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ABSTRACT 

The coefficient of variation (CV), defined as the standard deviation divided by the mean, is a 
useful metric to quantify the uncertainty inherent in a probability distribution, as it provides a 
relative (and thereby more intuitive) measure of spread than the variance or standard deviation. 
In the field of cost analysis, the CV can be used as a diagnostic to determine the level of risk and 
uncertainty built into an estimate and whether those levels fall within the expected range for a 
program of given scope and complexity and at a given stage in its life cycle.  

The CV is easy to calculate, even for complicated distributions, and is a standard output for risk-
based estimating software, such as @Risk or ACEIT’s RI$K. However, it is not always intuitive 
to understand what factors contribute to the overall CV, or why a particular estimate may have a 
CV that is lower (or higher) than expected. When conducting ad hoc diagnostics, it is tempting to 
treat the CV of a parent Work Breakdown Structure (WBS) element as approximately the 
weighted average of its children’s respective CVs. This approach is fundamentally flawed, as it 
neglects both the widening effect of correlation and the narrowing effect of adding distributions 
(due to the fact that the standard deviation adds in quadrature).  

An alternate approach to diagnosing the CV is based on representing the parent CV as a function 
of the relative size and CV of the child elements and the correlation between those elements. The 
functional form of this representation is elegant and leads to a natural treatment of the parent CV 
in three parts: (1) the weighted average of the child CVs, (2) an adjustment to account for 
summing in quadrature, and (3) an adjustment to account for correlation. Rules of thumb are 
given to facilitate “back of the envelope” calculations, and a graphical display of more precise 
results is suggested for briefing to decision makers and other stakeholders. 
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INTRODUCTION 

There is an old adage in the field of cost analysis that the only thing one can know about a point 
estimate is that it is always wrong. This tired truism is often used in the context of basic courses 
or discussions on cost risk and uncertainty to introduce the concept of an estimate as a range of 
possible values with an associated probability distribution, as opposed to a hard, fast number 
(which, indeed, will invariably be wrong). Probabilistic estimates are created by assigning 
uncertainty to model inputs, typically by defining the shape and spread of common probability 
density functions (e.g. normal, triangle, etc.) around the input point estimate, which generally 
serves as an anchor or measure of central tendency of the distribution. Random draws are taken 
from these input distributions and manipulated via the same math as the point estimate, yielding 
a simulated result for the total value of the estimate. The results of many, many consecutive 
iterations (usually on the order of thousands) produce a range of values for the total estimate with 
an associated probability density function or distribution. 

Analysts and stakeholders alike should be interested in not only the central or most likely values 
of the distribution, but also its spread. A common measure of spread is the coefficient of 
variation (CV), defined as the standard deviation divided by the mean. The CV is a useful metric 
because it provides a relative (and thereby more intuitive) measure of how widely values in a 
probability distribution vary. (By its definition, the CV describes what percentage of the mean 
value is represented by a single standard deviation of the data set.) Because of its relativity, the 
CV can be easily compared among similar distributions or to industry standards or rules-of-
thumb, such as those given in the Air Force Cost Risk and Uncertainty Handbook (AFCAA 
2007, 26-27) to ascertain whether an appropriate amount of uncertainty has been captured by the 
cost model.  

When the CV of an estimate is far from the value one would expect, given a program’s size, 
complexity, maturity, etc., diagnostics are warranted to answer two basic questions. First, why is 
the CV so low or so high? Second, what, if anything, can (or should) be done to fix it? (These are 
the types of questions that a senior analyst or stakeholder may use to ambush junior analysts 
during an estimate briefing!) Variance analyses and sensitivity tests can be used to better 
understand what drives the CV, but these tests can be computationally quite time consuming. 
Certainly, they are not an option in a briefing setting, or any other time a quick diagnostic is 
needed. 

There is the temptation to attempt to deconstruct the top-level CV by treating it as a simple 
weighted average of the next lower level elements’ coefficients of variation, possibly using the 
point estimates as the weights. This approach is intuitive and lends itself to fairly easy mental 
math. Unfortunately, it is also fundamentally flawed, not only misrepresenting the mathematics 
of summing distributions, but also completely ignoring the effects of correlation between the 
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elements. However, though mathematically unsound as an approximation of the top-level CV, an 
intuitive weighted average coefficient of variation (CVw.ave) with judiciously chosen weighting 
factors can be used as a logical starting point for understanding what drives the true CV, 
provided that certain adjustments are made.  

If the weighting factors are chosen properly, the true, top-level CV can be expressed in terms of 
the lower-level weighted CVs. This expression separates the effects of correlation from the 
effects of the lower-level CVs alone and shows how to properly sum the weighted lower-level 
coefficients. In this way, there emerges a logical mental path toward what drives the true CV and 
how to address the questions of why a CV may be unexpectedly low (or high) and what may be 
done to bring it to a more reasonable level. 

 

THE WEIGHTED AVERAGE CV 

Consider a simple, generic Work Breakdown Structure (WBS), consisting of a top-level parent 
element with n children. By definition, the value of the parent is the sum of the children’s values. 
Because of this relationship, it is natural to assume that the CV of the parent should fall 
somewhere around the average value of its children’s CVs. (Remember, CV is a relative measure 
of spread.) Therefore, if you know the spread of the children (or at least of the “big-ticket” 
items), you should be able to estimate the CV of the parent with little effort. However, this 
simply isn’t the case for two fundamental reasons.  

First, the CV of a distribution is, by definition, directly dependent on the distribution’s standard 
deviation. Unlike the mean, the standard deviation (and by extension the CV) does not add 
linearly. That is, the standard deviation of the sum is not equal to the sum of the standard 
deviations. Rather, it is the variance (or the square of the standard deviation) that sums linearly 
(for independent variables). Consequently, the standard deviation sums quadratically, meaning 
the standard deviation of the sum is the root-sum-square1 of the addend standard deviations. The 
root-sum-square is less than or equal to the simple sum (Salas, Hille, and Etgen 1999, 18), which 
means that adding multiple independent distributions has a narrowing effect on the sum 
distribution. 

Second, a simple weighted average does not take into account the effect of correlation between 
the child WBS elements. Even if one deals with the square of the CV to avoid the narrowing 
effect discussed previously, the variances only add linearly in the absence of correlation. 
Correlation tends to have a widening effect of the sum distribution. These two effects, the 

                                                           
1 The root-sum-square of a set of variables is the square root of the sum of the square of each variable. 
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narrowing from adding the standard deviation in quadrature and the widening from correlation, 
can mask each other to some degree, obscuring the true nature of the top-level CV and how it is 
driven by lower-level spread. 

Though not a good approximation of the parent CV, the weighted average of the child CVs is not 
without value. As mentioned, it is simple, intuitive, and fairly easy to calculate inside one’s head. 
As such, CVw.ave is a convenient place to begin when trying to understand the true CV. In 
addition, the true CV can be written in terms of the weighted child CVs—the addends that sum 
together to obtain CVw.ave. 

 

THE PARTIAL COEFFICIENT OF VARIATION 

The terms which, when summed, equal CVw.ave may be called the partial coefficients of variation 
(pCV) of each child element. The pCV is a weighted coefficient of variation and has little 
meaning as a stand-alone entity. However, the collective2 pCV are the key to describing the 
parent CV in terms of its children. 

It is important to be clear on what weighting factors are used to calculate the pCV. Because the 
mean is the only point on a distribution that sums linearly, it makes sense to use the relative 
means (not the point estimates) as the weights. Specifically, define a weight pj corresponding to a 
child WBS element, denoted by xj to be the mean of xj divided by the mean of the parent, 
denoted by capital X: 

Let X be the parent of n children, each denoted by xj, in a typical Work Breakdown Structure 
(WBS). In general, the value of the parent is equal to the sum of the children, so that 

 
 

(Eq. 1)  

The partial CV of an element xj (denoted by pCVj) is defined as the product of that element’s CV 
(CVj) and its weighting factor (pj): 

  (Eq. 2)  

The weights all add to unity, so the weighted average CV is given as simply the sum of the 
partial CV: 

                                                           
2 Note that pCV can be used to denote the singular or plural, as in partial coefficients of variation. 
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(Eq. 3)  

Again, it must be understood that, except in the most special of circumstances, this is not equal to 
the true CV of the parent distribution. However, as stated previously, the true CV can be 
expressed in terms of the pCV. 

 

THE pCV REPRESENTATION OF THE PARENT CV 

To arrive at the partial CV representation of the coefficient of variation for a parent WBS 
element (X), start by expressing the variance (σ2) of X as a sum of each pair of child element 
standard deviations (σj, σk) multiplied by each other and by the correlation between the two 
elements (rj,k). (Be sure to include each element paired with itself!) 

 
 

(Eq. 4)  

(Eq. 4) is given in equivalent form by Alfred Smith (Smith 2011, 22) and is derived 
independently in this paper’s appendix. 

From the definition of the CV, the standard deviation σ is equal to the product of the CV and the 
mean. Plugging this product into (Eq. 4) for every instance of σ, and dividing out by the square 
of the total mean  yields: 

  

 

(Eq. 5)  

Applying the definition of the weights in (Eq. 1) and the definition of the pCV from (Eq. 2) and 
taking the square root of both sides, the following expression for the parent CV emerges: 

 

 

(Eq. 6)  

This is the pCV representation of the coefficient of variation in compact form. 

The true math enthusiast may notice that the double sum under the radical is the equal to the 
inner product of the n-dimensional vector, whose entries are given by the set of pCV, with itself, 
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after being acted upon by a Hermitian operator,  , defined by the fully populated 
correlation matrix.  

 
 

(Eq. 7)  

In addition to the compact, elegant notation, this vector form of the pCV representation can come 
in handy when working with spreadsheet software, such as Excel®, and is particularly useful in 
at least one special case. 

The utility of the pCV representation in (Eq. 6) is made particularly clear by separating the terms 
for which j = k from the cross terms. These are the terms which correspond to the diagonal 
entries of the correlation matrix, which are each equal to one. Furthermore, the inherent 
symmetry in the off-diagonal entries of the correlation matrix (i.e. rj,k = rk,j) causes each cross 
term to repeat twice. Thus, the terms under the radical in (Eq. 6) can be separated into a sum over 
the diagonal entries and a double sum (by row and column) over the off-diagonal entries in the 
upper-right of the correlation matrix, multiplied by the corresponding pCV: 

 

 
(Eq. 8)  

Again, the factor of 2 in the cross terms is a result of the symmetry in the correlation matrix. 

 

THE ZERO-CORRELATION CV 

In the absence of correlation, the off-diagonal entries of the correlation matrix disappear, 
eliminating the cross-terms in (Eq. 8) and reducing the CV to root-sum-square of the pCV. 
Recall from earlier discussions that this is proper way to average the child-level coefficients of 
variation, as it accounts for the narrowing effect of adding the standard deviation in quadrature. 
Because it ignores the effects of correlation, call this expression the zero-correlation coefficient 
of variation (CVzero corr). 

 

 
(Eq. 9)  

Both CVw.ave and CVzero corr are easy to calculate with spreadsheet software or even a standard 
scientific calculator. However, CVw.ave is considerably easier to deal with mentally. Not only is 
the arithmetic linear, but visualizing a simple weighted average is much more natural than a root-
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sum-square. Because of these advantages, it is helpful to understand how CVw.ave and CVzero corr 
differ and, more importantly, how to go from one to the other. 

Define a factor f as the ratio of the zero-correlation CV to the weighted average CV so that 

  (Eq. 10)  

Note that because CVw.ave is a linear combination of the pCV, f can be distributed throughout its 
terms. In this way, CVzero corr can be thought of as either an adjusted CVw.ave or as the weighted 
average of the adjusted child-level CVs (or equivalently as the sum of the adjusted pCV). In each 
case, the adjustment is made via multiplication by f. 

The interpretation of f is that (1 – f) represents the fraction by which the CV is reduced due to 
summing the standard deviation in quadrature. This factor is not constant and depends on the 
number of child elements n and how evenly the pCV are distributed. (The minimum value of f is 
realized when all the pCV are equal. Conversely, f is maximized when one pCV dominates all 
others.)  

Of course, it is simple to back into f by calculating both CVw.ave and CVzero corr and taking the 
ratio. In fact, if time and resources permit, this is a fast, easy way to picture the reduction in CV 
that occurs from summing independent distributions. However, if a quick, “back of the 
envelope” analysis is needed, it is easiest to start with CVw.ave and rely of rules of thumb to 
approximate f. 

Because f depends on how the pCV are distributed, it is helpful to normalize the pCV so that 
they sum to one. Each normalized pCV will represent the percent of the total CVw.ave represented 
by each raw pCV. By way of notation, define a variable q to be the ratio of a single pCV to the 
sum of all pCV: 

 
 

(Eq. 11)  

and define q1  to be the largest value of q (i.e. the leading normalized pCV) for a given set of 
WBS elements. 

Figure 1 illustrates the behavior of f versus the leading normalized pCV (q1) for several values of 
n.  (The data in the graph consist of randomly distributed q for a number of arbitrary sets of child 
elements of various sizes.) The data for each value of n follow a distinct curve that is “sharper” 
for smaller values of n. Notice that for smaller values of q1, not only do the curves fan out, but  
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Figure 1. The behavior of f depends on the number and distribution of the pCV.  

 

the data are more loosely scattered about their respective curves. As the leading q dominates less, 
the relative influence of n increases and the variability in the distribution of the other-than-
leading q’s becomes more pronounced. Contrariwise, for q1 closer to 1, the data converge, 
following a nearly linear trend, as q1 dominates all other factors. The slope of the f-curve for high 
q1 is roughly equal to one. 

The graph of f vs. q1 can be more or less divided into three regions, based on the value of q1, for 
the purposes of developing rules of thumb for approximating f. The first region is that of high q1, 
greater than about 0.70. In this region, f ~ q1. The data in the middle region (q1 from about 0.4 to 
0.7) are more scattered, so the approximate values for f are less precise. A rough rule of thumb is 
that f ~ ½ for low values of q1 with high n and f ~ ¾ for high values of q1 with low n. For the 
middling range, f can be approximated by ~⅔. (The approximations may overstate f a bit, but 
they are easy numbers to work with and should be sufficiently accurate for a rough mental 
calculation.) Finally, in the low q1 realm (where q1 ~ n-1), the normalized pCV tend to be more or 
less equal, and the value of f can be approximated by its minimum value, 1/ . These rules of 
thumb are summarized in Table 1. 

 

 q1 < 0.40 0.40 – 0.70 > 0.70 
Low n High q1 

  

f ~ ¾ 
f ~ q1 Med n Med q1 f ~ ⅔ 

High n Low q1 f ~ ½ 
 

Table 1. Rules-of-thumb for approximating f. 
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CORRELATION EFFECTS 

Of course, the zero-correlation case is theoretical only. All real estimates must contain some 
degree of correlation between WBS elements, and the effects of the presence of correlation 
(which tends to widen the parent distribution) must be added to CVzero corr in order to obtain the 
true CV of the parent element. 

The double sum in (Eq. 8) may be called the “correlation effect term,” since it arises from the 
correlation between the elements and clearly depends on rj,k. However, a dose of caution should 
be applied to such nomenclature. The terms in (Eq. 8) are added under a radical, so one cannot 
simply add the zero-correlation and correlation effect terms to obtain the true CV. Furthermore, 
it is convenient to refer to the additional CV that results from the presence of correlation as the 
“correlation effect,” but this delta is not equal to the so-called correlation effect term shown in 
(Eq. 8).  To avoid confusion, this paper will refer to the increase in CV due to correlation as the 
correlation delta-CV or ∆CVcorr. 

The correlation effect is quite cumbersome and very difficult to calculate mentally. The double 
sum contains many terms, and the correlation matrix is not, generally speaking, simple. 
(Sometimes, the correlation matrix is not even readily available!) And, there are no easy rules-of-
thumb to help approximate the correlation term.  

Fortunately, it is not necessary to find the value of the correlation term, because the true 
coefficient of variation is known a priori. What is really of interest is by how much the zero-
correlation CV is changed (by the presence of correlation) to reach the true CV. This is the 
correlation delta-CV and is, by inspection, equal to the difference between the true CV and 
CVzero corr: 

  (Eq. 12)  

There is an interesting result for the perfect correlation case (i.e. every entry in the correlation 
matrix is equal to one) that is made clear by the vector form of the pCV representation of CVX 
shown in (Eq. 7). If all entries in the matrix operator  are set equal to 1, and the right-hand-side 
of the equation is multiplied out explicitly, it turns out that the resultant CVX is equal to the sum 
of the pCV vector entries, which is, of course, the weighted average CV! In other words, the 
perfect correlation case is that one special case for which CVw.ave is equal to the true coefficient 
of variation. 

Of course, the perfect correlation case is just as theoretical as the zero correlation case. Still, it is 
useful to note, because it puts an upper bound on the additional CV that can be gained for the 
parent element by increasing the correlation between the next-level child elements alone. In other 
words, CVw.ave is the highest CV that can be obtained, given a constant set of pCV. 
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Again, a word of caution is warranted here. Typically, correlation is applied to the lowest level 
inputs of a model, not directly to the Level 2 WBS elements. Though the addition of correlation 
to independent input distributions should not change their spreads, any higher level distributions 
that depend on those inputs will be altered. So, if correlation is applied or changed at levels 
below the Level 2 child elements, the set of pCV will, of course, not be constant, and CVw.ave 
(and the new upper limit for the CV) will be something of a moving target. Nevertheless, for 
diagnostic purposes, the first-order approximation of holding the pCV constant is useful. 

 

A MENTAL PATH AND GRAPHICAL REPRESENTATION 

Up to this point, the discussions on the pCV representation have blazed a trail toward 
understanding the true CV of a parent WBS element, starting with the intuitive (but faulty) 
CVw.ave and working through the two different parts of the pCV representation, which expresses 
the true CV as a function of the partial CV (the addends of CVw.ave). The resulting mental path is 
powerfully simple, consisting of three basic steps, each of which can be done fairly easily inside 
one’s head: (1) start with CVw.ave, (2) multiply by f to arrive at CVzero corr, and (3) add the effects 
of correlation. 

To illustrate how this path might be followed in a briefing setting, without the aid of a computer 
or calculator, consider a hypothetical sample program with a total point estimate of one billion 
dollars, spread across seven child WBS elements, as shown in Figure 2. 

 

Costs in BY2011 $M 
WBS Point Estimate Mean CV   

  
SAMPLE PROGRAM  1,000.0 $              1,072.2 $   0.1242   

Prime Mission Product 500.0 $                 546.2 $       0.1977  

System Engineering 150.0 $                 150.8 $       0.1009  

Program Management 150.0 $                 150.8 $       0.1009   
System Test & Evaluation 100.0 $                 120.4 $       0.2161   

Training 9.0 $                      7.2 $            0.3270   
Data 16.0 $                    20.0 $         0.3618   

Support Equipment 75.0 $                    76.9 $         0.3489    
Figure 2. Statistics for the sample program 

 
When the senior analyst is briefed on this estimate, he expresses concern over a CV of only 0.12, 
stating that the size, complexity, and risk involved would suggest a much wider distribution. So, 
he asks the question, “Why is your CV so low? What can we do to fix it?” To answer the 
question, follow the steps outline above. 
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Step 1: Start with CVw.ave.  

The “big ticket” item in this sample program is clearly the Prime Mission Product (PMP), 
representing a little over half the total mean of the estimate. With a CV of about 0.2, the PMP 
partial CV is roughly 0.10. Other contributors include System Engineering (SE) and Program 
Management (PM), together comprising a bit less than 30% of the total mean, and with a CV of 
around 0.1 each (resulting in a total pCV of about 0.03 for the two elements). The elements that 
make up the remaining 20% of the estimate have varying CVs, but for a rough mental exercise, 
they can be treated as having an average CV of about 0.3 each, leading to a total pCV (for the 
remaining elements) of 0.06. Adding the estimated pCV yields an estimate for CVw.ave of 0.10 + 
0.03 + 0.06 = 0.19, as might be expected based on the influence of PMP on the weighted 
average. (These mental calculations are summarized in Figure 3.) 

 
Figure 3. Summary of mental calculations to arrive at CVw.ave 

 

Step 2: Multiply by f to arrive at CVzero corr: 

The weighted average CV is, of course, just a starting point. Each of the child-level CVs must be 
effectively adjusted by f to arrive at the zero-correlation CV, the next stop on the path. The Prime 
Mission Product pCV accounts for a little more than half of CVw.ave, so the leading q1 is about 
0.5—a fairly medium range. Seven is a fairly average number of child elements as well, so it is 
justified to approximate f by ⅔ (as shown in Table 1) to go from CVw.ave to CVzero corr. To make 
the mental math easier, treat CVw.ave as close to 0.18, two-thirds of which is 0.12. 

Step 3: Add the effects of correlation to reach the true CV: 

To find the effects of correlation, simply take the difference between the true CV (which 
includes correlation) and CVzero corr (which does not). In this case, the true CV is very close to the 
estimated CVzero corr—certainly within the margin of error. So, a reasonable conclusion is that 

Costs in BY2011 $M 
WBS Point Estimate Mean CV Approx. Weight (p) Approx. pCV 

p = Mean/Total Mean pCV = p*CV 
SAMPLE PROGRAM 1,000.0 $              1,072.2 $   0.1242 100% N/A 

Prime Mission Product 500.0 $                 546.2 $       0.1977 50% 0.10 
System Engineering 150.0 $                 150.8 $       0.1009 
Program Management 150.0 $                 150.8 $       0.1009 
System Test & Evaluation 100.0 $                 120.4 $       0.2161 
Training 9.0 $                      7.2 $            0.3270 
Data 16.0 $                    20.0 $         0.3618 
Support Equipment 75.0 $                    76.9 $         0.3489 

Σ (pCV) =   0.19 

30% 0.03 

20% 0.06 
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very little correlation exists between the child WBS elements. This can be verified by examining 
the correlation matrix, shown in Figure 4. 

PMP SE PM STE Training Data Spt Eq
PMP 1 0.0 0.0 0.0 0.0 0.5 0.6
SE 1 0.0 0.0 0.0 0.0 0.0
PM 1 0.0 0.0 0.0 0.0
STE 1 0.0 0.1 0.0
Training 1 0.0 0.0
Data 1 0.3
Spt Eq 1  

Figure 4. Correlation matrix for the sample program.  
 

Having followed the mental path from CVw.ave to the true CV, the findings can be summarized by 
saying that the child elements have a (weighted) average CV of about 0.19, but that because of 
the number of child elements, that value must be reduced by a third to about 0.12, which is quite 
close to the true parent CV, indicating that insufficient correlation has been applied to this 
estimate. If additional correlation is applied, the true CV may be able to go as high as 0.19 
(likely not even that high, because perfect correlation is absurd), but to go any higher, the 
distributions on the inputs may need to be adjusted. 

The rough approximations made above can be validated after the fact by working through the 
math on a spreadsheet, as shown in Figure 5. Notice that the estimate for CVw.ave (or the sum of  

 

 
Figure 5. Working through the above analysis with spreadsheet software can validate the mental approximations. 

Costs in BY2011 $M 
WBS Point Estimate Mean CV Weight (p) pCV Sq. pCV Adj. CV Adj. pCV 

p = Mean/Total Mean pCV = p*CV pCV^2 Adj CV = f*CV Adj pCV = f*pCV 
SAMPLE PROGRAM 1,000.0 $              1,072.2 $   0.1242 100.0% N/A N/A N/A N/A 

Prime Mission Product 500.0 $                 546.2 $       0.1977 50.9% 0.1007 1.01E-02 0.1147 0.0584 
System Engineering 150.0 $                 150.8 $       0.1009 14.1% 0.0142 2.01E-04 0.0585 0.0082 
Program Management 150.0 $                 150.8 $       0.1009 14.1% 0.0142 2.01E-04 0.0585 0.0082 
System Test & Evaluation 100.0 $                 120.4 $       0.2161 11.2% 0.0243 5.89E-04 0.1254 0.0141 
Training 9.0 $                      7.2 $            0.3270 0.7% 0.0022 4.77E-06 0.1897 0.0013 
Data 16.0 $                    20.0 $         0.3618 1.9% 0.0068 4.57E-05 0.2099 0.0039 
Support Equipment 75.0 $                    76.9 $         0.3489 7.2% 0.0250 6.26E-04 0.2024 0.0145 

B  Σ (pCV) =   0.1873 Σ (Adj. pCV) =   0.1087 
A  RSS (pCV) = 0.1087 Adj. CV w.ave  =   0.1087 

f = (A/B) =  0.58 
CV w.ave  =   0.1873 

CV zero corr  =   0.1087 
True CV =  0.1242 

Corr. Effect  =  0.0155 
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the pCV) was fairly close, but the zero-correlation CV was off by about 0.01. This is due to the 
rough approximation for f, which was actually closer to three-fifths than two-thirds. (Recall that 
the rules-of-thumb have a tendency to overstate f.) However, the conclusion that insufficient 
correlation was applied is the same, which should answer the immediate question of why the CV 
was so low and what can be done to bring it up. 

If the full analysis is done ahead of time, these results can be displayed graphically, as shown in 
Figure 6. The parent CV is shown by the large bar in the background, divided into the zero-
correlation CV and the correlation effect, or (more accurately) the correlation delta-CV. The 
smaller bars in the foreground represent the CV, before and after adjustment, of each child 
element, and the yellow stripe on each represents the relative weight p. Finally, a dotted line in 
drawn for CVw.ave to give an indication of how much additional CV can be gained by adjusting 
the correlation between the child WBS elements. 

This analysis can be repeated for lower level elements, especially influential ones (such as PMP) 
that may warrant their own CV analysis. If the calculations are performed dynamically, and the 
graph is linked to the cells in which the calculations are performed, the analysis can be done 
automatically by simply pasting the relevant statistics (see Figure 2) into the appropriate cells, 
overriding the previous values. 

 
Figure 6. Graphical representation of the above CV analysis 
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CONCLUSIONS 

The coefficient of variation is a basic, fundamental statistical measure of spread, but what drives 
the CV is not always clearly understood. This paper has presented an alternative approach to 
diagnosing the top-level CV of an estimate by expressing it in terms of the next-level children. 
This approach can be drilled down to the lowest level for which the child element is a simple 
sum of still lower level children. In addition, the analysis is reasonable for a quick, mental 
diagnosis in a briefing situation, but also robust enough to lend significant insight if done 
thoroughly and can be automated for maximum efficiency. 
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APPENDIX: DERIVATION OF (EQ. 4) 

The variance σ2
 of a parent Work Breakdown Structure (WBS) element can be written as a sum 

of each pair of child element standard deviations multiplied by each other and by the correlation 
between the two elements. This formula is the basis for expressing the coefficient of variation 
(CV) of the parent in terms of its children. The following is a derivation of that expression for σ2. 

Let X be the parent of n children, each denoted by xi, in a typical WBS. In general, the value of 
the parent is equal to the sum of the children, so that 

 
 

(Eq. A1)  

 

where on the right-hand side of (Eq. A1), each child element is represented by a unique variable 
(which will aid notational simplicity in the following analysis).  

To account for uncertainty in the estimate, each quantity can be represented as a probability 
distribution about some point estimate (PE). While in theory these distributions are thought of as 
continuous, consisting of an infinite set of possible values and corresponding probabilities, in 
practice they are almost always dealt with as large sets of discrete simulated data. In such a case, 
the subscript i can be used to denote particular data points within that set. By this notation xi, yi, 
represent the values for the children elements x and y in the ith iteration of the simulation, and by 
extension,  

 
 

(Eq. A2)  

 

Note that in (Eq. A2), xj,i is the ith iteration of the variable xj. For notational simplicity, this paper 
adopts the convention on the right-hand side of (Eq. A1) and (Eq. A2) and refers to each child 
element by a unique (but general) variable (x, y, or z), unless otherwise specified. 

Finally, recall the definitions of mean ( ), variance (σ2), and coefficient of variation (CV) from 
basic statistics, as shown below: 

 
 (Eq. A3)  
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 (Eq. A4)  

 

  (Eq. A5)  

             

where N >> 1 is the number of iterations used for the Monte Carlo simulation. (Typically, N is 
on the order of several thousand.) 

Now, begin with the definition of CV from (Eq. A5), as applied to X, and square both sides to 
avoid working with radicals. 

 
 (Eq. A6)  

 

It is well known and easily proved that the mean of a sum is equal to the sum of the means of the 
individual terms. Making note of this fact and leveraging (Eq. A1), the factor in square brackets 
above becomes 

 

 

 
 (Eq. A7   

 

Comparison with (Eq. A4) shows that this is simply the sum of the variances of x, y, and z, plus 
cross terms. Thus, (Eq. A7) can be re-written: 

 
 (Eq. A8)  

It is expected that cross terms involving two variables (say, x and y) should be related to the 
correlation between the two, as defined below: 
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 (Eq. A9)  

  

and indeed this is the case, as will be shown shortly. First, however, it is helpful to examine a 
single, generalized term. Going through the algebra, it is easy to show that each cross term in 
(Eq. A7) is of the form 

 
 (Eq. A10)  

where x and y are generic variables, and either may be substituted with z or any other general 
variable. By multiplying the numerator out and taking advantage of the assumption (asserted 
earlier) that N is much greater than 1, this generalized term becomes (temporarily ignoring the 
factor of 2): 

 

 

 

 

  

 
(Eq. A11)  

From the definition of the mean in (Eq. A3), (Eq. A11) becomes 
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(Eq. A12)  

where we again make use of the assumption that N >> 1 (and consequently, ). 

Note the form of the numerator and compare it with the definition of correlation in (Eq. A9). 
This result allows the cross term (Eq. A10) to be written as  

 

 
 (Eq. A13)  

where   is the denominator in the 
expression for the correlation between variables x and y shown in (Eq. A9). Although 
cumbersome in this form, a little algebra demonstrates that D(x, y) can be written in terms of the 
standard deviations of the x and y distributions. 

Start with the definition of the variance of x: 
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 (Eq. A14)  

 

Note that from the definition of the mean, , which, when plugged into (Eq. A14) 
yields 

  

 
(Eq. A15)  

and consequently, 

  

 
(Eq. A16)  

Plugging the result of (Eq. A16), as well as the identical result for y, into D(x, y) yields 

 

 

 

  (Eq. A17)  

Inserting this result into (Eq. A13), the cross terms can be written as  

 
 (Eq. A18)  

Finally, taking this result all the way back to (Eq. A7), the variance of the parent element X can 
be written as the sum of each child’s variance, plus a cross term of the form in (Eq. A18) for 
each variable pair, as follows: 
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  (Eq. A19)  

Recognizing that, by definition, the correlation of any variable to itself is unity, this can be 
further simplified as 

 
 

(Eq. A20)  

where here subscripts are used to denote independent variables, not simulation iterations. 
(Logically, rj,k is the correlation between variables xj and xk, with similar notation for the 
standard deviations of those variables.)  
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