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1,2Abstract— This paper describes a data-driven approach to developing, describing, and cali-
brating a correlated software Cost Estimating Relationship (CER) and Schedule Estimating Rela-
tionship (SER) system of equations. It addresses CERs with correlated SERs that are probabilis-
tic (i.e., provide a range of possible outcomes with associated probability of attainment). It then 
describes a simple method for determining joint and conditional probabilities (confidence levels) 
of estimates based on these relationships. The paper includes a practical example of developing a 
software CER and correlated SER from data collected by the Aerospace Corporation, then im-
plementing the resulting model to examine several joint and conditional probability scenarios. 
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1.  INTRODUCTION 

Background 

Over 35 years of software development industry experience and project data tells us that cost and 
schedule estimating is essential to diligent affordability management, acquisition management, 
and project management. It also tells us that projects behave according to certain dynamic prop-
erties, that duration, effort, cost, and defects are all inexorably linked (correlated), that these cor-
relations can be expressed as functions of product and project attributes, and that, prior to project 
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completion, everything is uncertain (Ross, 2007a). Recognizing and managing the uncertainty 
(risk) goes a long way toward managing the project. Peter Bernstein (1996) writes 

“The revolutionary idea that defines the boundary between modern times and 
the past is the mastery of risk: the notion that the future is more than a whim of 
the gods and that men and women are not passive before nature. Until human 
beings discovered a way across that boundary, the future was a mirror of the 
past or the murky domain of oracles and soothsayers who held a monopoly 
over knowledge of anticipated events.” 

Dr. Paul Garvey, in his book Probability Methods for Cost Uncertainty Analysis: A Systems En-
gineering Perspective (2000), issued the following challenge to the cost analysis community: 

When cost uncertainty analyses are presented to decision-makers, questions 
often asked are “What is the chance the system can be delivered with-
in cost and schedule?” “How likely might the point estimate cost be 
exceeded for a given schedule?” “How are cost reserve recommen-
dations affected by schedule risk?” [author emphasis] 

During the past thirty years, techniques from univariate probability theory have 
been widely applied to provide insight into P(Cost ≤ x1) and P(Schedule ≤ x2). 

Although it has long been recognized that a system’s cost and schedule are 
correlated, little has been applied from multivariate probability theory to study 
joint cost-schedule distributions. A multivariate probability model would provide 
analysts and decision-makers visibility into joint and conditional cost-schedule 
probabilities… 

A primary goal of any thorough project estimating process should therefore be to not only yield 
estimated values for these metrics; it should also indicate whether or not these estimated values 
satisfy their corresponding goals (commitments) with some corresponding desired level of confi-
dence (probability of success) (Ross, 2007a). 

Recognition of this primary goal is exemplified in the 2004 Sambur-Teets memo, “High Confi-
dence Estimates: Estimate the software development and integration effort (staff hours), cost, 
and schedule at high (80-90%) confidence.” (Sambur, et al., 2004) and in the NASA Cost Esti-
mating Handbook, “As a general rule, cost estimates at NASA should be presented at the 70% 
confidence level. As an entire portfolio of Projects, the budget should be presented at the 80% 
confidence level” (National Aeronautics and Space Administration (NASA), 2004). While many 
may take issue with prescribed confidence levels cited here; nonetheless, people are beginning to 
care about recognizing and managing uncertainty. 

Recently the Space Systems Cost Analysis Group (SSCAG) Risk Subgroup, NASA, and the 
USAF Cost Analysis Agency (AFCAA) have been working separate efforts on joint cost and 
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schedule risk analysis. One output of the SSCAG activity is an initial draft set of guidelines that 
includes the following (Druker, et al., 2009): 

 Motivations – With the space systems community moving towards risk analysis metho-
dologies that capture both cost and schedule metrics, it is important that common termi-
nology and guidelines be developed to ensure a common frame of reference for discus-
sions on this topic. 

 Definition of Joint Cost & Schedule Risk Assessment – Joint Cost and Schedule Risk 
Assessment generates a joint bivariate probability distribution relating cost and schedule 
in a way that allows the analyst to determine the confidence level for meeting both target 
budgets and schedules simultaneously. This differs from traditional cost or schedule risk 
analysis in that program success is defined not as the probability of meeting one or the 
other, but as the probability of meeting both. 

 Methods – Any method that ties cost and schedule risk together through the use of a biva-
riate distribution results in a joint cost and schedule risk assessment. The following are 
three examples of this type of analysis: 

o Parametric – Disjoint Cost and Schedule distributions are conflated into a biva-
riate distribution through the injection of correlation between the two 

o Buildup – An integrated master schedule is loaded with either costs or resources 
that translate to costs. Schedule uncertainty applied to tasks and discrete technic-
al/program risks are added into the IMS. A Monte Carlo simulation is run on the 
schedule and from this a bivariate distribution of cost and schedule is produced 

o Estimate to Complete Projection – A cost distribution has a burn rate (with asso-
ciated uncertainty) applied to it to determine an estimated finish date. A Monte 
Carlo simulation on the cost and burn rate distributions will result in a bivariate 
distribution of cost and schedule 

Purpose and Scope 

This paper describes a data-driven approach for developing, describing, and calibrating a corre-
lated software Cost Estimating Relationship (CER) and Schedule Estimating Relationship (SER) 
system of equations. It addresses CERs with correlated SERs that are probabilistic (i.e., provide a 
range of possible outcomes with associated probability of attainment). It then describes a simple 
method for determining joint and conditional probabilities (confidence levels) of estimates based 
on these relationships. The paper includes a practical example of developing a software CER and 
correlated SER from data collected by the Aerospace Corporation, then implementing the result-
ing model to examine several joint and conditional probability scenarios. 

2. MODEL SUMMARY 

Software CDER Regression Equations 

These equations are used to support regression analysis of past project data (Ross, 2008). 
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Random Variable forms of CDER Equations 

These are a collection of probabilistic equations3 that form the basis of a data-driven parametric 
joint cost and schedule estimating model (Ross, 2007a) (Valerdi, et al., 2009). 

Bivariate Estimating Form 

 E T   <dataset name>
E T DS  (2) 

Work and Intensity Solved for Effort 

  1 E
T

   <dataset name>

E DST  (3) 

and 

   <dataset name>
E IT  (4) 

                                                 
3 We use the Arial bold italic typeface to indicate a random variable. 
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Work and Intensity Solved for Duration 
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Work and Intensity Calibration 
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Intensity-Correlated CER and SER Equations 

These intensity-correlated CER and SER equations facilitate finding the appropriate distributions 
of effort and duration at some known intensity. 

Cost (Effort) Estimating Relationship (CER) 

     1 E T
T
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Schedule (Duration) Estimating Relationship (SER) 
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Intensity-Correlated CER and SER Equations for Intensity 

We provide solved-for-intensity forms of the CER and SER equations to facilitate finding inten-
sity associated with some particular solution or distribution of solutions. These equations make it 
possible to find the duration that corresponds (correlates) to a particular effort solution and vice 
versa. 

Cost (Effort) Estimating Relationship (CER) 
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Intensity as a Function of Some Percentage of Mean Duration 

This equation finds the value of intensity I  that corresponds to an effort-duration solution pair 
where the duration is some given percentage of the mean data set duration T . 
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The remainder of this paper describes the basis of these equations and shows examples of their 
application. 

3. DEVELOPING SOFTWARE CERS WITH CORRELATED SERS 

Independent Cost Estimating Relationship (CER) Form 

We first propose a software Cost Estimating Relationship (CER) of the power form ay bx  

 1a
1E b S  (14) 

where 

total effort or labor (person-months or person-hours)

total software size (Effective Source Lines of Code or ESLOC)
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
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Initial CER Regression 

Given a list of historical project size values S  and a corresponding list of historical effort values 
E , we choose a power estimating relationship of the form ay bx  using zero-percent-bias min-
imum-percent-error (ZPB-MPE) general regression implemented in Microsoft Excel using the 
Solver iterative solution add-in. This regression can be stated as the transform 

  , ,b a
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Y X  (15) 
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To address the zero-percent-bias constraint that is part of the ZPB-MPE regression strategy, we 
explicitly constrain the coefficient b  by the function of a  that assumes the estimating relation-
ship’s percentage bias %BIAS  be equal to zero. 
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The percentage Standard Error of Estimate %SEE  is generally defined as the root mean squared 
(RMS) percentage difference between the actual outcome values and their corresponding esti-
mated values 
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where F  specifies the number of parameters in the particular estimating relationship (degrees of 
freedom). 

To address the minimum-percent-error constraint that is part of the ZPB-MPE regression strate-
gy, we set up Microsoft Excel Solver such that the objective (target) is to minimize %SEE  (in-
stantiated with our chosen estimating relationship form ay bx ) by elaborating the parameter b  
with our zero-percent-bias constraint in Equation (17) and by varying a  (initialized in Solver to 
a value of one). 
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When Microsoft Solver is finished, it has found the value of a  that yields the smallest value for 
%SEE . The corresponding value for b  is simply found by solving Equation (17) using the final 
value found for a . 
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Independent Schedule Estimating Relationship (SER) Form 

We next propose a software Schedule Estimating Relationship (CER) of the form 

 2a
2T b E  (20) 

where 

total duration or schedule (elapsed calendar months)

total effort or labor (person-months or person-hours)

T

E




 

Note that the SER is not a function of size but rather of effort since we are ultimately interested 
in correlating effort and time, not just deriving two independent functions of size. 

Initial SER Regression 

Given a list of historical project effort values E  and a corresponding list of historical duration 
values T , we choose a power estimating relationship of the form ay bx  using ZPB-MPE gen-
eral regression implemented in Microsoft Excel using the Solver iterative solution add-in. This 
regression can be stated as the transform 
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and can be performed using the same method as described above for the initial CER regression. 

Correlating a CER with its Corresponding SER 

We now have a system of two nonlinear simultaneous equations: the CER 1a
1E b S  and its cor-

responding SER 2a
2T b E . Logically conflating this system of nonlinear simultaneous equations 

yields a single equation that is true if and only if both the CER and the SER are true. We herei-
nafter refer to this new relationship as a Cost and Duration Relationship (CDER). 

 
   

 

1 1

1 1

1 1 1

and

1 1

1

1 2

1 2

1 2

2

1 1
1

a a
1 2

a a
1 2

a a
1 2

a

a a a
1 2

E b S T b E

ES b TE b

ES b TE b

E T b b S

  

  



 

 



 

�

 (22) 

Consolidating the CDER Coefficients and Exponents 

In order to visually simplify Equation (22) we define the following new variables 

  
1

1a
initial 1 2D b b  (23) 

 
1 2

E_initial
1

a

a
 

  (24) 

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com



 9

 1
T_initial

1a
   (25) 

 

1

1 2a

2

I
b

 
  
 

 (26) 

 
1

2a
   (27) 

where 

initial (first pass) mean difficulty

effort exponent

duration exponent

mean intensity

economy exponent

_

_

initial

E initial

T initial

D

I















 

Substituting the new variables defined in Equations (23), (24), and (25) for their equivalents in 
Equation (22) yields 
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Substituting the equivalent of 2a  in Equation (31) for 2a  in Equation (27) yields 
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Solving Equation (20) for effort yields 
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Substituting the equivalent of 
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Improving the Regressed CDER Exponent Values 

Equation (28) represents an initial cut at a CDER for software development, the result of multip-
licatively combining a CER and an SER. We can improve upon the initial exponent values 

E_initial  and T_initial  resulting from the initial CER and SER regressions by performing one final 

CDER regression that yields final exponent values E  and T  and a final value for mean diffi-

culty D . We can show how   correlates the exponent values E_initial  and T_initial  by solving 

Equation (32) for T_initial . 
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 (35) 

We wish to maintain this correlation during the final regression; therefore we impose the con-
straint 

 
1T E
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 (36) 

In order to avoid the necessity of varying both E  and T  during the final regression and thus 

risking Microsoft Excel Solver finding a non-optimal (local minima) solution, we choose to vary 
only exponent E  and constrain exponent T  by Equation (36). 

Final Regression 

Given a list of historical project size values S , a list of corresponding historical effort values E , 
a list of corresponding historical duration values T , and initial exponent values E_initial  and 

T_initial , we choose a factor estimating relationship of the form y bx  using ZPB-MPE general 

regression implemented in Microsoft Excel using the Solver iterative solution add-in. This re-
gression can be stated as the transform 

  , b
<datasetname>

Y X  (37) 

where 

, ,tE D b  Y E T X S  

The goal of this regression is to instantiate the general form Cost and Duration Estimating Rela-
tionship (CDER) 
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 E TE T = DS   (38) 

with the given historical data. 

The coefficient b  in this regression can be explicitly constrained by the assumption that the 
CDER’s percentage bias %BIAS  be equal to zero. 
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We can now solve for the exponent E  by setting up Microsoft Excel Solver such that the objec-

tive (target) is to minimize %SEE  (the root mean squared (RMS) percentage difference between 
the actual outcome and the estimate) held to the zero-bias-constraint explicit solution for b . 
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
 


%  (40) 

and varying E  (initialized to E_initial ) while replacing (constraining) T  with its equivalent in 

Equation (36). 

The results of this final regression are optimized values for the exponent E  and the mean diffi-

culty D . The corresponding optimized value for the exponent T  can be found by solving Equa-

tion (36) using the optimized value for E  (note that the value of the exponent   is already 

known from the SER regression and Equation (21). The corresponding difficulty list D  can now 
be populated using the list form of Equation (38) solved for D . 

 
E T 


E T

D
S

 (41) 

and the corresponding intensity list I  can now be calculated using the list form of Equation (34) 
solved for I . 

 
E

I
T

 (42) 

Performing the above-described regression process on an example set of stratified past project 
data (Aerospace Corporation, 2004) yields the results shown in Figure 1 below. 
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Figure 1:  Example CDER Regression Results 

 

If we elaborate Equation (38) and the solved-for-effort form of Equation (34) with the example 
regression values above, provide a distribution for size4, and graph the results, we get Figure 2 
below. 

                                                 
4 Size in this example is given to be a contractor point estimate with 20% estimate maturity of 25,000 New DSLOC, 
growth-adjusted according to (Ross, 2011a), which yields a SEER PERT distribution parameter triple of 
<Least,Likely,Most> = <14650,14650,92073> with a distribution mean value of 34,426 DSLOC. In this example we 
make the simplifying assumption that all software to be developed is New DSLOC in order to avoid rework consid-
erations; therefore, ESLOC equals DSLOC. 
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Figure 2:  Work Function (CDER) at a Particular Intensity 

 

4. INCORPORATING PROBABILITY IN CDER MATHEMATICS 

Uncertainty about Size, Difficulty, Effort, and Duration 

Up until this point, we have been treating the independent variables software content (size) S , 
difficulty D , and the size*difficulty product which we will call the work   as either certain; 
i.e., single-point values or as lists of samples. Unfortunately, until project completion, we have 
exact values for neither the size nor the difficulty of the project being estimated; these values are 
uncertain; i.e., they have a range of possible outcomes. We, therefore, choose to represent size 
and difficulty as random variables S  and D , and elaboration becomes modeling the distribution 
function for each.5 From this we define the size*difficulty product (the work distribution Ψ ) as 

 Ψ SD  (43) 

The choice of specific distributions for S and for D  is a subject worthy of debate and a future 
paper. The author currently takes the position that when the data from a statistically-significant 
number of past projects exists, it is best to create a discrete mapping between the metric’s range 
values and their corresponding cumulative probabilities6 (i.e., a Cumulative Distribution Func-
tion (CDF) array) rather than assume some mathematically defined distribution. For the purposes 
of this paper, difficulty D  is modeled this way, the range values coming directly from past 
project data; however, size S  is modeled as a SEER PERT distribution (Ross, 2011a). Regard-
less of the distributions chosen, we need some way to determine the CDF  F Ψ  of the 

size*difficulty product Ψ . Finding a neat closed-form CDF that is the convolved product of two 

                                                 
5 We use the Arial bold italic typeface to indicate a random variable. 
6 Tecolote’s ACEIT tool refers to this as a Custom CDF. 
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random variables, each distribution of which is described as some mathematical transform, is 
problematic at best. On the other hand, if the random variables are described as Cumulative Dis-
tribution Function (CDF) arrays, developed either from historical sample data or from a selected 
distribution’s mathematics, then Monte Carlo methods can be used to determine the CDF array 
of the convolved product. This process is summarized as follows: 

(1) Create randomly-ordered M -element lists S  and D  of distributed possible outcomes for 
each of size S  and difficulty D . For S  we simply use SEER PERT mathematics (Ross, 
2011a) to generate an M -element CDF array and then shuffle the range values iS  (see 

paragraph c below). For random variables such as D  that are modeled directly from his-
torical data as CDF arrays we must: 

a. Perform a rank and percentile process on the N -element list of past project diffi-
culty values D  to yield a CDF array ( N  rows, 2  columns) where each row con-
tains a range value iD  in the first column and its corresponding percentile value 

ip  in the second column. 

 

1 1

2 2

N N

D p

D p

D p

 
 
 
 
 
 

CDFD
 

 (44) 

b. Create a new expanded M -element CDF array CDFD  by interpolating M  ascend-

ing-sorted uniformly distributed probability values  0 1,p  into the original past 

project CDF array. This produces an M -element CDF array that exactly models 
the past project data. The examples in this paper assume 2001M   (the number 
of Monte Carlo draws used to model distributions for the paper’s examples). 

 

1 1

2 2

M M

D p

D p

D p

 
 
  
 
 
 

CDFD
 

 (45) 

c. Shuffle the M  -element CDF vector. This can be done by adding a column of 
random numbers to the CDF array CDFD  and then sorting the rows of the new ar-

ray CDFD  using the column of random numbers as the sort key. Note that the 

range values column of the CDF array CDFD  is now randomly ordered. 

(2) Compute an M -element list Ψ  for the size*difficulty product (work) Ψ  that is the result 
of scaling a randomly-ordered list of difficulty values D  by a randomly-ordered list of 
size values S  such that 
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1 1

2 2

M M

S D

S D

S D

 
 
  
 
 
 

Ψ SD


 (46) 

(3) Sort the work list Ψ  in ascending order to get Ψ . 

(4) Add an M  -element column to Ψ  that contains the quantile of each corresponding 
range value i  in the sorted work list Ψ 7; the result is the CDF array CDFΨ  of the work 

random variable Ψ  (note that each column of the CDF array is in ascending order). 

 

1 1

2 2

M M

p

p

p






 
 
 
 
 
 

CDFΨ
 

 (47) 

Work and Intensity Confidence Level (Attainment Probability) as Fields 

Recall that the relationship between our two dependent variables effort and duration is based on 
the expected size*difficulty product (expected work Ψ ) which we now treat as a random varia-
ble. We begin by refining the definition of our work relationship curve shown in Figure 2 to be a 
probability field as shown in Figure 3 below. 

                                                 
7 Several algorithms and tools are publically available for doing this including Microsoft Excel’s Percentile func-
tion. 
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Figure 3:  Work Function as a Probability Field 

 

We can do the same thing with the intensity relationship as is shown in Figure 4 below. 

Figure 4:  Intensity Function as a Probability Field 
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We can overlay Figure 3 and Figure 4, as is shown in Figure 5 below, to see how these two func-
tions interact and to get a feel for the estimating scenario’s solution space (range of possible out-
comes with associated confidence levels (attainment probabilities). 

Figure 5:  Work and Intensity Probability Fields 

 

Figure 3, Figure 4, and Figure 5 above show specific members (decade probability field lines) of 
the represented field. The mathematical expressions for describing any work or intensity field 
line are, for work 

Work 
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Intensity 
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where 
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Joint Confidence Level (JCL) 

Joint Confidence Level (JCL), also known as joint probability, is simply the probability or like-
lihood that two or more events will occur simultaneously. Suppose we have two events, actual 
cost being less than or equal to predicted cost and actual schedule being less than or equal to 
predicted schedule. Since it is desirable that both these events turn out to be true, we might like 
to know, in addition to the individual probabilities of occurrence, the probability that both will 
occur. Expressed mathematically 

    JCL (Joint Probability)  or P , PA B A B   (50) 

where A  and B  represent the occurrence of the two events. 

We can represent actual cost and schedule as random variables E  and T  respectively since their 
outcomes are uncertain; i.e., there is some range of possible outcomes. We treat predicted (esti-

mated) cost and schedule as given specific values Ê  and T̂  respectively. We rewrite the JCL 
Equation (50) with these variables as 

     ˆ ˆP E T  E T  (51) 

where 

 Boolean (logical) AND operator   

Note that the two events in Equation (51) are each represented as a Boolean expression, the ex-
pressions being separated by a Boolean operator. This results in an overall expression that can 
evaluate to one of only two possible outcomes for a given pair of E  and T  draws, TRUE or 

FALSE. Therefore, the result of    ˆ ˆE T  E T  is a random variable we will call J  that can 

be modeled as a discrete distribution of TRUE and FALSE (0 and 1) values. We can define a 
CDF FJ  on the random variable J  such that 

 
 

 

 

 

1 0 FALSE

1 TRUE

0 1

F |

,

x
Mx

x
M

x


  

 




J

J

J
J  (52) 

Conditional Confidence Level (CCL) 

Conditional Confidence Level (CCL), also known as conditional probability, is simply the prob-
ability or likelihood of some event given the occurrence of some other event. Suppose we have 
two events, actual cost being less than or equal to predicted cost and an assumption that actual 
schedule will equal the predicted schedule. Conversely we could have two events, actual sche-
dule being less than or equal to predicted schedule and an assumption that actual cost will equal 
the predicted cost. Expressed mathematically 

  CCL (Conditional Probability) 1 (TRUE)P |A B   (53) 

or 

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com



 19

  CCL (Conditional Probability) 1 (TRUE)P |B A   (54) 

where A  and B  represent the occurrence of the two events. 

As with JCL, we can represent actual cost and schedule as random variables E  and T  respec-
tively since their outcomes are uncertain; i.e., there is some range of possible outcomes. We treat 

predicted (estimated) cost and schedule as given specific values Ê  and T̂  respectively. We re-
write the CCL Equations (53) and (54) with these variables as 

  ˆ ˆP |E TE  (55) 

or 

  ˆ ˆP |T ET  (56) 

A common requirement of cost analysts is the ability to perform what-if or excursion analysis 
from some baseline estimating scenario. Performing these kinds of analyses generally implies the 
use of some form of conditional probability; i.e., solving for one or more variables conditional on 
some other variable(s) being assumed to take on some specific value(s). Our defined system of 
correlated estimating relationships offers the opportunity to perform these kinds of analyses by 
taking advantage of the fact that the CER and SER are correlated by intensity. If we treat intensi-
ty as having a specific value rather than as a random variable, we can use intensity as a gradient 
function across the work probability field. Practical application of this method is shown in the 
examples found later in the paper. Equations (57) and (58) below provide the means for calculat-
ing an intensity value that corresponds to a particular effort or duration value at a particular con-
fidence level. 

Finding the Intensity that Satisfies a Cost (Effort) Constraint 

 
 

1

1F

T
E T

effort_constraint@p%
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E
I
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 







  
   

    <datasetname>
Ψ

 (57) 

where 

 1 inverse CDF of random variable  at probability F p p Ψ Ψ  

Finding the Intensity that Satisfies a Schedule (Duration) Constraint 
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1
1F

E

E Tduration_constraint@p%
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p
I

T
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



  
       <datasetname>

Ψ  (58) 

5. EXAMPLES 

As a way to demonstrate some of the analyses that can be performed with the above-described 
model we attempt to answer the three questions posed in Dr. Paul Garvey’s (2000) challenge. 
We do this with a series of graphs followed by the mathematics that support the graphs. 
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Response to Garvey Question 1 

“What is the chance the system can be delivered within cost and schedule?” 

We assume this question is seeking the JCL (joint cost and schedule probability) of some given 
single-point cost and schedule position. Figure 6, Figure 7, and Figure 8 show 2001 Monte Carlo 
draws from the earlier-regressed CDER elaborated with a SEER PERT distributed size of 

14650 14650 92073, , , ,Least Likely Most  . For this example we assume the given single-

point estimate of cost (effort) and of schedule (duration) in the stated question to be the values at 
the intersection of the mean work field curve located by   and the mean intensity field curve 
located by I . This assumption is arbitrary, we could have assumed any effort-duration pair in 
the solution space to represent the budget, goal, constraint, etc. since this position is not stated in 
the question. What matters here is the methodology for answering this kind of question. 

Graphical Solution 

Figure 6:  Scatter Diagram of Monte Carlo Draws 
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Figure 7:  Scatter Diagram of Monte Carlo Draws with Point Estimate Position 

 

Figure 8:  Illustration of Area where Monte Carlo Draws Satisfy Both Constraints 

 

Since it is not practical to actually count points on a scatter diagram, the mathematics shown 
below applied to vectors of draws from the relevant random variables will yield the solution. 
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Count the points within 
this rectangle (782) and 
divide by the total number 
of points (2001).

JCL = 861 / 2001 = 43%
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J
J  (59) 

Response to Garvey Question 2 

“How likely might the point estimate cost be exceeded for a given schedule?” 

This question suggests a conditional probability excursion. As in the previous example we as-
sume the point estimate cost (effort) and schedule (duration) in the stated question to be the val-
ues at the intersection of the mean work field curve located by   and the mean intensity field 
curve located by I . Again, this assumption is arbitrary, we could have assumed any effort-
duration pair in the solution space. 

Graphical Solution 

We start by locating the point estimate position 

Figure 9:  Locate Point Estimate Position 
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Figure 10:  Point Estimate Values 

 

Figure 11:  Establish Updated Schedule Constraint 
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Figure 12:  Locate Position for Intensity Update 

 

Figure 13:  Update Intensity Location 
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Figure 14:  Solution 

 

Notice how the intensity curve is being used as a gradient function across the work field to find 
the appropriate work field curve that maintains an intensity value consistent with a 27 month 
schedule with a confidence level of 62% while satisfying the effort value. The confidence level 
of the discovered work field curve (73%) is the new confidence level of the 445 person-month 
effort value. 

Mathematical Solution 

Assume the point estimate position to be the effort-duration pair that is defined by   and I . 
Locate the new intensity 1I  gradient and then use it to populate the new effort random variable 
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 
 1

CDF of random variable  at value 

inverseCDF of random variable  at probability 

<*> indicates Aerospace 2004:Military Ground Operational
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Response to Garvey Question 3 

“How are cost reserve recommendations affected by schedule risk?” 

Graphical Solution 

Figure 15:  Locate Appropriate Work Curve 
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For this example, we assume schedule 
(duration) reserve and cost (effort) 
reserve to each be the difference between 
its 50% solution and its high-confidence 
solution.

This example starts with desired high-
confidence probabilities for duration and 
effort of 80% and 70% respectively.

We start with a high-confidence duration 
goal of 27.0 months @ 80%.
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Figure 16:  Locate Corresponding Intensity Curve 

 

Notice once again how the intensity curve is being used as a gradient function across the work 
field, in this case to find the intensity curve that corresponds to a duration value of 27 months at 
a confidence level of 80%. 

Figure 17:  Locate and Project Constrained Effort Solution 
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We find the corresponding 
intensity curve (I value).
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From this intensity curve (I value) @ 
35%ile, we find  the other three relevant 
values associated with this solution
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The discovered intensity curve is used here to orthographically project effort with a 70% confi-
dence level, effort with a 50% confidence level, and duration with a 50% confidence level. 

Figure 18:  Locate and Project Constrained 50% Confidence Solutions 

 

Figure 19:  Update Intensity Curve Location 

 

Note that a new intensity curve has been discovered that corresponds with the 27 month schedule 
constraint at an updated confidence level of 70% (down from the original 80%). 
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From this intensity curve (I value) @ 
35%ile, we find  the other three relevant 
values associated with this solution:

469 person-months @ 70%
23.2 months @ 50%
319 person-months @ 50%

From these values, we can find the 
associated reserve values:

1. Duration reserve: 3.8 months
2. Effort reserve: 150 person-

months

JCL of meeting the two 50% values is 
35%.

JCL of meeting the two high-confidence 
values is 56%.

1

2

0

200

400

600

800

1,000

1,200

12 15 18 21 24 27 30 33 36

E
ff

o
rt

 (
p

e
rs

o
n

-m
o

n
th

s
)

Duration (calendar months)

Effort versus Duration
S[e] = <SEER PERT, L, M, H> = <SEER PERT, 14,650, 14,650, 92,073>

Suppose we reduce the desired 
high-confidence probability for 
duration from 80% to 70%.

We must now find a new 
Intensity curve (I value) that 
corresponds to 27.0 months @ 
70%ile Work.
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Figure 20:  Project Updated Effort and Duration Positions 

 

Once again the discovered intensity curve is used as a gradient function across the work field to 
locate and orthographically project updated effort and duration values at the originally-given 
confidence levels. 

Figure 21:  Solution 
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From this new intensity curve (I 
value), we update the other three 
relevant values associated with this 
solution:

437 person-months @ 70%
24.5 months @ 50%
297 person-months @ 50%

From these updated values, we can 
find the associated updated reserve 
values:

1. Duration reserve: 2.5 
months

2. Effort reserve: 140 
person-months
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Conclusion: By changing the desired 
probability of the high-confidence 
duration goal from 80% to 70% we:

1. Reduce the necessary effort 
margin by 10 person-months 
(7% reduction),

2. Reduce the necessary duration 
margin by 1.3 months (34% 
reduction).

JCL of meeting the two updated 50% 
values is 51%.

JCL of meeting the two updated high-
confidence values is 54%.
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Mathematical Solution 
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