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Abstract 

Significant effort and statistical knowledge are required in order to complete an accurate uncertainty 
analysis for a cost estimate. First, a representative sampling of data points must be collected in order to 
model appropriate distributions for each random variable in the estimate. Additionally, correlation 
between the random variables in the estimate must be properly assessed and applied. Finally, to 
generate the cumulative distribution of total costs (i.e., S-Curve) a simulation method such as Monte-
Carlo simulation or an analytic approximation such as the method of moments must be used.   

However, collecting the data required to accurately model the distribution of each random variable and 
correlation between the random variables is difficult and time consuming. To help cost estimators 
develop uncertainty analyses with limited time, a variety of default distributions for random variables 
and default correlation application techniques between random variables have been proposed by 
authors and are incorporated in the leading cost estimating software applications. However, an 
overreliance on default distributions and default values for correlation is likely to provide inaccurate 
results since it is not a sampling from the actual population of interest. 

This is where the Pareto Principle can be applied. The Pareto Principle, named after the Italian 
economist Vilfredo Pareto, comes from income distribution studies conducted in the 19th century. 
Pareto found that 80% of income goes to the top 20% of the population. This principle has since been 
found to have broader application, and has been generalized to state that roughly 80% of effects come 
from 20% of the causes. For example, 80% of the work done in an office is contributed by only 20% of 
employees. Applied to cost risk analysis, this would lead to focusing efforts on assigning accurate cost 
risk distributions to the major cost drivers, while not assigning cost risk to the many WBS elements that 
only minimally drive cost. The purpose of this paper is to examine the potential effects of working to 
develop cost risk distributions for major cost drivers, and compare this to the overall effect of assigning 
cost risk distributions to all elements with default distributions. Assumptions are varied for the 
proportion of random variables that receive modeled distributions and the proportion of random 
variables that are assigned default distributions. Also, assumptions are varied for how closely both the 
modeled distributions and default distributions match the actual population mean, variance, and 
skewness. Finally, observations are provided to help the cost community manage their limited resources 
to generate improved uncertainty analyses in cost estimates.   
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Introduction 

One of the most important steps in creating a credible cost estimate is completion of a thorough cost 
risk and uncertainty analysis. However, in practice cost estimators often find themselves with 
insufficient time and resources needed to complete cost risk and uncertainty analysis to allow an in-
depth analysis. In fast-paced program office environments, quick-turn estimates often have to be 
completed. When working quick-turn estimates, it can be challenging enough to generate point cost 
estimates in the short amount of time that is granted, let alone complete any risk and uncertainty 
analysis. 

Program managers tend to be optimistic and believe that their programs will not experience the same 
obstacles as prior programs, which is a primary reason for the importance of a sound cost uncertainty 
analysis . Output-based risk and uncertainty analysis can be used when risk and uncertainty analysis 
must be completed in a short amount of time. A number of different output-based approaches have 
been proposed, including those by Smart (2011a, 2011b) and Braxton et al. (2011). While these 
approaches are very useful, particularly when developing independent cost estimates, or early, 
Milestone A estimates, greater fidelity is required for program office estimates in order to communicate 
risk to program managers and to allocate total risk to individual WBS elements for inclusion in budgets. 
As a result, it is useful to determine if input-based cost risk and uncertainty analysis can be completed 
on an estimate with only a fraction of the work that is required to develop detailed cost risk estimates 
for each WBS element. 

The Pareto Principle is named after the Italian economist Vilfredo Pareto. In his income studies 
conducted in the 19th century, Pareto found that 80% of income goes to the top 20% of the population. 
This principle has since been found to have broader application, and has been generalized to state that 
roughly 80% of effects come from 20% of the causes. For example, 80% of the work done in an office is 
contributed by only 20% of employees. Applied to the context of input-based cost risk and uncertainty 
analysis, this suggests that it may be possible to place uncertainty distributions on only 20% of cost 
drivers and still explain 80% of the potential variation in costs. This paper will investigate the Pareto 
Principle and its potential application to input-based cost risk and uncertainty analysis. 

Distribution Assignment 

The first step in input-based cost risk and uncertainty analysis is distribution assignment. The Air Force 
Cost Risk and Uncertainty Analysis Handbook (U.S. Air Force, 2007) categorizes distribution assignment 
into subjective and objective distribution assignment.  

Objective Distribution Assignment 

Objective distribution assignment refers to analyzing data to characterize the uncertainty associated 
with a cost driver. Objective distribution assignment includes: 

• Computation of prediction intervals from parametric CERs. 

Presented at the 2012 SCEA/ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com



• Input-modeling of an appropriate distribution to describe a dataset using goodness of fit tests 
such as Chi-Squared or Kolmogorov-Smirnov . 

Subjective Distribution Assignment 

Subjective distribution assignment refers to assigning an uncertainty distribution to a cost driver without 
analyzing data. Subjective distribution assignment includes: 

• Use of expert opinion to define distribution minimum and maximum values and distribution 
type. 

• Use of default subjective distributions which includes rules of thumb to describe the expected 
amount of variation (i.e., low variation = 15% CV; medium variation = 25% CV, etc.) (commonly 
used cost estimating software applications include default subjective distributions to make 
distribution assignment very easy if no other information is available). 

Benefits to Each Approach 

It is reasonable to expect that objective distribution assignment will produce better results than 
subjective distribution assignment, provided that enough data points are available and the analysis has 
been done correctly. However, objective distribution assignment can be substantially more time 
consuming.  Obtaining a sufficient number of data points to derive a parametric CER or fit a valid 
distribution around can be the most challenging part.  

It is also reasonable to expect that subjective distributions derived using expert opinion will produce 
better results than default subjective distributions, provided that the expert has provided a basis for the 
values (for example, design criteria or actual value from a previous development effort). Additionally, it 
may not be possible to objectively define distributions for all cost drivers leaving expert opinion as the 
best available option.  

The following terms are defined for use in the remainder of this paper: 

• Modeled Distribution - objectively defined distributions or subjectively defined distributions 
using expert opinion. All of these distribution assignment approaches are referred to as 
modeled distributions since a basis can be provided to defend at least one of the distribution 
parameters. 

• Default Distribution - default subjectively defined distributions. 

Sequential Analysis 

The investigation begins by sequentially applying uncertainty distributions to the top cost elements in an 
estimate. Typically, uncertainty distributions are applied at the input variable level but for simplicity in 
this example only the cost elements are investigated. 
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Example Estimate 

The estimate under investigation is a sanitized version of an actual estimate. A Pareto chart of the cost 
elements in this estimate is displayed in Figure 1. 

 

Figure 1: Pareto Chart 

This example cost estimate has 29 total cost elements. If the Pareto Principle applies to this estimate, it 
would suggest that applying uncertainty distributions to the top six cost elements (21% of the 29 total 
cost elements) should explain roughly 80% of the variation. However, several observations can be made 
from the Pareto chart. 

• The top six cost elements only comprise 57% of total cost in the point estimate. 

• The top twelve cost elements comprise 82% of total cost in the point estimate. 

Whether applying uncertainty distributions to the top six cost elements adequately explains the overall 
uncertainty in the estimate is addressed next. 

Results 

The following assumptions are made to analyze the effect of sequentially adding uncertainty 
distributions to the top elements in the example estimate: 

• The included uncertainty distributions match the actual population distribution. 
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• The included uncertainty distributions have a Coefficient of Variation (CV) of 50%. Note that the 
CV is ratio of the standard deviation to the mean, and thus represents the relative amount of 
uncertainty for the estimate. 

• Correlation of +0.2 is applied to included uncertainty distributions. This correlation matches the 
actual population correlation. 

When sequentially adding the uncertainty distributions to each cost element, the resulting standard 
deviation of the total aggregate distribution is compared with the standard deviation of the total 
aggregate distribution with uncertainty distributions and correlation applied between all of the cost 
elements. Computation of these results does not require simulation as the formulas in Figure 2 can be 
applied. 

 

 

 

 

 

 

 

 

Figure 2: Sums of Means and Variances 

Figure 3 shows the results of sequentially adding uncertainty distributions to each cost element in the 
example estimate.  
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Figure 3: Results of Sequentially Adding Uncertainty Distributions 

The following observations are drawn from Figure 3: 

• Applying uncertainty distributions to the top six (21%) of cost elements only accounts for 
approximately 70% of the total variation in the estimate. The Pareto Principle does not apply in 
this example. Thus, the more general conclusion applies that the Pareto Principle cannot be 
used to assigned risk to only the top 20% of cost drivers while expecting to estimate 80% of the 
risk. 

• Uncertainty distributions must be applied to approximately 10 cost elements (or approximately 
30% of the cost elements) to account for 80% of the variation. 

• Even though the marginal amount of variation explained decreases with the addition of each 
uncertainty distribution, there is no point of inflection which indicates where it no longer makes 
sense to include additional distributions. 

While the analysis discussed above provides insight, the following limitations exist: 

• It is highly unlikely that uncertainty distributions included in a risk and uncertainty analysis will 
match the actual population distribution. 

• Only applying uncertainty distributions to the top cost elements in an estimate will likely result 
in an underestimate of variation. 

As a result, the next analysis that will be completed investigates the effect of including modeled 
distributions on some cost elements and default distributions on the remaining cost elements with the 
assumption that the included distributions do not match the actual population.  Including distributions 
on all cost elements will reduce the natural tendency to understate variation when distributions are only 
included on the top cost elements. 
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Experimental Trials Using Monte-Carlo Simulation 

Visual Basic for Applications (VBA) and Monte-Carlo simulation was used to run a large number of 
experimental trials to analyze the effect of simultaneously including modeled distributions and default 
distributions. The example cost estimate used is the same as the one in the previous section. The 12,000 
total experimental trials which were computed are described in Table 1. For each experimental trial, 
5,000 replications were completed. 

Independent Variable Range

# of Drivers receiving modeled 
distributions 0 to 29
Degree Modeled Distributons vary 
from the actual population

Variance is varied by -50% to +50% in 
Increments of 5%

Degree Default Distributons vary 
from the actual population

Variance is varied by -50% to +50% in 
Increments of 5%  

Table 1: Experimental Trials Run 

The assumptions underlying this analysis are: 

• Modeled distributions are more accurate than default distributions. As a result, only the 
experimental trials where the modeled distributions more closely match the assumed 
population distribution are kept for further analysis. Additionally, the X modeled distributions 
that are included are applied to the X top cost elements. 

• The population distribution for each cost element is lognormally distributed and is therefore 
right skewed. 

• The location parameter of the population distributions for each cost element is 0. 

• The population distribution for each cost element has a CV of 50%.  

• The population correlation between each of the cost elements is +0.2. 

In order to determine the accuracy of each experimental trial, the 80th percentile of each trial is 
compared to the 80th percentile of the population density. The total aggregate population probability 
distribution function, as approximated with a Monte Carlo simulation, is displayed in Figure 4. The 
approximate population 80th percentile is 74.36. 
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Figure 4: Aggregate Population PDF 

Results 

Figure 5 shows the effect of including modeled distributions with the remaining cost elements receiving 
default distributions. Each data series includes all experimental trials where the delta between default 
distributions and modeled distributions deviation from the population distributions is the specified 
value. For instance, the data series labeled “10%” includes all experimental trials where: 

• Default distribution deviation = 50% and Modeled distribution deviation = 40%. 

• Default distribution deviation = 40% and Modeled distribution deviation = 30%. 

• And all other possible combinations yielding a 10% delta. 

Including modeled distributions clearly appears to improve results when added to the first several cost 
elements, but the benefits appear to become negligible after approximately the 8th cost element (or 
28% of the total cost elements in the estimate).  
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Modeling distributions for these cost 
elements does not appear to significantly 
improve results 

 

Figure 5: Results for Specified Deltas Between Default and Modeled Distributions 

Modeling distributions for these cost 
elements does not appear to 
significantly improve results 

 

Figure 6: Constant Default % Difference to Population 

Figure 6 provides a different view of all the experimental trials. Each data series shows all experimental 
trials for a constant default % deviation from the population. In this case, including additional modeled 
distributions still appears to improve results up until approximately the 12th cost element. It is important 
to point out that that the top 12 cost elements were required to account for over 80% of total cost in 
the point estimate.  
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In summary, the experimental trials suggest that when default distributions are added to the cost 
elements which do not receive modeled distributions a point can be reached where adding additional 
modeled distributions does not dramatically improve results. 

Case Study 

To further validate the results of the previous two sections, two different variations of risk and 
uncertainty analysis were completed on a sanitized version of another actual program office cost 
estimate. The two risk and uncertainty analysis variations are summarized below: 

• Variation 1: Modeled distributions were placed on the Top 10 input variables which affect cost 
(equates to roughly 20% of the total input variables in the estimate). No uncertainty was 
assigned to any other inputs variables. 

• Variation 2: Default subjectively defined distributions were placed on all input variables in the 
estimate. 

In both of the variations, subjective correlation of +0.2 was applied between all of the input variables 
with uncertainty distributions. Previous studies (Smart, 2009; MDA, 2012) have identified this as a safe 
value to use when it is not feasible to objectively assess correlation.  

The cumulative distribution functions (or S-Curves) of these two risk and uncertainty analysis variations 
are shown in Figure 7. The CV for Variation 2 is equal to 18.6% while the CV for Variation 1 is 
significantly lower at 13.9%. Thus it appears that Variation 1 may be underestimating risk by not 
including risk for all WBS elements. 

 

 

Figure 7: CDF Comparison 

However, review of the risk statistics for the two risk and uncertainty analysis variations tells a different 
story (Table 2). Both the 50th and 80th percentiles for Variation 1 are greater, even though the CV is 
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lower than in Variation 2. In particular, the 50th percentile for Variation 1 is over 6% greater than the 50th 
percentile for Variation 2. The explanation for this is that the modeled distributions better account for 
skewness in the dataset. In summary, it appears that modeling the uncertainty with the Top 20% of cost 
drivers (or approximately Top 10 in this case) is much more critical than including uncertainty on the 
remaining cost elements. 

Marker
Variation 1 - Top 10 

Distributions Modeled Variation 2 - Default
Point Estimate $18.21 $18.21 
Mean $19.80 $18.73 
Std. Deviation $2.74 $3.48 
5th Percentile $15.68 $13.61 
10th Percentile $16.48 $14.58 
20th Percentile $17.49 $15.83 
30th Percentile $18.25 $16.75 
40th Percentile $18.91 $17.56 
50th Percentile $19.58 $18.38 
60th Percentile $20.30 $19.27 
70th Percentile $21.04 $20.26 
80th Percentile $21.99 $21.49 
90th Percentile $23.43 $23.22 
95th Percentile $24.63 $24.89  

Table 2: Summary of Risk Statistics 

Variation 1 is more accurate, while Variation 2 captures more uncertainty. Thus for the case study the 
best overall solution may be to model the top drivers in-depth, while incorporating default uncertainty 
on the remaining variables. 

 

Conclusions 

The results in this paper show that the Pareto Principle cannot directly be used to complete distribution 
assignment for cost risk and uncertainty analysis for the following reasons: 

• The top 20% of cost drivers in an estimate may account for less than 80% of the total point 
estimate value. 

• Only including uncertainty distributions on the top 20% of cost drivers will likely result in an 
understatement of variation. This is not a desired outcome in a profession that is more often 
known for underestimating costs rather than overestimating costs. 

However, the results in this paper do identify guidelines which can be used to help cost estimators more 
efficiently complete an input-based cost risk and uncertainty analysis: 

• Subjectively defined default distributions should be included on all cost drivers which do not 
receive modeled distributions. Subjectively defined default distributions can very quickly be 
applied to cost drivers in commonly used cost estimating software applications. 
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• Once modeled uncertainty distributions are applied to the cost drivers which account for 
approximately 80% of the total cost in the estimate, there does not appear to be a significant 
benefit to modeling additional distributions. This observation holds true as long as default 
distributions are included on the remaining cost drivers. 
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