TASC

Risk-Based Return On Sales (ROS) As a Tool For Complex Contract Negotiations

SCEA ISPA Conference 08-11 J une 2010

Peter J. Braxton, Technical Fellow Richard L. Coleman, Director of Cost and Risk Analysis
Michael Burton, Director of Contracts, Northrop Grumman Shipbuilding

- Contract Negotiations - Government and Contractor Views
- Risk-Based Return On Sales (ROS) ${ }^{1}$ Recap
- Four main Contract Types as functions that map Cost to Profit, Price, and ROS
- Analytical and empirical methods for determining distributions
- Incorporation of terms and conditions (Ts \& Cs)
- Contract Negotiations Scenario
- Risk-Based ROS Negotiations Tool
- Exploring the Scenario
- Bottom Line
- Contract Price is of paramount importance
- Translates directly to cost to the government
- Measured against budgets
- Combines with other costs to make up total phase costs
- Program Management Office (PMO)
- Government-Furnished Equipment (GFE)
- Other Government Costs (OGCs)
- Final Contract Price ultimately matters, but budget constraints may drive Target Price
- This is the price the government fools themselves into believing they might actually pay
- Critical issue for commodities requiring "full funding"
- Shareline and Ceiling Price are viewed as devices to magically control cost
- Fee is viewed as a necessary evil of capitalism
- Various degrees of appreciation for the health of the industrial base - generally reactive more than proactive
> (1) Target Cost
- If you don't get Target Cost right, you're "mis-calibrated"
- "You can't manage your way out of a bad deal"
- (2) Target Fee
- This is what makes the company profitable and makes the owners / shareholders happy
- Needs to be enough to be sufficient after erosion
- ROS (expected not bid!) measured against corporate hurdle rate
- (3) Shareline
- Determines how quickly things get worse from a profit perspective
- (4) Ts \& Cs
- Provide protection against factors "out of our control"
- Not going to make you well if you got \#1-3 wrong!
- (1) Cost Estimate
- Mean cost $=$ first-order moment
- Beware: Proposal may very well be below the mean!
- Point of departure for cost
- Estimate vs. Target Cost identifies gap
- (2) Cost Estimating Variability
- Standard deviation = second-order moment
- Often expressed as Coefficient of variation (CV) = std dev / mean
- Indicates how quickly you'll run up the shareline
- Sanity-check against PTA/Ceiling Price or RIE
- (3) Continuous Risks
- Inflation, learning curve, weight growth, SLOC growth, warranty
- Often implicit in \#2 unless broken out for Ts \& Cs coverage
- (4) Discrete Risks
- May or may not be addressed by Ts \& Cs
- Four main Contract Types
- Firm-Fixed-Price (FFP) [FAR 16.202]
- Fixed-Price Incentive (FPI) [FAR 16.204]
- Cost-Plus-Incentive-Fee (CPIF) [FAR 16.304]
- Cost-Plus-Fixed-Fee (CPFF) [FAR 16.306]
- Each Contract Type determines functions that map Cost (X) to:
- Profit $(Y)=f(X)$, Price $=X+Y$, and ROS $=Y /(X+Y)$
- Given a distribution of Cost, can determine distribution of Profit, Price, and ROS
- Analytical method, i.e., calculus
- Empirical method, i.e., Monte Carlo simulation
- Incorporation of terms and conditions (Ts \& Cs)
- Take some cost risk "off the shareline"

- Typical Set of Inputs

Target Cost (TC) = \$10.0M
Target Profit (Fee) (TF) = \$1.0M
Target Price (TP) = \$11.0M [all] 10\% Profit (ROC)
9.1\% Margin (ROS) [all] 70/30 Over-Target Shareline

$$
R I E_{\text {low }}=T C-\frac{(M F-T F)}{C C}
$$

CSunder

$$
R I E_{\text {high }}=T C+\frac{(T F-m F)}{C C}
$$

CSover 40/60 Under-Target Shareline [CPIF/FPI]
Min Fee (mF) $=3 \%$, Max Fee (MF) $=20 \%$ [CPIF]
Ceiling Price (CP) $=130 \%$ [FPI]

Target Cost	$\$$	10.0		
Target Profit	$\$$	1.0	10.0%	Profit Percent
Target Price	$\$$	11.0	9.1%	Margin Percent
Min Fee	$\$$	0.3	3.0%	Min Fee Percent
Max Fee	$\$$	2.0	20.0%	Max Fee Percent
Under Gov Share		40%		
Under Cont Share	60%			
Over Gov Share		70%		
Over Cont Share	30%			
PTA	$\$$	12.9		
Ceiling Price	$\$$	13.0	130.0%	Ceiling Price Percent
RIE Low	$\$$	8.3		
RIE High	$\$$	12.3		

$$
P T A=T C+\frac{(C P-T P)}{G S_{\text {over }}}
$$

Cost Estimating Body of Knowledge (CEBoK), Module 14 Contract Pricing, SCEA, 2009.

- Percentiles (20/50/80) and mean are shown on graph

- Symmetric: Mode $=$ Median $=$ Mean

- Percentiles (20/50/80) and mean are shown on graph

- Skew right: Mode < Median < Mean

> Percentiles (20/50/80) and mean are shown on graph

- Skew right: Mode < Median < Mean

- Percentiles (20/50/80) and mean are shown on graph
- Skew right: Mode < Median < Mean

- Sole-source negotiation
- FPI contract type
- CPIF would behave similarly within the RIE
- Government and contractor agree to disagree on distribution of cost
- Mean and standard deviation
- Fixed Price Incentive Firm (FPIF)
- Target Cost (TC) $=\$ 10.0 \mathrm{M}$

Target Profit (Fee) (TF) = \$1.0M
Target Price (TP) $=\$ 11.0 \mathrm{M}$

- 10\% Profit (ROC)
9.1\% Margin (ROS) [all]
- 70/30 Over-Target Shareline 40/60 Under-Target Shareline
- Ceiling Price (CP) = 130\% [FPI]

$$
P T A=T C+\frac{(C P-T P)}{G S_{\text {over }}}
$$

Target Cost	$\$$	10.0		
Target Profit	$\$$	1.0	10.0%	Profit Percent
Target Price	$\$$	11.0	9.1%	Margin Percent
Under Gov Share		40%		
Under Cont Share	60%			
Over Gov Share	70%			
Over Cont Share	30%			
PTA	$\$$	12.9		
Ceiling Price	$\$$	13.0	130.0%	Ceiling Price Percent

yellow fill = input blue fill = calculated

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com FPI - Pathological Cases

- Quad chart dashboard
- Upper left: Contract Geometry
- Key points highlighted (Target Cost, PTA)
- The function which enables mapping of Cost
- Lower left: Distribution of Cost
- CDF and PDF views
- Output of cost estimating process (proposal/ICE and POE/ICE)
- Upper right: Distribution of Price
- What the government cares about - compare with Budget
- Lower right: Distribution of ROS
- What the contractor cares about - compare with hurdle rate
- Enables common view
- Graphical depiction produces more clear and intuitive results
- Let's go to the Excel!

Risk-Based ROS Negotiations Tool

ROS Distribution

-20.0\%15.0\%10.0\%-5.0\% 0.0\% 5.0\% 10.0\%15.0\%20.0\%25.0\%30.0\%35.0\%40.0\% Cost

- Vary parameters one at a time
- Essentially sensitivity analysis
- Two major inputs:
- Contract geometry
- This is the subject of the negotiations
- Probabilistic cost estimate
- This is the subject of the reconciliation
- Ts \& Cs treated offline in Monte Carlo simulation
- After inputs have been refined using the tool

Contractor Initial Position

ROS Distribution

$-20.0 \% 15.0 \% 10.0 \%-5.0 \%$ 0.0\% $5.0 \% 10.0 \% 15.0 \% 20.0 \% 25.0 \% 30.0 \% 35.0 \% 40.0 \%$ Cost

- Government Initial Position

\section*{| |
| :---: |
| |
| mean |
| $\$ 10.0$ |
| CV |
| 30.0% |}

ROS Distribution

$-20.0 \% 15.0 \% 10.0 \%-5.0 \%$ 0.0\% 5.0\% $10.0 \% 15.0 \% 20.0 \% 25.0 \% 30.0 \% 35.0 \% 40.0 \%$ Cost

Contractor Counteroffer

ROS Distribution

$-20.0 \% 15.0 \% 10.0 \%-5.0 \%$ 0.0\% 5.0\% 10.0\%15.0\%20.0\%25.0\%30.0\%35.0\%40.0\% Cost

Government Counteroffer

ROS Distribution

$-20.0 \% 15.0 \% 10.0 \%-5.0 \%$ 0.0\% 5.0% 10.0\%15.0\%20.0\%25.0\%30.0\%35.0\%40.0\% Cost

- Consider Risk and ROS in negotiations
- Rigor and quantitative analysis of Cost applied to Contracts
- Government and contractor need to understand each other's perspectives
- Primary objectives of affordability and profitability, respectively
- Acknowledge other party's interests without compromising one's own
- Negotiations are adversarial, but relationship is symbiotic
- Money paid to contractors gets reinvested in:
- Economy - via employees, owners/shareholders
- Industrial base - via corporate training, retention, facilities
- Government - via taxes!
> Not that many levers!
- Avoid doing something unnatural!
- Contract type and geometry should be appropriate
- Use government "weighted guidelines" for fee
- Contract Types Overview
- Profit, Price, and ROS function for four main Contract Types
- Analytical Derivation of ROS distribution
- General Approach
- Four main Contract Types
- Analytical Derivation of Price distribution
- FPI
- Pathological Cases
- Padded cost
- Aggressive cost
- Understated variability

Contract Types Overview

Fixed-Price

Price - Cost = Profit

ROS could be negative!	- Firm-Fixed-Price (FFP) [FAR 16.202]
	- Fixed-Price Incentive (FPI) [FAR 16.204]

- Cost-Reimbursement [FAR 16.3]

ROS

- Cost-Plus-Incentive-Fee (CPIF) [FAR 16.304]
- Cost-Plus-Award-Fee (CPAF) [FAR 16.305]
- Cost-Plus-Fixed-Fee (CPFF) [FAR 16.306]

Cost + Fee = Price
> Contract Types vary according to

- Degree and timing of the responsibility assumed by the contractor for the costs
- Amount and nature of the profit incentive offered to the contractor for achieving or exceeding specified standards or goals
- We'll omit CPAF because it is by definition subjective

Cost Estimating Body of Knowledge (CEBoK), Module 14 Contract Pricing, SCEA, 2009.

Tip: All contract types yield the same Profit $(\$ 1 \mathrm{M})$
and Price ($\$ 11 \mathrm{M}$) at the Target Cost (\$10M)

TC, TP, Sharelines,

Ceiling Price

Cost Estimating Body of Knowledge (CEBoK), Module 14 Contract Pricing, SCEA, 2009.

Cost Estimating Body of Knowledge (CEBoK), Module 14 Contract Pricing, SCEA, 2009.

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonIne.com

 - Cost-Plus-Fixed-Fee (CPFF) contract Data Elements:TC, $\mathbf{F F}=\mathbf{T F}$

-Margin Percent
Cost Estimating Body of Knowledge (CEBoK), Module 14 Contract Pricing, SCEA, 2009.

Without Ts and Cs

- Transformation of random variables!
- We math nerds always get excited about real-world applications of something we learned in school and thought we'd never use again!
- Define random variables:
- $X=$ Cost
$-Y=$ Profit (Fee) $=f(X)$, where f is determined by contract type
- Bright green line from earlier contract type graphs
- Piecewise linear function for all major contract types (FFP/FPI/CPIF/CPFF)
- Monotonically non-increasing function of Cost
- In fact, monotonically decreasing except for CPFF
$-\mathrm{X}+\mathrm{Y}=$ Price
- Monotonically non-decreasing function of Cost
- In fact, monotonically increasing except for FFP
$-Z=R O S=Y /(X+Y)=1-X /(X+Y)$
- Monotonically decreasing function of Cost (for all contract types)

- Using the Cumulative Distribution Function (CDF) and logic (cf. Cadenza)

$$
\begin{aligned}
& F_{Z}(z)=P(Z \leq z)=P\left(\frac{Y}{X+Y} \leq z\right)=P\left(1-\frac{X}{X+f(x)} \leq z\right)= \\
& P\left(1-z \leq \frac{X}{X+f(X)}\right)=P\left(X+f(X) \leq \frac{X}{1-z}\right)=P\left(f(X) \leq X \frac{z}{1-z}\right)= \\
& P(X \geq g(z))=1-P(X \leq g(z))=1-F_{X}(g(z))
\end{aligned}
$$

> The formula for $g(z)$ depends on $f(X)$ and hence contract type

- Since $f(X)$ is piecewise linear, there's always a simple solution
- We'll enumerate the solutions for the four basic contract types
- The outlined step has interesting conceptual and geometric interpretations
- Probability that Profit is less than profit percentage times cost! [slap forehead]
- As z goes from 0 to 1 , the line $y=(z /(1-z)) x$ traces out 90 degrees, starting from the x-axis and rotating counterclockwise to the y-axis
- Intersects the decreasing Profit function further and further to the left
- Hence captures a bigger and bigger chunk of the right part of the PDF of cost!
- Using the Probability Density Function (PDF) and Jacobeans (!)
- Agrees with PDF derived from CDF from the "Easy Way"

$$
p_{Z}(z)=\frac{d}{d z} F_{Z}(z)=-F_{X}^{\prime}(g(z)) \cdot g^{\prime}(z)=-p_{X}(g(z)) \cdot g^{\prime}(z)
$$

- FFP $=$ Target Price $=$ Target Cost + Target Profit
- Profit $=$ FFP - Cost $Y=f(x)=T P-X \quad Z=\frac{T P-X}{T P}$
- Linear function (slope of -1)

$$
P\left(T P-X \leq X \frac{z}{1-z}\right)=P(X \geq T P(1-z))=1-P(X \leq T P(1-z))
$$

Linear Combinations property: X is Normal implies Z is Normal

$$
F_{Z}(z)=1-F_{X}(T P(1-z)) \underset{\substack{\text { Take } \\ \text { derivative, } \\ \text { apply chain } \\ \text { rule }}}{\square} p_{Z}(z)=T P \cdot p_{X}(T P(1-z))
$$

- Over-Target Shareline Adjustment until Point of Total Assumption (PTA)
- Converts to FFP
- Under-Target Shareline Adjustment
- Piecewise linear function (three regimes)

$$
\begin{gathered}
Y=f(X)=\left\{\begin{array}{c}
T F+C S_{\text {under }}(T C-X) \\
T F-C S_{\text {over }}(X-T C) \\
C P-X
\end{array}\right) \begin{array}{c}
X \leq T C \\
T C<X \leq P T A \\
X>P T A
\end{array} \\
X=T C \Leftrightarrow Z=\frac{T F}{T P} \quad X=P T A \Leftrightarrow Z=\frac{C P-P T A}{C P}
\end{gathered}
$$

$$
\left.\begin{array}{c}
\left.P\left(T F+C S_{\text {under }}(T C-X)\right)=\left(\frac{z}{1-z}\right) X\right)=1-P\left(X \leq \frac{\left(T F+C S_{\text {under }} T C\right)(1-z)}{C S_{\text {under }}+G S_{\text {under }} z}\right) \\
P\left(\left(T F-C S_{\text {over }}(X-T C)\right)=\left(\frac{z}{1-z}\right) X\right)=1-P\left(X \leq \frac{\left(T F+C S_{\text {over }} T C\right)(1-z)}{C S_{\text {over }}+G S_{\text {over }} z}\right) \\
\left.P(C P-X) \leq\left(\frac{z}{1-z}\right) X\right)=1-P(X \leq(1-z) C P)
\end{array}\right] \begin{array}{cc}
1-F_{X}\left(\frac{\left(T F+C S_{\text {under }} T C\right)(1-z)}{C S_{\text {under }}+G S_{\text {under }} z}\right) \\
F_{Z}(z)=\left\{\begin{array}{cc}
1-F_{X}\left(\frac{\left(T F+C S_{\text {over }} T C\right)(1-z)}{C S_{\text {over }}+G S_{\text {over }} z}\right) & \frac{C P-P T A}{C P} \leq z<\frac{T F}{T P} \\
1-F_{X}((1-z) C P)
\end{array}\right. \\
Z<\frac{C P-P T A}{C P}
\end{array}
$$

Take derivative, apply chain rule

$$
p_{Z}(z)=\left\{\begin{array}{cc}
\left(\frac{T F+C S_{\text {under }} T C}{\left(C S_{\text {under }}+G S_{\text {under }} Z\right)^{2}}\right) p_{X}\left(\frac{\left(T F+C S_{\text {under }} T C\right)(1-z)}{C S_{\text {under }}+G S_{\text {under }} Z}\right) & z \geq \frac{T F}{T P} \\
\left(\frac{T F+C S_{\text {over }} T C}{\left(C S_{\text {over }}+G S_{\text {over }} z\right)^{2}}\right) p_{X}\left(\frac{\left(T F+C S_{\text {over }} T C\right)(1-z)}{C S_{\text {over }}+G S_{\text {over }} Z}\right) & \frac{C P-P T A}{C P} \leq z<\frac{T F}{T P} \\
C P \cdot p_{X}((1-z) C P) & z<\frac{C P-P T A}{C P}
\end{array}\right.
$$

- Over-Target Shareline Adjustment down to Min Fee - Converts to CPFF
- Under-Target Shareline Adjustment up to Max Fee - Converts to CPFF
- Piecewise linear function (four regimes)

$$
Y=f(X)=\left\{\begin{array}{cc}
M F & X \leq R I E_{\text {low }} \\
T F+C S_{\text {under }}(T C-X) & R I E_{\text {low }}<X \leq T C \\
T F-C S_{\text {over }}(X-T C) & T C<X \leq R I E_{\text {high }} \\
m F & X>R I E_{\text {high }}
\end{array}\right.
$$

$$
X=R I E_{\text {low }} \Leftrightarrow Z=\frac{M F}{R I E_{\text {low }}+M F}
$$

$$
X=T C \Leftrightarrow Z=\frac{T F}{T P}
$$

$$
X=R I E_{\text {high }} \Leftrightarrow Z=\frac{m F}{R I E_{\text {high }}+m F}
$$

$$
\left.\left.P(M F)=\left(\frac{z}{1-z}\right) X\right)=1-P\left(X \leq\left(\frac{1-z}{z}\right) M F\right) \quad P(m F)=\left(\frac{z}{1-z}\right) X\right)=1-P\left(X \leq\left(\frac{1-z}{z}\right) m F\right)
$$

$$
\begin{aligned}
& P\left(\left(T F+C S_{\text {under }}(T C-X)\right)=\left(\frac{z}{1-z}\right) X\right)=1-P\left(X \leq \frac{\left(T F+C S_{\text {under }} T C\right)(1-z)}{C S_{\text {under }}+G S_{\text {under }} Z}\right) \\
& P\left(\left(T F-C S_{\text {over }}(X-T C)\right)=\left(\frac{z}{1-z}\right) X\right)=1-P\left(X \leq \frac{\left(T F+C S_{\text {over }} T C\right)(1-z)}{C S_{\text {over }}+G S_{\text {over }} Z}\right)
\end{aligned}
$$

$$
F_{Z}(z)=\left\{\begin{array}{cc}
1-F_{X}\left(\left(\frac{1-z}{z}\right) M F\right) & z \geq \frac{M F}{R I E_{\text {low }}+M F} \\
1-F_{X}\left(\frac{\left(T F+C S_{\text {under }} T C\right)(1-z)}{C S_{\text {under }}+G S_{\text {under }} z}\right) & \frac{T F}{T P} \leq z<\frac{M F}{R I E_{\text {low }}+M F} \\
1-F_{X}\left(\frac{\left(T F+C S_{\text {over }} T C\right)(1-z)}{C S_{\text {over }}+G S_{\text {over }} z}\right) & \frac{m F}{R I E_{\text {high }}+m F} \leq z<\frac{T F}{T P} \\
1-F_{X}\left(\left(\frac{1-z}{z}\right) m F\right) & z<\frac{m F}{R I E_{\text {high }}+m F}
\end{array}\right.
$$

Take derivative, apply chain rule

$$
\begin{aligned}
& \frac{M F}{z^{2}} p_{x}\left(\left(\frac{1-z}{z}\right) M F\right) \quad z \geq \frac{M F}{R I E_{\text {low }}+M F}
\end{aligned}
$$

Fixed Fee amount = TF

- Linear (constant) function

$$
Y=f(x)=T F=\frac{T F}{T F+X}
$$

$$
\left.P(T F) \leq\left(\frac{z}{1-z}\right) X\right)=P\left(X \geq\left(\frac{1-z}{z}\right) T F\right)=1-P\left(X \leq\left(\frac{1-z}{z}\right) T F\right)
$$

$$
F_{Z}(z)=1-F_{X}\left(\left(\frac{1-z}{z}\right) T F\right) \Longrightarrow p_{Z}(z)=\frac{T F}{z^{2}} p_{X}\left(\left(\frac{1-z}{z}\right) T F\right)
$$

Take
derivative, apply chain rule

- Over-Target Shareline Adjustment until Point of Total Assumption (PTA)
- Converts to FFP
- Under-Target Shareline Adjustment
- Piecewise linear function (three regimes)

$$
R=\left\{\begin{array}{cc}
T P-G S_{\text {under }}(T C-X) & X \leq T C \\
T P+G S_{\text {over }}(X-T C) \\
C P & T C<X \leq P T A \\
X>P T A
\end{array}\right.
$$

$$
\begin{aligned}
& X=0 \Leftrightarrow R=X+Y=T P-G S_{\text {under }} T C \\
& X=T C \Leftrightarrow R=X+Y=T P=T C+T F \\
& X=P T A \Leftrightarrow R=X+Y=C P
\end{aligned}
$$

$$
\begin{aligned}
& P\left(T P-G S_{\text {under }}(T C-X) \leq r\right)=P\left(X \leq T C-\frac{T P-r}{G S_{\text {under }}}\right) \\
& P\left(T P+G S_{\text {over }}(X-T C) \leq r\right)=P\left(X \leq T C+\frac{r-T P}{G S_{\text {over }}}\right)
\end{aligned}
$$

$$
P(R=C P)=1-P(X \leq P T A)
$$

discrete "chunk" of probability

$$
F_{R}(r)=\left\{\begin{array}{cc}
F_{X}\left(T C-\frac{T P-r}{G S_{\text {under }}}\right) & T P-G S_{\text {under }} T C \leq R<T P \\
F_{X}\left(T C+\frac{r-T P}{G S_{\text {over }}}\right) & T P \leq R<C P \\
1 & R \geq C P
\end{array}\right.
$$

- Comparison graphs for cases:

- Base case: Base cost = Target Cost (\$10.0M), standard deviation $=\$ 1.5 \mathrm{M}$ (15\% CV)
- Aggressive cost: True base cost is $\$ 11.5 \mathrm{M}$ instead of $\$ 10.0 \mathrm{M}$
- Padded cost: True base cost is $\$ 8.5 \mathrm{M}$ instead of $\$ 10.0 \mathrm{M}$
- Understated variability: True standard deviation is $\$ 3.0 \mathrm{M}$ instead of \$1.5M

Summary table across all contract types:

MONTE CARLO	Base case (\$10M)				Padded cost (\$8.5M)				Aggressive cost (\$11.5M)				Understated variability			
	FFP	FPI	CPIF	CPFF												
20th percentile	-2.2\%	5.1\%	5.2\%	8.1\%	11.4\%	10.5\%	10.3\%	9.3\%	-16.0\%	1.3\%	2.3\%	7.3\%	-13.6\%	2.0\%	2.4\%	7.4\%
median (50th percentile)	8.9\%	9.1\%	9.0\%	9.1\%	22.9\%	18.2\%	18.2\%	10.5\%	-4.6\%	4.6\%	4.6\%	8.0\%	9.4\%	9.1\%	9.6\%	9.1\%
mean	9.0\%	11.0\%	10.6\%	9.3\%	22.8\%	19.1\%	16.6\%	10.8\%	-4.5\%	4.4\%	5.8\%	8.1\%	9.3\%	12.5\%	12.5\%	7.5\%
80th percentile	20.3\%	16.8\%	16.7\%	10.2\%	34.2\%	26.9\%	21.6\%	12.1\%	6.9\%	8.4\%	8.3\%	8.9\%	32.0\%	25.4\%	21.2\%	11.9\%

FFP - Pathological Cases

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

 - CPI F - Pathological Cases

Presented at the 2010 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com - CPFF - Pathological Cases

