

Risk Based Estimating & Alternative Selection Using Value Analysis

Value Management Strategies, Inc.

Gregory Brink, CCE/A, CVS, PMI-RMP

Overview

- Background
 - Value Methodology
 - Value Theory
- Elements of Value Analysis
 - Function Analysis
 - Performance Analysis
 - Cost Analysis
 - Schedule Analysis
- Risk Management
- Mutually Exclusive Alternatives and Options Analysis
 - Case Study
- Conclusions

Background

VMS specializes in Management Consulting

- Application of Value Methodology (VM)
 - Value Analysis / Value Engineering
 - Function Analysis
- Application of Risk Management
 - Project / Program Risk Management
 - Qualitative/Quantitative uncertainty modeling
 - Cost validation
- Application of Decision Sciences
 - Analytic Hierarchy Process
 - Economic Modeling
 - Decision Modeling

Introduction

"If I can't get the product, I've got to get the function. How can you provide the function by using some machine or labor or material that you can get?"

Larry Miles

What is Value Methodology?

The systematic application of recognized techniques which seek to improve the value of a product or service by identifying and evaluating its functions, and provide the necessary functions to meet the required performance at the lowest overall cost.

Value Methodology is also referred to as:

- Value Engineering Design & Construction
- Value Analysis Industrial Design & Manufacturing
- Value Management Services, Processes & Procedures

- Why use Value Methodology?
 - Improve project value
 - Reduce total project costs
 - Increase project performance
 - Improve delivery time
 - Minimize risk
 - Solve problems and innovate
 - Evaluate "best value" alternatives
 - Build consensus among stakeholders
 - Validate baseline concept
 - In some cases, it's the law!

- Who is Using Value Methodology?
 - U.S. Federal Government
 - Department of Defense
 - General Services Administration
 - State Department
 - Environmental Protection Agency
 - Department of Transportation
 - Department of the Interior
 - Department of Energy
 - State & Local Governments
 - Most State Departments of Transportation
 - All transit agencies

 Many budgeting entities (Major Cities and other State Government Agencies)

- Who is Using Value Methodology?
 - Private Corporations
 - General Electric
 - AECOM
 - Parsons Brinckerhoff
 - ECC
 - Alstom Power
 - Alto Shaam
 - Clark
 - Ingersoll-Rand
 - Whirlpool
 - Hyundai E&C

- Who is Using Value Methodology?
 - SAVE International

- Miles Value Foundation
- International Affiliates
 - Indian Value Engineering Society (INVEST)
 - Society of Korean Value Engineers (SKVE)
 - Society of Japanese Value Engineering (SJVE)
 - Value Management Institute of Taiwan (VMIT)
 - Value Engineering Society of Beijing (VESB)
 - Society of Hungarian Value Analysts (SHVA)
 - Canadian Society of Value Analysis (CSVA) CA
 - Hong Kong Institute of Value Management (HKIVM)
 - Institute of Value Management (IVM) UK

Value Methodology

Caltrans VA Program Results - Annual Savings

Value Process

Value Methodology

Timeline

1950's

1940's

• Miles

Value

at GE

Develops

Analysis

- Society of American Value Engineers is
 - founded
- U.S. Navy adopts VE
- VE spreads to industry

1960-1990

- U.S. federal VE mandate: OMB Circular A-131
- VE spreads internationally
- VE becomes a "standard" practice in Japanese industria a
 - industries

 Society of American Value Engineers becomes SAVE International

1990's

2000's

 VE becomes mandated by public agencies in many countries, inc luding the UK, Canada, Netherlands and South Korea

What do we mean by "Value" in VM?

A qualitative or quantitative expression of the relationship between the performance of a function, and the resources required to obtain it. Hence the term "best value" refers to the most cost effective means to reliably accomplish a function that will meet the performance expectations of the customer.

Value Optimization

How well?

- Equations for Value
 - According to Miles:
 - "All cost is for function"

 $Value = \frac{function}{cost}$

- Equations for Value
 - Traditional "Value Index"
 - Worth = Lowest cost way to provide the basic function
 - Does not consider performance!

$$Value = \frac{cost}{worth}$$

- Value Improvement
 - According to Miles:

- Value is always increased by decreasing costs (while maintaining performance).
- Value is increased by increasing performance *if the customer needs, wants, and is willing to pay for more performance.*

Value

• As a theoretical equation (De Marle):

$$v = \frac{n \times a}{c}$$

v = value of some object

n = the need for an object

a = the ability of an object to satisfy this need

c = the cost of the object

- Value
 - A simplified version (De Marle):

Customer value =

performance price

performance

price

Value Theory

- Value
 - A simplified version *(De Marle):*
 - Where does function fit into this?

Customer value =

Value Theory

Functional Value

Value Theory

Schedule as a Resource

Schedule is an input

Schedule as a Performance Aspect

Schedule is an output

Value Theory

Schedule as a Resource

- Schedule is an input
- Risk adjusting is multiplicative

$$V_{\mathcal{P}} := \frac{P}{((C + S)) \otimes R}$$

 Risk impacts are additive

Schedule as a Performance Aspect

- Schedule is an output
- Risk adjusting is multiplicative

 Risk impacts are additive

Functional Value

- V = Value
- f = Function
- *P* = Performance
- *C* = Cost
- *t* = Time
- $\alpha = \text{Risk}$

$$V_f(P, C, t)_{total} = \frac{\sum_{n=1}^{\infty} P_n \cdot \alpha}{\sum_{n=1}^{\infty} [(C_n \cdot \alpha) + (t_n \cdot \alpha)]}$$

Uncertainty in Value

• Value is *Relative*

- Uncertainty exists in the amount of resources input into the system
 - Labor and Materials \rightarrow Cost
 - Time \rightarrow Schedule

- Uncertainty exists in the resulting functional output by the system
 - Functional Results \rightarrow Performance

Defining Potential Outcomes

Changing Uncertainty Over Time

Risk Management Process

Total Risk

Management Focus

 Give attention to those elements that can be managed

Incorporating Uncertainty

Elements of Value

Function Performance Cost Time

Function Analysis

- Defining functions
- Evaluating functions

- FAST Diagrams
- Relating cost and performance to functions Value Metrics

Defining Functions

- A function is the basis for why something exists.
- In Function Analysis, functions are described using two words:

Defining Functions

Why Use Two Words?

Forces conciseness

- Ensures that the functions are understood
- Avoids combining functions
- Ensures project is broken into simple elements
- Aids in achieving dissociation from specifics
- Reduces possibility of faulty communication and misunderstandings
What's the Basic Function?

A wrench tightens or loosens by TRANSMITTING **TORQUE** from the arm of the wielder to the nut. Torque is measured in newton meters.

What's the Basic Function?

 A trophy symbolizes victory and CONVEYS STATUS to others that the holder is a winner. Status is a subjective measure.

What's the Basic Function?

A power cord CONDUCTS CURRENT from a power outlet to an electric appliance. Current is measurable in terms of amps.

FAST Diagram

Railroad Grade Separation Project – FAST Diagram

Railroad Grade Separation Project – FAST Diagram

Performance Analysis

Form Follows Function

Performance Analysis

- Identify project performance Value Metrics
 - A "baseline" concept is identified
 - Scales are developed for each of the attributes
 - Quantitative vs. Qualitative Scales
 - Utility Curves

- Prioritize attributes relative to purpose & need
 - Analytic Hierarchy Process (AHP)
- Rate the performance of the baseline concept
- Determine value of baseline concept

Define Baseline

- Identify performance rationale for the "baseline" concept
 - What are the current measures for the performance attributes?
 - What are the measures of the performance requirements that must be met?

1.5-Ton Forklift Truck

Develop Scales

- Develop scales for each attribute
 - Identify ratings on a "0 to 10" basis
 - Comparative Scales
 - Identify improvement or degradation relative to a baseline
 - Absolute Scales

- Utilize a set of quantifiable measurements
- Utility Curves can be used to help visualize scales

Performance Measurement

1.5-Ton Forklift Truck

1.5-Ton Forklift Truck

Rating Scales – Quantitative

Attribute	Definition	Rating Scale	Unit of Measure/Quantification
Travel Speed	A measure of the travel speed of an unloaded fork lift. The speed is measured in miles per hour.	10	15.00 mph
		9	14.25 mph
		8	13.50 mph
		7	12.75 mph
		6	12.00 mph
		5	11.25 mph
		4	10.50 mph
		3	9.75 mph
		2	9.00 mph
		1	8.25 mph
		0	7.50 mph

Rating Scales – Qualitative

Attribute	Definition	Rating Scale	Unit of Measure/Quantification
Human	The optimization of the	10	Alternative Concept is extremely preferred.
Factors	Interface between people, technology and the facility. This attribute considers such issues as: - Ergonomics - Lighting Design - User-Friendliness	9	Alternative Concept is very strongly preferred.
		8	Alternative Concept is strongly preferred.
		7	Alternative Concept is moderately preferred.
		6	Alternative Concept is slightly preferred.
		5	Alternative and Baseline Concepts are equally preferred.
		4	Baseline Concept is slightly preferred.
		3	Baseline Concept is moderately preferred.
		2	Baseline Concept is strongly preferred.
		1	Baseline Concept is very strongly preferred.
1		0	Baseline Concept is extremely preferred.

Utility Curve - Travel Speed

Performance Measurement

Utility Curves

Prioritize the Attributes

- Determine importance of performance attributes in meeting Need & Purpose
 - Question: "Which of these two Performance Attributes is more critical in satisfying the project's need and purpose?"
 - The answers must best address the stated purpose & need of the product, process or project
 - Utilize an AHP Paired Comparison Matrix to develop a numerical expression of relative importance

Performance Measurement

- What is the Analytic Hierarchy Process (AHP)?
 - Developed by Dr. Thomas Saaty, Professor at the Wharton School of Business, in the 1970's
 - It provides a rational framework for structuring a decision problem; representing and quantifying its elements; relating those elements to overall goals; and evaluating alternative solutions.

AHP Paired Comparisons

- Identify the decision objective
- Discuss the attributes in pairs using a fundamental scale to make relative comparisons
- Synthesize the results to develop priorities

AHP FUNDAMENTAL SCALE							
Intensity of Importance	Definition	Explanation					
1	Equal Importance	The two attributes contribute equally to the project's need and purpose.					
3	Moderate Importance	Experience and judgment slightly favor one attribute over another.					
5	Strong Importance	Experience and judgment strongly favor one attribute over another.					
7	Very Strong Importance	Experience and judgment very strongly favor one attribute over another.					
9	Extreme Importance	The evidence favoring one activity over another is of the highest possible importance.					
2, 4, 6, 8	For compromises between the preceding values	Sometimes there is a need to compromise between the preceding values in which case these intermediate values can be used.					
Reciprocals	If attribute <i>x</i> has one of the above non-zero numbers assigned to it when compared to attribute <i>y</i> , then <i>y</i> has the reciprocal value when compared with <i>x</i>	Used to represent the reciprocal value of the dominant attribute for the weak attribute for a paired comparison.					

AHP Paired Comparison of Apples

2	Size Comparison	Apple A	Apple B	Apple C	Priorities
	Apple A	12/12 = 1	12/6 = 2	12/2 = 6	0.600
	Apple B	6/12 = 0.5	6/6 = 1	6/2 = 3	0.300
	Apple C	2/12 = 0.167	2/6 = 0.333	2/2 = 1	0.100
	Sub-Total	1.667	3.333	10	1.000

PERFORMANCE ATTRIBUTE MATRIX								
1.5 Ton Forklift Truck								
Rate the relative importance of the attributes relative to the project's Need and Purpose.								
Performance Attributes	Travel Speed	Lift Speed	Turning Radius	Drawbar Capadity	Climbing Capacity	Ergonomics	Maintainability	PRIORITIES
Travel Speed	1	2	0.5	4	3	2	2	0.208
Lift Speed	0.5	1	0.333	3	0.5	0.5	0.5	0.082
Turning Radius	2	3	1	3	2	1	1	0.205
Drawbar Capacity	0.25	0.333	0.333	1	0.25	0.333	0.333	0.044
Climbing Capacity	0.333	2	0.5	4	1	2	0.2	0.116
Ergonomics	0.5	2	1	3	0.5	1	0.2	0.112
Maintainability	0.5	2	1	3	5	5	1	0.234
SUB-TOTALS	5.08	12.33	4.67	21.00	12.25	11.83	5.23	1.000

[(1/5.08) + (2/12.3) (1 + 0.5 + 2 + 0.25 + 0.333 + 0.5 + 0.5 = 5.08) 7 = 0.208

Performance Measurement

Performance Analysis

- Optimal Performance = Optimal Functionality
 - Optimizing performance for a project or product delivers the desired function at least cost and duration
 - Optimizing performance for an organization or process delivers the desired function in the most efficient and effective means
- When relating to a project or product performance is relative to functional scope
- When relating to an organization or process performance is relative to functional efficiency

Performance Assessment Process

Performance Risk Assessment

- Multiple layers of uncertainty in performance
 - Uncertainty in the Prioritization
 - Is the most important attribute *really* the most important?
 - Uncertainty in Requirements
 - Binary \rightarrow Yes / No

- Are they being sufficiently met?
- Uncertainty in Attribute Ratings
 - Varying degrees of performance
 - Qualitative measures tend to have more uncertainty relative to quantitative measures

Cost & Schedule Analysis

>>> Measurement of Resources

Issues in Cost and Schedule Estimation

Project final (future) cost is difficult to estimate in the beginning...

Yet, project budgets and expectations are established early in the planning stage

Some events and factors that increase cost and schedule can be anticipated early in the project... But, impact can be difficult to accurately and comprehensively quantify

Cost and Schedule Concerns

Usual Questions

- How much will it cost?
- How long will it take?
- Why does it cost that much?
- Why does it take that long?

Analysis Needs

Cost Estimate ManagementRisk Management

Cost Analysis

Review and analyze project cost information

- Cost information includes:
 - Project costs (i.e., design/project development costs)
 - Acquisition or construction costs
 - Right-of-way costs
 - Life cycle costs
 - Operations costs
 - Maintenance costs
 - Replacement costs

• Prepare cost models as appropriate

Cost Models - Pareto Analysis

Harlem Hospital Center Modernization - Cost Model

Assessing Base Cost

Estimate Uncertainty

Cost Estimate Validation Principals

VALIDATE

 Avoid false precision: "Approximately right" is better than "precisely wrong"

COMMUNICATE

 Relate "priced risk" to everyday experiences with uncertainty.

IMPROVE

 Invest in continuous and transparent QA/QC of actual cost estimating process.
Cost Validation

- Estimate projects from the bottom up
 - Equipment, materials, labor
 - Largest/most complex projects receive priority
- Observe recent data
- Adjust data for project relevance
 - Make the data "fit" the project
- Adjust data to account for market-based factors
- Run Monte Carlo Analysis
 - Develop confidence intervals

Schedule Analysis

- Review and analyze project schedule information
 - Schedule information includes:
 - Critical milestones
 - GANTT chart based on WBS
 - Critical path
 - Anticipated review and approval times for value alternatives
 - Process Flowcharts

 Information for both project schedules and construction/acquisition schedules should be collected

Schedule Analysis

Schedule Validation

- Comparison to historical data
 - Comparison of previous estimates vs. actuals
 - Review of acceleration/slippage
 - Incorporation of duration buffers
 - Recognition of uncertainty in schedule
- Adjust data for project relevance
 - Make the data "fit" the project
- Adjust data to account for market-based factors
- Run Monte Carlo Analysis

Develop confidence intervals

Cost & Schedule Event Risk

- Identify those events that could have a positive or negative impact to Cost and Schedule
 - Threats and Opportunities
 - Events impacting performance impact scope
 - Could be any combination of cost or schedule impacts
- Identify probabilities
- Identify impacts

Organize Information in a Risk Register

Communicate Risk

Sample Risk Register

l D	Category	Type	Rank	Title	Description	Trigger	Prob.%		Impact			
1	Environmen tal	т	3	Wetlands Mitigation	Lack of land availability for wetlands or habitat restoration. The environmental review has not yet been completed and it is possible that the extent and quality of the impacted wetlands has been underestimated. This could affect the mitigation ratios.	Required by USFWS	Medium 50%	Worst Case	Assume that another 65 acres of land are required. Cost would be \$10 million (from Environmental Mitigation Program – EMP). Schedule delay would be two years if notified at the time of the BO.			
								Best Case	Assume that another 15 acres are required. Cost would be (\$2.25 million from EMP). Schedule delay would be only a month because of early coordination with agencies.			
								Most Likely	Assume that the best guess is that 20 acres will be required (\$3 million from EMP). A 12 month schedule delay will occur.			
2	Geotechnica I	Т	4	Differing Site Conditions	Lack of good soils data could result in incorrect assumptions about the foundation systems required for the building.	Excavatio n reveals poor soils	High 75%	Worst Case	Assume that soils will require the installation of deep piles to compensate for poor soils. Assume a \$2 million cost premium and a delay of 1 month to the project.			
								This could affect the design, cost and schedule of the foundation system.			Best Case	Assume that the current foundation design will only require minor modifications at a cost of \$100,000 and no schedule delay.
								Most Likely	Assume that the current foundation design will only require moderate modifications at a cost of \$500,000 and a two-week delay.			

Event Uncertainty

Effective Risk Management

Risk Modeling

- Can be either qualitative or quantitative
 - Qualitative Modeling \rightarrow Relative Indexing
 - Quantitative Modeling \rightarrow Range Estimation
 - With sufficiency of data both can be simulated
 - Requires capturing data of broad range of responses of subject matter experts (SMEs)
- Risk Impacts and Probabilities are elicited in range estimates from SMEs
 - Low, Most Likely, High

Likelihood

Risk Analysis

- Risks are categorized by Type
 - Ex: Design, Construction, ROW, Utilities
- Risk impacts are identified for cost, schedule, and performance risks
- Risk events treated discretely
- Correlations Defined
 - Relates Cost and Duration Relationships
 - Risk Relationships
 - Positive/Negative

- Risk Dependencies Defined
 - Mutually Exclusive, Dependent-Inclusive, Dependent Exclusive

Risk Prioritization

Pre-vs. Post-Response States

Case study

Evaluating Mutually Exclusive Alternatives and Options

Case Study Background

Case Study Background

Six Design Alternatives:

- 1) Two Interchanges
- 2) Single Interchange at Alta Rd.
- 3) Texas U-turn
- 4) Two Interchanges w/ CD System
- 5) Partial Interchange at Siempre Viva Rd.
- 6) No Interchange Option

Method of Analysis

- Value Analysis Study
 - Performance Assessment
 - Utilized Decision Lens technology
 - Risk Assessment
 - Cost and Performance Impacts recognized in \$
 - Schedule Impacts recognized in Months
 - Value Engineering
 - Function Analysis
 - Development of Value Alternatives
 - Development of Value Strategy

Value Approach

Performance and Risk Enhanced Value Optimization

VE Alternatives

Developed 3 independent alternatives, 2 competing alternatives:

- 1.0) Modify Southbound SR-125 to eastbound SR-11 Direct Connector to Tie into Median of SR-11
- 2.1) Modified Two-Interchange Concept
- 2.2) Widen Alta Road between Otay Mesa Road and Siempre Viva Road (Single Interchange Option)
- 3.0) Locate CVEF between Import and Export Commercial Traffic
- 4.0) Locate Bus Transit Access (off of Siempre Viva on West side of POE)

Recommended Strategy

Strategy	Strategy Description	Initial	Change in	Change in
No.		Cost Savings	Performance	Value
1	Modified Two-Interchange Concept (1.0, 2.1, 3.0, 4.0)	\$7,673,000	+12%	+19%

Performance Assessment

Performance Requirements

- Must meet December 2012 RTL Date
- Construction to begin June 2013
- Environmental Mitigation of all Impacted Areas
- Must accommodate 20 year AADT forecast

Performance Assessment

Performance Attributes (7 Global)

- Mainline Operations
 - SR-11 Mainline Operations
 - CVEF Operations
 - POE Operations
 - Toll Operations
- Local Operations
 - Enrico Fermi Drive Operations
 - Alta Road Operations

- Siempre Viva Road Operations
- Other Local Road Operations

Performance Assessment

- Land-Use Compatibility
- Maintainability
- Environmental Impacts
- Construction Impacts
 - Temporary Traffic Impacts
 - Temporary Environmental Impacts
- Project Schedule
 - Pre–Construction Schedule
 - Construction Schedule

Performance Attribute Weighting

Mainline Operations - 28.7%

Local Operations - 21.6%

Land-Use Compatibility - 15.8%

Maintainability - 11.8%

Environmental Impacts - 11.4%

Construction Impacts - 7.3%

> Project Schedule – 3.4%

Performance Ratings

The Fundamental Scale for Pairwise Comparisons									
Intensity of Importance	Definition	Explanation							
1	Equal importance	Two elements contribute equally to the objective							
3	Moderate importance	Experience and judgment slightly favor one element over another							
5	Strong importance	Experience and judgment strongly favor one element over another							
7	Very strong importance	One element is favored very strongly over another; its dominance is demonstrated in practice							
9	Extreme importance	The evidence favoring one element over another is of the highest possible order of affirmation							
Intensities of 2, 4, 6, and 8 can be used to express intermediate values. Intensities 1.1, 1.2, 1.3, etc. can be used for elements that are very close in importance.									

Performance Ratings

	SR-11 Mainline	CVEF			Alta Rd.	Enrico Fermi	Siempre Viva	Other Local Rd.
Design Alternatives	Operations	Operations	POE Operations	Toll Operations	Operations	Dr. Operations	Rd. Operations	Ops.
Two Interchanges	0.333	0.75	0.354	0.313	0.93	0.659	0.409	0.809
Single Interchange at Alta Rd.	0.6	0.75	0.75	0.708	0.44	0.823	0.805	0.518
Texas U-Turn	0.617	0.708	0.625	0.354	0.58	0.709	0.623	0.82
Two Interchanges w/ CD System	0.5	0.688	0.604	0.313	0.868	0.673	0.445	0.782
Partial Interchange at Siempre Viva Rd.	0.525	0.75	0.604	0.625	0.886	0.768	0.518	0.445
Modified Two Interchange (VA Concept)	0.739	0.9	0.75	0.75	0.906	0.717	0.811	0.717
No Interchange Option	0.85	0.9	0.75	0.75	0.756	0.611	0.728	0.367
					Pre-			Temp.
	Existing CVEF	Land-Use		Environmental	Construction	Construction	Temp. Traffic	Environmental
Design Alternatives	Operations	Compatibility	Maintainability	Impacts	Schedule	Schedule	Impacts	Impacts
Two Interchanges	0.75	0.805	0.682	0.417	0.659	0.545	0.75	0.591
Single Interchange at Alta Rd.	0.568	0.523	0.75	0.479	0.559	0.727	0.75	0.636
Texas U-Turn	0.568	0.855	0.455	0.354	0.518	0.409	0.75	0.295
Two Interchanges w/ CD System	0.75	0.786	0.568	0.396	0.591	0.477	0.75	0.364
Partial Interchange at Siempre Viva Rd.	0.386	0.264	0.75	0.481	0.659	0.859	0.75	0.79
Modified Two Interchange (VA Concept)	0.75	0.861	0.694	0.5	0.611	0.639	0.75	0.556
No Interchange Option	0.5	0.206	0.75	0.667	0.556	0.817	0.75	0 694
	0.2	0.200	0.75	0.007	0.550	0.017	0.75	0.051

Modified Two Interchange Option (VA Concept) - Exhibit 0.695

No Interchange Option 0.627

Single Interchange at Alta Rd. - EXHIBIT 3 0.615

Partial Interchange at Siempre Viva Rd. (w/off ramps at Siempre Viva Rd.) - NO EXHIBIT 0.581

Two Interchanges w/ CD System - EXHIBIT 2 0.572

Two Interchanges - EXHIBIT 4 0.566

Texas U-Turn - EXHIBIT 5 0.558

Risk-Adjusted Performance

Risk Assessment

- Identified Probabilities and Impacts Resulting from Plausible Event Risks Incurred During Project Delivery
 - Cost (Performance too!) and Schedule Risks
 - Threats
 - Opportunities

- Cost Risks were additive to the project Base Cost
- Schedule Risks were additive to the project Base Duration
- Pre-Response and Post-Response States Considered
- Value Strategy is modeled in the Post-Response State

Flowchart - An Illustration

Establishing Ranges for all Key Input Variables

Labor Rate (\$/Hour)

Identify, Quantify, and Respond...

Activity	Identitication														
Impacted	Risk ID	Fun Assiç	Functional Th Assignment		eat / Opportunity Events	Additiona	l Desc	ription	Pa	nelists Comme	nts	Type o Risk	f		
c3	c4		c5 c7 c		c8			c9		c10					
29	29			Quantitative Analysis								•			
		Prob.			Cost Im	npact (\$)				Sche	dule	Impact	(Months	5)	
		1100.	Distribu	ution	V1	V2 (L)		V3 (H)	Distributi	on	V1	V2 (L)	V3 (H)	
		c11	c12	2	c13	c14		c1(5	c19		c20	c21	c22	
		50%	Discre	ete	\$500,00		00 \$2,000,000		,000	Uniform			6.0	12.0	
44.45		1	Response		<u> </u>		Constant of the local division of the local		Mitic	ated Cost Imr	acts		Mitigate	d Schedule	Impacts
11, 13			Strategy		Response Actions in Advantages & Disad	ncluding vantages	Mtgt Prot	d . V	'1	V2 (L)	V	3 (H)	V1	V2 (L)	V3 (H)
			c26		c27	2	c29	c3	0	c31	0	32	c33	c34	c35
		50%	Transference	But ber Par dev ren mo	siness case disclosure; a nefits and costs (Public F thership). Memorandum velop a better partnershi tal car companies and h we forward.	allocation of Private n. Goal is to p with the selp project	5%	5	50				1.0		
		20%	Mitigation	But ber Par dev ren mo	siness case disclosure; a hefits and costs (Public F thership). Memorandum velop a better partnershi tal car companies and h we forward.	allocation of Private 1. Goal is to p with the selp project	25%			\$500,000	\$2,0	000,000		6.0	12.0
			Acceptance	Bu: ber Par dev ren mo	siness case disclosure; nefits and costs (Public F rtnership). Memorandum velop a better partnershi tal car companies and h we forward.	allocation of Private n. Goal is to p with the selp project	25%	6		\$500,000	\$2,00	0,000		6.0	12.0

Risk Register: Risk Identification

Activ Impa	vities icted	ID	Functional Assignment	Threat / Opportun	ity Events	Type of Risk	SMART Column	Additional Panelists' Comments	
2	0	C1	Construction	Force Majure		Schedule	Major delays from storms, earthquakes or other unavoidable natural disasters		
13	3	D1	Design or Scope Changes	Relative level of implementa design features	ation of sustainable	Cost and Schedule	Achieving specific LEED Ratings for buildings, etc.		
12	2	D2	Design or Scope Changes	Using unproven technology sustainable design features	to implement	Cost and Schedule			
12,13,	14, 15	D3	Design or Scope Changes	Scope Creep		Cost and Schedule	Quantifying bridges of this type and how well they stay on schedule		
					Impact of adia	cont pla	upped transportation		
All		E	Economy/Ma	rket Conditions	projects (i.e. P Gateway Proje	POLA Sc ect, I-71	outhern California Intermod 0 Widening Project)	dal C	
All Cons	struction	E2	Economy/Market Conditions	and delays occur (if there is steel prices)	a spike in cement or	COSt			
z	2	Ev1	Environmental	Potential environmental contamination in existing rail yard and North Harbor Area (asbestos, hydrocarbons, solvents, heavy metals, lead-based paint)		Cost and Schedule			
1	3	Ev2	Environmental	Any environmental impacts that would affect schedule		Schedule	If there are falcons on the bridge, any water wildlife that might be affected by operations		
All Const	truction	L1	Market or Labor	Risk of escalating labor costs		Cost			
All Cons	truction	L2	Operations Work Windows	Any shipping changes required by the work, meaning if ships have to be delayed, or repositioned or if work on the bridge has to be delayed to allow particular ships to pass.		Schedule			
12	2	P1	Permitting & Stakeholder	Potential delays in environmental permitting schedule for programmatic EIR for Port Rail Program		Schedule			
12	2	P2	Permitting & Stakeholder	Impact to port clients in the could affect their storage	areas where the bridge	Cost		Likely & impacts, maybe schedule	
All Cons	struction	Po1	Political	Risk of shut down due to environmental protests and political fall out (similar to the Foothill South Toll road in Orange County). primarily schedule risk that leads to cost risk		Cost and Schedule			
A	ı	Po2	Political	Risks of changes to environmental requirements due to pending or expected issues around the ports (note media discussions of higher cancer risk at and around the ports)		Cost and Schedule			
All Cons	truction	Pr1	Procurement	Material procurement and m procurements vs. contractor	nanagement (owner procurement)	Cost			
21-		U1	Utilities	Any delays caused by utilitie or in the area of abutments,	es in the existing bridge etc. that might	Schedule			

Risk Register: *Risk Quantification*

	NON MITIGATED												
		Cost Imp	pact (\$)	Schedule	Impacts	(months)							
Prob.	Distribution	Median	Low	High	Distribution	Median	Low	High					
10%		\$10,000,000	\$8,000,000	\$25,000,000	Trigen	5.0	2.0	10.0					
15%	Trigen	\$1,000,000	\$250,000	\$10,000,000	Trigen	4.0	2.0	6.0					
80%	Trigen	\$7,500,000	\$250,000	\$10,000,000	Trigen	2.0	1.0	3.0					
50%	Trigen	\$15,000,000	\$10,000,000	\$20,000,000	Trigen	4.0	2.0	6.0					
15%	Trigen	\$7,500,000	\$250,000	\$10,000,000	Trigen	2.0	1.0	3.0					
0%	Trigen												
75%	Trigen	\$7,500,000	\$250,000	\$10,000,000									
10%	Trigen	\$1,000,000	\$250,000	\$10,000,000	Trigen	2.0	1.0	3.0					
20%					Trigen	4.0	2.0	6.0					
80%	Trigen	\$8,000,000	\$5,000,000	\$12,000,000									
25%					Trigen	2.0	1.0	3.0					
15%					Trigen	4.0	2.0	6.0					
0%	Trigen	\$7,500,000	\$250,000	\$10,000,000									
15%	Trigen	\$1,000,000	\$250,000	\$10,000,000	Trigen	2.0	1.0	3.0					
30%	Trigen	\$5,000,000	\$2,000,000	\$20,000,000	Trigen	4.0	2.0	6.0					
5%	Trigen	\$500,000	\$250,000	\$750,000									
40%					Trigen	4.0	2.0	6.0					

Risk Register: Risk Response Planning

	Response		Miti	gated Cost Im	pacts	Mitigated Schedule Impacts			
Strategy	Response Actions Including Advantages and Disadvantages	Mitigated Prob.	v1	v2 (L)	v3 (H)	v1	v2 (L)	v3 (H)	
Acceptance									
Mitigation	Adjust design to account for higher level of sustainable design features	10%	\$500,000	\$125,000	\$5,000,000	2.00	1.00	3.00	
Acceptance									
Acceptance									
Mitigation	Communicate with Caltran during planning phase	25%	\$3,750,000	\$125,000	\$5,000,000	1.00	0.50	1.50	
Acceptance									
Mitigation	Purchase materials early	15%	\$3,750,000	\$125,000	\$5,000,000	0.00	0.00	0.00	
Acceptance									
Acceptance									
Mitigation	Hire non-union labor	15%	\$4,000,000	\$2,500,000	\$6,000,000	0.00	0.00	0.00	
Acceptance									
Acceptance									
Mitigation	Research other area storge and inform current occupants of their options	5%	\$3,750,000	\$125,000	\$5,000,000	0.00	0.00	0.00	
Mitigation	Marketing	75%	\$5,000,000	\$125,000	\$5,000,000	1.00	0.50	1.50	
Mitigation	Marketing	5%	\$2,500,000	\$1,000,000	\$10,000,000	2.00	1.00	3.00	
Mitigation	Plan who is required to purchase materials	10%	\$250,000	\$125,000	\$375,000	0.00	0.00	0.00	
Acceptance									

Risk Assessment

Risk Assessment

Modeling of Value

Developed Monte Carlo simulation model based on the following algorithm for Value:

- Performance Parameters estimated during the Performance Assessment
- Cost and Duration parameters estimated in the Risk Assessment
- Ranges of outcomes developed

Performance / Cost

Performance / Duration

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Total Value

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Conclusions

Value Methodology

- Improve projects, products, and processes
 - Reduce total costs
 - Increase performance
 - Improve delivery time
 - Manage risk
- Solve problems and innovate
- Evaluate "best value" alternatives
- Build consensus among stakeholders
- Validate baseline concept

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Value Optimization

Concepts of "Best Value"

Value is a Relative Measure

 Baseline compared to other alternatives, options, or strategies

Value is multidimensional

- Relates the performance of a function to the resources required to acquire that function
- Relates inputs to outputs

$$V_f(P, C, t)_{total} = \frac{\sum_{n=1}^{\infty} P_n \cdot \alpha}{\sum_{n=1}^{\infty} [(C_n \cdot \alpha) + (t_n \cdot \alpha)]}$$

Concepts of "Best Value"

- The Value Equation Can be used as an equivalent measure of Benefit / Cost
 - Value = [Performance/Cost] = Benefits / Costs
- The largest Value improvement relative to the baseline offers the most efficient use of resources to accomplish the same function.

Concepts of "Best Value"

- The Best Value results when the necessary functions to meet the required performance at the lowest overall cost and least amount of delivery time are performed.
 - Performance, Cost and Schedule are Uncertain
 - Performance includes requirements and attributes
 - Risk in costs and durations are comprised of estimating risk and event risk

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www iceaaonline.com

QUESTIO

NF2110

REFERENCES

- Stewart, Robert, "Value Optimization for Project and Performance Management", John Wiley and Sons, Inc., Hoboken, NJ, 2010, pgs. 21 46.
- Berrends, Terry; Cretu, Ovideu; Stewart, Robert, "Risk Management for Design and Construction", John Wiley and Sons, Inc. in association with RS Means, Hoboken, NJ, 2010
- Saaty, Thomas, "Decision Making for Leaders: The Analytic Hierarchy Process for Decision in a Complex World", New Edition 2001, (Analytic Hierarchy Process Series Vol. 2)
- Hubbard, Douglas, "How to Measure Anything: Finding the Value of Intangibles in Business", John Wiley and Sons, Inc. Hoboken, NJ, 2007, pgs. 43 47
- Stewart, Robert; Cilch, Chili, "The Application of Value Profiling on Public Projects", An Examination of the California Department of Transportation's Performance Measures Process, Institute for Value Management, Bristol, England, 2006, pgs. 3 10
- Stewart, Robert; Bernard, Nicole; Baza, Mark, "How VE and Decision Analysis are Improving Mobility across Borders", 2009 AASHTO Value Engineering Conference, pgs. 1-10

