55) provide the intensity-
correlated CER and SER equations where intensity is a single value. The following subsections 
provide equations for calculating intensity as a single value based on several common estimating 
scenarios; each of which is followed by a specific example using the Military Ground C/C++ 
stratification of the Aerospace Corporation (2004) Software Cost and Productivity Model data-
base (indicated by the dagger symbol †). 
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Example
Aerospace 2004: Military Ground C/C++
Size = 127,571 ESLOC @ mean
Difficulty = 5.519E-03 @ mean
Work = 1.092E+03 @ mean
Mean Intensity = 3.268E-01
Effort = 1,267 pm @ 60%ile
Duration = 49.5 mos @ 60%ile
Productivity = 100.7 ESLOC/pm @ mean
Avg Staffing = 96.0 FTE people @ 60%ile

 

Figure 13  Random variable (probabilistic) CDER – fix intensity according to some given con-
straint to create a gradient (a projection curve) across the work probability field, then project 
the work probability field horizontally and vertically to create a CDF representation on each of 
the effort and duration axes 
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Figure 14  All-all duration CDF – traditional form 
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Figure 15  All-all effort CDF – traditional form 
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CER: Effort as a Distribution 

 ( ) ( )T ET E T ET ET E TIα α α α α α α α+ + =  <datasetname>
EΨ Eaf  (52) 

CER: Effort at a Specific Confidence Level 

 ( ) ( ) ( )-1F ET ET E TT ET E TE I p α α α αα α α α ++ =  <datasetname>
Ψ Eaf  (53) 

SER: Duration as a Distribution 

 ( ) ( ) ( )11 E ET E T ET E TI α α α α α α α+ + =  <datasetname>
TΨ  (54) 

SER: Duration at a Specific Confidence Level 

 ( ) ( ) ( ) ( )11 -1FE ET E T ET E TT I pα α α α α α α+ + =  <datasetname>
Ψ  (55) 

Mean Intensity 

General 

 1I
N

 =  
∑

<datasetname>
I  (56) 

Note that I  for † can be found in the Appendix, Table 2. 

Example 

Provide CDFs (S-curves) for effort and duration of our example 127,571 ESLOC SI assuming 
mean intensity. 
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†

†

. .. . . .

.

. .

. ( )( )8 0 4255+ 
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Taf.

†

 (57) 

Figure 14 and Figure 15 happen to be illustrations of this estimating scenario. 
If we further assume mean work then our solution becomes 
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General 
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 (58) 

Example 

Note that D  for † can be found in the Appendix, Table 2. 
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Minimum Time 

General 

 ( )maxI = <datasetname>
Imax  (60) 

Example 

Provide the 60% confidence level duration and effort associated with the minimum time solution 
of our example 127,571 ESLOC SI estimate. Note that I  for † can be found in the Appendix, 
Table 2 and that ( )60Ψ

-1F %  for † can be found in the Appendix, Table 4. 
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(61) 

Minimum Effort 

General 

 ( )minI = <datasetname>
Imin  (62) 

Example 

Provide the 60% confidence level duration and effort associated with the minimum effort solu-
tion of our example 127,571 ESLOC SI estimate. Note that I  for † can be found in the Appen-
dix, Table 2 and that ( )60Ψ

-1F %  can be found in the Appendix, Table 4. 
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Schedule Compression 

General 
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 (64) 

Example 

Provide the 60% confidence level duration and effort associated with the 75% schedule-
compressed solution of our example 127,571 ESLOC SI estimate. The 75% schedule-
compressed solution constrains duration to 75% of the nominal duration (the duration that results 
from mean intensity). Both Boehm (1981 p. 472) and Putnam (1992 pp. 114-115) have stated 
that 75% represents the maximum amount of reasonably-achievable schedule compression. Note 
that ( )60Ψ

-1F %  for † can be found in the Appendix, Table 4. 
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Time as an Independent Variable 

General 
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 (66) 

Example 

Provide the 60% confidence level effort associated with the solution of our example 127,571 
ESLOC SI estimate that satisfies a duration constraint of 56 calendar months with 60% confi-
dence. Note that ( )60Ψ

-1F %  for † can be found in the Appendix, Table 4. 
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Effort as an Independent Variable 

General 
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Example 

Provide the 60% confidence level duration associated with the solution of our example 127,571 
ESLOC SI estimate that satisfies an effort constraint of 1,198 person-months with 60% confi-
dence. Note that ( )60Ψ

-1F %  for † can be found in the Appendix, Table 4. Note also that this ex-
ample is using the effort solution from the time as an independent variable example above; there-
fore, the two solutions should be identical (which indeed they are). 
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Average Staff Level as an Independent Variable 

General 
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 (70) 

Example 

Provide the 60% confidence level duration and effort associated with the solution of our example 
127,571 ESLOC SI estimate that satisfies an average staffing constraint of 16 people with 60% 
confidence. Note that ( )60Ψ

-1F %  for † can be found in the Appendix, Table 4. 
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Other Possible Solution Scenarios 
• Cost as an independent variable 

o How long will it take to develop a certain amount of code with some given confi-
dence (probability of attainment)? 

• Size as a dependent variable 

o How much code can I develop within a certain budget and schedule and with 
some given confidence? 

• Productivity as an independent variable 

o Given a certain schedule, how much money can I save if I can increase productiv-
ity by 5 ESLOC/pm? 

• Confidence analysis 
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o What is the impact of budgeting at the mean versus budgeting at the 60th percen-
tile? 

Conclusion 
The r2 Software Estimating Framework (r2SEF) is a  data-driven software estimating methodol-
ogy that features a generalized Cost and Duration Estimating Relationship (CDER) system of 
two equations. These two equations are probabilistic and can be calibrated to any historical data 
set that includes the size, effort, and duration of several completed Software Items (SIs). The 
methodology is completely open (i.e., it is not a black box) as evidenced by the fact that the pa-
per contains sufficient detail with examples to permit reasonably easy implementation and de-
ployment. 

Appendix 

Notation Convention 

( )

  54.0905
  

  
  

x
x

X
f

UseofFonts
Numeric Constant - - Times New Roman :
Simple Variable - - Times New Roman Italic :
Function - - Times New Roman Bold Italic :
Vector, Matrix, List, Array - - Times New Roman Bold :
R   

≡
≅

X



Use of Symbols

andom Variable - - Arial Bold Italic :

The left operand is defined as (assumed equivalent to) the right operand
The left operand is approximated by the right operand
The left operand es

∈
∝
∧
¬
†

timates the right operand
The left operand is an element (member) of the right operand
The left operand is proportional to the right operand
Logical AND operator
Logical NOT operator
Indicates specific calibration to Aerospace 2004 : Military Ground C / C++ data set
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Variable Dictionary 
E (effort), T (duration), S (software size), D (difficulty), I (intensity),

Letting X
ω (inefficiency),  (work),  (staffing), and P (productivity)

Random variable of X; range and distribution 

 
∈ Ψ Ω 
≡X

[ ]

th

of possible outcomes
List of outcomes of X; 

The i  element (member) of list ; 
The list  indexed by 

The expected (mean) value of  or 
Some specific value of X
Effort,

i i

i

E T S ET

X X
i

X
X

α α α α

≡ ≅

≡ ∈

≡

≡
≡
≡

X X

X X
X X

X

X

X

, , ,  duration, size, and effort-duration tradeoff nonlinearities (exponents)
First, second, and third regression exponents
Effort adjustment factor; data set life cycle to all-all life cycle

1 2 3a a a ≡

≡Eaf
Taf

, ,

Duration adjustment factor; data set life cycle to all-all life cycle≡

 

Tables 

Table 1:  Example data set – Military Ground C/C++ (Aerospace Corporation, 2004) 

Observations 

Database 
Serial 

Number 
Operating 

Environment 
Application 

Domain Size Effort Time 
Observation 1 299 Military Ground Command/Control 6,000 29.0 6.00 
Observation 2 102 Military Ground Test 6,113 35.1 10.00 
Observation 3 74 Military Ground Support 6,974 42.3 11.00 
Observation 4 407 Military Ground Support 10,400 19.4 9.00 
Observation 5 303 Military Ground Test 12,200 51.0 12.00 
Observation 6 431 Military Ground Support 13,929 75.4 13.00 
Observation 7 309 Military Ground Support 14,551 97.6 16.00 
Observation 8 210 Military Ground Command/Control 15,608 86.6 13.60 
Observation 9 254 Military Ground Signal Processing 15,776 112.3 15.00 
Observation 10 220 Military Ground Database 15,978 218.9 18.40 
Observation 11 71 Military Ground OS/Exec 18,330 198.9 18.70 
Observation 12 176 Military Ground Database 20,965 165.8 17.40 
Observation 13 129 Military Ground Signal Processing 25,389 191.0 44.00 
Observation 14 358 Military Ground Test 27,008 179.0 30.00 
Observation 15 387 Military Ground Mission Planning 29,326 83.6 13.40 
Observation 16 362 Military Ground Test 31,300 84.0 16.00 
Observation 17 242 Military Ground Signal Processing 31,870 103.4 14.60 
Observation 18 118 Military Ground Signal Processing 32,000 110.0 10.00 
Observation 19 107 Military Ground Support 33,919 234.6 20.00 
Observation 20 70 Military Ground Test 34,000 529.0 24.00 
Observation 21 373 Military Ground Support 34,752 235.7 20.00 
Observation 22 280 Military Ground Command/Control 42,500 191.0 24.00 
Observation 23 273 Military Ground Signal Processing 44,447 121.1 16.40 
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Observations 

Database 
Serial 

Number 
Operating 

Environment 
Application 

Domain Size Effort Time 
Observation 24 121 Military Ground Command/Control 45,000 313.0 15.00 
Observation 25 381 Military Ground Support 46,208 360.8 24.00 
Observation 26 138 Military Ground Signal Processing 48,290 501.1 25.00 
Observation 27 216 Military Ground Mission Planning 67,280 239.4 20.40 
Observation 28 155 Military Ground Signal Processing 143,026 621.0 42.00 
Observation 29 345 Military Ground Support 154,378 1,191.3 26.00 

Table 2:  Example data set scale factor lists – inefficiency ω , intensity I , and difficulty D  

Observations 

Database 
Serial 

Number Inefficiency Intensity Difficulty 
Observation 1 299 3.493E-03 5.610E-01 3.906E-03 
Observation 2 102 4.147E-03 2.205E-01 5.554E-03 
Observation 3 74 4.359E-03 2.154E-01 5.865E-03 
Observation 4 407 1.321E-03 1.537E-01 1.897E-03 
Observation 5 303 2.942E-03 2.144E-01 3.962E-03 
Observation 6 431 3.791E-03 2.658E-01 4.898E-03 
Observation 7 309 4.690E-03 2.178E-01 6.297E-03 
Observation 8 210 3.869E-03 2.764E-01 4.961E-03 
Observation 9 254 4.962E-03 2.888E-01 6.308E-03 
Observation 10 220 9.546E-03 3.590E-01 1.164E-02 
Observation 11 71 7.522E-03 3.148E-01 9.405E-03 
Observation 12 176 5.455E-03 3.076E-01 6.851E-03 
Observation 13 129 5.152E-03 4.594E-02 9.343E-03 
Observation 14 358 4.529E-03 1.001E-01 7.065E-03 
Observation 15 387 1.942E-03 2.756E-01 2.491E-03 
Observation 16 362 1.824E-03 1.874E-01 2.520E-03 
Observation 17 242 2.203E-03 2.823E-01 2.813E-03 
Observation 18 118 2.334E-03 6.909E-01 2.507E-03 
Observation 19 107 4.686E-03 3.203E-01 5.839E-03 
Observation 20 70 1.054E-02 4.834E-01 1.213E-02 
Observation 21 373 4.591E-03 3.218E-01 5.715E-03 
Observation 22 280 3.019E-03 1.745E-01 4.231E-03 
Observation 23 273 1.827E-03 2.559E-01 2.378E-03 
Observation 24 121 4.663E-03 8.050E-01 4.862E-03 
Observation 25 381 5.229E-03 3.297E-01 6.480E-03 
Observation 26 138 6.938E-03 4.185E-01 8.210E-03 
Observation 27 216 2.350E-03 3.129E-01 2.941E-03 
Observation 28 155 2.788E-03 1.655E-01 3.947E-03 
Observation 29 345 4.941E-03 9.126E-01 5.029E-03 

Table 3:  Example data set CDF lists – difficulty ′D , intensity ′I , and inverse intensity 1−′I  

Percentile Difficulty Intensity 
Inverse 

Intensity 
1.72% 1.897E-03 4.594E-02 1.096E+00 
5.17% 2.378E-03 1.001E-01 1.242E+00 
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8.62% 2.491E-03 1.537E-01 1.447E+00 
12.07% 2.507E-03 1.655E-01 1.783E+00 
15.52% 2.520E-03 1.745E-01 2.069E+00 
18.97% 2.813E-03 1.874E-01 2.389E+00 
22.41% 2.941E-03 2.144E-01 2.785E+00 
25.86% 3.906E-03 2.154E-01 3.033E+00 
29.31% 3.947E-03 2.178E-01 3.108E+00 
32.76% 3.962E-03 2.205E-01 3.123E+00 
36.21% 4.231E-03 2.559E-01 3.176E+00 
39.66% 4.862E-03 2.658E-01 3.196E+00 
43.10% 4.898E-03 2.756E-01 3.251E+00 
46.55% 4.961E-03 2.764E-01 3.462E+00 
50.00% 5.029E-03 2.823E-01 3.543E+00 
53.45% 5.554E-03 2.888E-01 3.618E+00 
56.90% 5.715E-03 3.076E-01 3.628E+00 
60.34% 5.839E-03 3.129E-01 3.763E+00 
63.79% 5.865E-03 3.148E-01 3.908E+00 
67.24% 6.297E-03 3.203E-01 4.536E+00 
70.69% 6.308E-03 3.218E-01 4.592E+00 
74.14% 6.480E-03 3.297E-01 4.643E+00 
77.59% 6.851E-03 3.590E-01 4.664E+00 
81.03% 7.065E-03 4.185E-01 5.335E+00 
84.48% 8.210E-03 4.834E-01 5.730E+00 
87.93% 9.343E-03 5.610E-01 6.043E+00 
91.38% 9.405E-03 6.909E-01 6.508E+00 
94.83% 1.164E-02 8.050E-01 9.994E+00 
98.28% 1.213E-02 9.126E-01 2.177E+01 

Table 4:  Example effective size ′S  and work ′Ψ  CDF lists 

Percentile 

Effective 
Size 

(ESLOC) Work 
5.00% 8.486E+04 3.652E+02 

10.00% 8.939E+04 4.391E+02 
15.00% 9.296E+04 5.113E+02 
20.00% 9.606E+04 5.766E+02 
25.00% 9.947E+04 6.483E+02 
30.00% 1.033E+05 7.135E+02 
35.00% 1.070E+05 7.645E+02 
40.00% 1.109E+05 8.202E+02 
45.00% 1.152E+05 8.861E+02 
50.00% 1.194E+05 9.530E+02 
55.00% 1.237E+05 1.024E+03 
60.00% 1.294E+05 1.100E+03 
65.00% 1.357E+05 1.195E+03 
70.00% 1.422E+05 1.294E+03 
75.00% 1.492E+05 1.404E+03 
80.00% 1.582E+05 1.534E+03 
85.00% 1.689E+05 1.694E+03 
90.00% 1.819E+05 1.888E+03 
95.00% 2.007E+05 2.262E+03 
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Notes 
 
1 See the Appendix for details about notation and the use of various typefaces. 
2 Difficulty is roughly analogous to the inverse of Putnam’s (1980) productivity parameter and to 

the inverse of Jensen’s (1983a) effective technology constant. 
3 Intensity is roughly analogous to Putnam’s (1980) manpower buildup parameter and to Jen-

sen’s (1983a) software complexity. 
4 We use the symbol ∝  to indicate that the preceding expression is “proportional to” the suc-

ceeding expression. See the Appendix for details about notation. 
5 This paper does not go into the details about how to perform or implement regression process-

es. All three methods to which the paper refers are well understood and well documented. 
Log OLS can be performed using Microsoft Excel and its Linest function on log-transformed 
lists, MUPE can be performed using Tecolote’s CO$TAT tool, and ZMPE can be performed 
using Microsoft Excel and its Solver add-in. 

6 We use the dagger symbol †  to indicate the example historical data set Aerospace 2004: Mili-
tary Ground C/C++. See the Appendix for details about notation. 

7 Mean position in an arbitrarily-selected example Effective Source Lines of Code (ESLOC) dis-
tribution that is based on a Delivered Source Lines of Code (DSLOC) estimate that has been 
growth-adjusted according to Ross (2011b) assuming 0% estimate maturity. 

8 Tecolote’s ACEIT tool refers to this as a Custom CDF. 
9 The result of a growth-adjusted estimate of Delivered Source Lines of Code (DSLOC) (Ross, 

2011b) from which an Effective Source Lines of Code (ESLOC) distribution has been calcu-
lated by applying appropriate rework. 
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