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Abstract 

The portfolio effect is the reduction of risk achieved by funding multiple projects that are 
not perfectly correlated with one another. It is relied upon in setting confidence level 
policy for programs that consist of multiple projects. The idea of a portfolio effect has its 
roots in modern finance as pioneered by Nobel Memorial Prize winner Harry Markowitz. 
However, in two prior ISPA-SCEA conference presentations, “The Portfolio 
Reconsidered” in 2007 and “The Fractal Geometry of Cost Risk” in 2008, the author has 
demonstrated that the portfolio effect is more myth than fact. Additional cost growth data 
have been collected for an updated study. The number of data points for cost growth 
considered has increased from 40 in the previous study to 112. Data for schedule growth 
is also presented, and the distribution of schedule growth is discussed. Tail behavior for 
cost growth is discussed and the cost growth data are shown to closely follow a 
lognormal distribution with a high coefficient of variation. The portfolio effect for cost is 
still found to be minimal, at best. The concept of cost overrun insurance is introduced as 
one method for effectively implementing a true portfolio effect. The theoretical cost of 
this insurance, based on the equivalence principle, is found to be significant. Thus in 
order to achieve a portfolio effect, one must pay for it, in accordance with the famous 
principle that “there ain’t no such thing as a free lunch!” 

 
Introduction 

Consider a portfolio of stocks, such as those that might be held in a diversified stock 
account. Some of the stocks held may be may be spread across sectors such as energy, 
foods, and finance, to name just a few. These industries’ fortunes are not perfectly 
correlated with each another. The stock price for an oil company may increase at the 
same time as the stock price of a financial company is dropping. While some of these 
stocks may be quite risky, the combination of these stocks held in a common portfolio is 
less risky than the most volatile individual member because of this lack of perfect 
correlation. This effective reduction in risk by holding non-perfectly correlated assets is 
called diversification. The idea is a simple and appealing one, and was pioneered decades 
ago by economist Harry Markowitz, who was awarded a Nobel Memorial Prize for his 
research on the subject. 
 
More recently, Tim Anderson (Ref. 1), among others, has applied the idea of a portfolio 
effect to the establishment of cost risk reserves for defense and NASA programs and 
projects. Individual projects within a larger program, such as the Ares I launch vehicle 
project that is part of the larger Constellation program, can be viewed as risky assets, not 
all of which are perfectly correlated with each other. Thus in order to achieve a specified 
confidence level for Constellation, it should be possible to fund each individual project, 
such as Ares, at a lower level. This strategy is currently being implemented, with a 65% 
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confidence level requirement for Constellation, but only a 50% confidence level 
requirement for Ares I. The portfolio effect is widely relied upon by NASA policy 
makers in reducing the level of funding among multiple projects that are part of a single 
program across the agency. Recent policy guidance, for example, relies upon achieving 
70% program-level confidence by funding projects at the 50th percentile (with the 
exception of Constellation). 
 
However, as pointed out by the author in two previous ISPA-SCEA presentations (Refs. 
2 and 3), this much-relied upon effect is more apparent than real. Individual projects are 
riskier than we traditionally model them. The amount of cost risk for a project is often 
characterized by the variance or standard deviation. This will vary based on the size of 
the project. For example, the standard deviation that results from the cost risk analysis of 
an earth-orbiting satellite will likely be measured in millions or tens of millions of 
dollars, while that derived from a cost risk analysis for a launch vehicle development 
program will likely be measured in billions of dollars, a difference of an order of 
magnitude or more. A way to compare risk across projects when the absolute magnitude 
differs greatly is to examine the coefficient of variation, which is defined as the ratio of 
the standard deviation to the mean. If, for a launch vehicle cost risk analysis, the standard 
deviation is $2 billion and the mean is $10 billion, the coefficient of variation is 20%. 
Suppose that the mean and standard deviation derived from a cost risk analysis of an 
earth orbiting satellite is $100 million and $30 million, respectively. Then the coefficient 
of variation for the earth orbiting satellite cost risk is 30%. Even though the dollar 
amounts differ by a large amount, and the launch vehicle development has much more 
absolute risk, when comparing the relative amount of risk, the satellite development 
program has more variation about the mean. As discussed by the author in a previous 
paper (Ref. 2), the typical coefficient of variation as seen in typical cost risk analyses are 
not as high as would be expected from cost growth history. In addition, as discussed by 
the author in a follow-up paper (Ref. 3), traditional statistical methods were found to 
under-represent the risk of extreme cost growth events that have occurred in the past. 
Another key aspect of the portfolio effect is correlation. Correlation is necessary for 
achieving the reduction in risk promised by diversification. However, as everyone with a 
stock account or 401K that is invested in mutual funds is all too painfully aware, 
correlations are not static. A portfolio of stocks does not look very risky when the overall 
stock market is rising because some of the correlations are negative. But when a financial 
crises occurs like the one currently enveloping markets around the world, all the stocks in 
a portfolio fall together.  Just as the correlation between stock investments can 
dramatically change from a negative value to perfect positive correlation in a market free-
fall, the correlations between individual projects cannot be relied upon to remain a 
constant value over the development life-cycle. For example, history indicates (Ref. 4) 
that the correlation between launch vehicle stages is highest for a liquid rocket engine and 
its associated liquid rocket stage, with less correlation among other elements. However, if 
budgets are constrained for all the launch vehicle elements, cost will likely increase for 
all elements across the board. Hence the correlation will be much higher than expected. 
Treating correlation as a static variable based upon historical average experience will also 
lend support to a portfolio effect that does not exist. Thus it is important that correlation 
be treated as dynamic by updating it on a regular basis.  
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For the current study, additional cost growth data have been collected, including 
information for more recent missions, more than doubling the number of data points from 
40 to 112. Also, schedule growth data for 48 missions have been collected. The results of 
the updated analysis lead to slightly different outcomes – cost risk is shown to closely 
follow a lognormal distribution, as opposed to a power law based on a smaller 40-mission 
cost growth database in a previous paper on this subject (Ref. 3). But the bottom line is 
found to be the same – the portfolio effect remains a chimera of our limited imagination. 
However, the effect can be implemented if NASA is willing to pay for it. The concept of 
cost-overrun insurance as a means to help alleviate issues with extreme cost growth is 
introduced as one means to implement a true portfolio effect.  
 

Cost Growth and Cost Risk 
Cost growth is the amount by which a program exceeds its initial budget. It is typically 
expressed as a percentage. For example, a program initially expected to cost $100 million 
at the beginning of the program, but which actually costs $150 million by the end of the 
program’s development, is said to have experienced 50% cost growth.  
 
Cost growth has been shown to be an endemic and universal phenomenon for space 
program development efforts. Studies by Shaffer, the U.S. Government Accountability 
Office, and Smart (Refs. 5-8) have shown that over three-quarters of all NASA programs 
experience cost growth, with average cost growth ranging to 35% and higher. These 
studies have also shown that many programs experience growth in excess of 100%!  
 
For the current study, additional data were collected from several sources (Refs. 9-13). 
These studies include work done by Claude Freaner and Brian Rutkowski of NASA HQ 
to update and expand Matt Shaffer’s initial 40-mission study. Much of these recent data 
points are focused on NASA’s Science Mission Directorate, so additional data sources 
were selected to include a broader swath of missions, including launch vehicle stages. 
The expanded database includes 112 data points. 
 
For these 112 missions, the minimum cost growth was -25.2% for Super Light Weight 
Tank (SLWT), an upgrade for the Shuttle Program from a more traditional aluminum 
structure to aluminum-lithium. The negative number means that costs under ran their 
initial budget by approximately 25%. Contrary to popular belief, missions occasionally 
come in under budget. For the current study, 14 such missions experienced under runs, 
which is12.5% of the missions studied. Only two of the missions hit their budget target 
spot on. Nine of the missions were within 5% of the initial budget, and 19 within 10% 
(either above or below).  
 
The maximum cost growth among the missions studied was 385% for the Hubble Space 
Telescope and Space Telescope Assembly, which suffered from several sources of 
traditional cost growth, including funding constraints, launch vehicle delays, and under-
estimation of the time and resources necessary to develop the requisite technology.  
 
A range from -25% on the low side to over 350% on the high end is a wide range. The 
average cost growth for all missions was 53.0%, with median growth equal to 32.1%. The 
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difference between the mean and median indicates a high degree of positive skew in the 
data, with most missions experiencing relatively small amounts of cost growth (half 
experienced growth less than 33%), with some missions experiencing extreme amounts 
of cost growth, such as Hubble and others. Overall, seventeen missions had cost growth 
in excess of 100%, which means cost more than doubled. While representing only about 
15% of the cost growth data we will see that growth of this severity, while not common, 
occurs often enough to offset any hoped-for portfolio effect. See Figure 1 for a graphical 
summary of these data.  
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Figure 1. Graphical Summary of NASA Cost Growth. 

 
Note that the data in Figure 1 has positive skew with a heavy right tail. The normal 
distribution, which is symmetric, and has thin tails, obviously does not fit these data, as is 
demonstrated in detail by author in a previous paper (Ref. 3).  One of the most common 
distributions used for analyzing data that are, like cost, bounded below by zero and which 
have positive skew is the lognormal distribution. It was demonstrated previously by the 
author (Ref. 3) that the lognormal distribution tended to under-represent the right tail of 
the cost growth data. With additional missions added to the database, we re-examine 
which distributions best represent cost growth, including tail behavior.  In order to 
examine the lognormal fit, the cost growth data are shifted so that the minimum growth 
amount, which is a negative number, becomes positive. We look at the ratio of final cost 
to actual cost, which ranges from .748 (representing the 25.5% under-run) to 485.1 
(representing the 385.1% overrun), and subtract 0.7. Thus the data are transformed via 

7.0
CostInitial
CostFinal

− . 
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To fit the distributions, the Anderson-Darling, chi-square, and Kolmogorov-Smirnov 
statistics were calculated for each distribution. The statistics for the top four, as ranked by 
the Anderson-Darling statistic are displayed in Table 1. 
 
Distribution Anderson-Darling Chi-Square Kolmogorov-

Smirnov 
Lognormal 0.5407 5 0.0656 
Gamma 1.2712 16.7857 0.0906 
Max. Extreme 
Value 

2.1452 13.7857 0.1085 

Weibull 2.4850 25.1429 0.1184 
Table 1. Comparison of Best-Fitting Distributions for Cost-Growth Data. 

 
Each of these tests can be thought of as a measure of deviation away from a perfect fit for 
the data. Thus for all three, a smaller test-statistic value indicates a better fit.  These three 
tests focus on slightly different aspects of a distribution’s fit. Anderson-Darling is 
focused on the fit at the tails of the distribution, Kolmogorov-Smirnov measures the 
maximum difference between the data and the fitted distribution, and chi-square is a sum 
of squares of deviation measure.  
 
Note that the lognormal distribution is the best-fitting distribution according to all three 
tests. Even though the lognormal has the best rank according to each test, that does not 
mean we should unequivocally accept the lognormal distribution as a good representative 
of the underlying data. When it comes to statistics, we can never positively prove a 
hypothesis such as “the cost growth data fit a lognormal distribution.” We can however 
dis-prove hypotheses with data. Thus the best we can hope to do in distribution fitting is 
to fail to reject a given hypothesis. For each test, a critical value is determined based on 
the degrees of freedom of the data. The Anderson-Darling critical value is unique for 
each distribution. For example, the critical value for a lognormal at the 5% significance 
level is 0.752, and the lognormal test-statistic is below that amount by a comfortable 
margin at 0.5407. The Weibull test-statistic on the other hand is 2.4850, well above the 
0.757 critical value at the 5% significance level.  
 
The Kolmogorov-Smirnov critical value at the 5% significance level is 

129.0
112
36.1

N
36.1

≈= . The critical value at the 20% level is approximately 0.101. Thus 

we fail to reject the lognormal and gamma hypotheses at either of these levels. 
 
For the chi-square test, the critical value given the number of degrees of freedom is much 
higher than the chi-square test statistics shown in the table up to a 10% significance level, 
so we fail to reject any of the top four distributions by the chi-square criteria. 
 
Thus we fail to reject the lognormal for all three goodness-of-fit tests. The fit according 
to the chi-square criterion is particularly good. Figure 2 shows a graphical comparison of 
the empirical cost growth distribution and the lognormal fit. 
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Lognormal Fit and Empirical Distribution 
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Figure 2. Graphical Comparison of Empirical Cost Growth Data and Fitted 
Lognormal Distribution. 
 
In a 2008 presentation to ISPA-SCEA (Ref. 3), empirical evidence was provided that cost 
growth follows a power law for a 40-mission database. Mathematician Benoit 
Mandlebrot (Refs. 14,15) has shown that numerous natural and man-made phenomena 
follow these types of laws, which says that as size or magnitude increases, the impact 
decreases according to a power equation, which has the form 
 

baXY = . 
 
These types of laws indicate that events of large magnitude are much more likely than 
you would expect if you modeled the phenomenon using a normal or lognormal 
distribution. How well does a power law fit the expanded data set? See Figure 3 for a  
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Figure 3. Graphical Comparison of the Empirical Cost Growth Data, the 
Lognormal Fit, and the Best-Fit Power Law. 
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graphical comparison. Note that in Figure 3 the y-axis is the probability that cost growth 
exceeds the amount specified on the x-axis, so it is basically the cumulative function 
turned upside down. It is seen from this graph that the expanded database changes the 
conclusions reached in the previous study. Cost growth is found to closely follow a 
lognormal distribution, including the right tail, while the power law fit to the data 
overestimates the likelihood of extreme cost growth. 
 
Cost risk is the probability that an estimate will exceed a specified amount, such as $100 
million or $150 million. Cost growth and cost risk are thus intrinsically related. Historical 
cost growth provides an excellent means for determining the overall level of risk for cost 
estimates. For example, if 95% of past programs have experienced less than 100% 
growth, we should expect that the ratio of actual cost to the initial estimate should be less 
than 100% with 95% confidence. Thus cost growth is the impact of cost risk in action. 
Because of uncertainty in historical data, cost models, program parameters, etc., the term 
“cost risk” is redundant. We will see how these data can be applied to cost risk when we 
look at the portfolio effect. 
 

The Portfolio Effect and the Free Lunch 
One facet of cost risk is that budgets are not set in isolation. Rather, budgets are set in the 
context of multiple ongoing missions. Thus a portfolio of missions is often considered in 
practice. In this case, it has been suggested that due to diversification across a suite of 
missions it is possible to achieve a high level of confidence in the overall budget while 
setting budgets for individual missions at a lower level (Ref. 1). This draws on ideas in 
economics, such as modern portfolio theory as expounded by Nobel laureate Harry 
Markowitz. See Table 2 for an example. In Table 2 there are ten mutually independent 
normal distributions. In this particular case it is possible to achieve 80% confidence for 
the full portfolio of ten missions while budgeting each individual mission at the 61% 
confidence level. This is a significant savings. However, it was shown in the author’s  
 

Project μ σ

61% 
Confidence 

Level
Project 1 $1,696 $539 $1,846
Project 2 $1,481 $404 $1,594
Project 3 $1,395 $435 $1,516
Project 4 $874 $288 $954
Project 5 $840 $219 $901
Project 6 $1,449 $371 $1,552
Project 7 $1,638 $537 $1,788
Project 8 $1,031 $259 $1,103
Project 9 $1,271 $323 $1,361
Project 10 $1,937 $602 $2,105
Total $13,612 $1,317 $14,720

80th Percentile
At Overall Level

 
Table 2. Example of the Portfolio Effect for 10 Mutually Indendepent Normal 
Distributions. 
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previous studies on this subject that when cost growth follows a power law, the portfolio 
effect savings are so small they are almost nonexistent (Refs. 2, 3). For the updated 
database of 112 missions, cost growth, and hence cost risk, are best represented by a 
lognormal distribution. Since the emphasis in studying the portfolio effect is on the 
confidence level, we use the fact that for the cost growth data, the mean is at the 66th 
percentile. For a lognormal distribution this implies that  
 

σμσμ 4125.05.0 ee
2 ++ = , 

 
and hence σ = 0.825. Since for a lognormal distribution, ( )2CV1ln +=σ , this implies 
that CV= 0.99, where CV is the coefficient of variation (ratio of the standard deviation to 
the mean). For each project in Table 1, the standard deviations based on empirical data 
can be derived by multiplying each mean by the coefficient of variation. Summing these 
10 projects with the same means as in Table 2, assuming lognormal distributions, with 
coefficients of variation derived from empirical data, was performed using Monte Carlo 
simulation. The results are displayed in Table 3. 
 

Project μ σ

74.7% 
Confidence 

Level
Project 1 $1,696 1679.04 $2,086
Project 2 $1,481 1466.19 $1,821
Project 3 $1,395 1381.05 $1,716
Project 4 $874 865.26 $1,075
Project 5 $840 831.6 $1,033
Project 6 $1,449 1434.51 $1,782
Project 7 $1,638 1621.62 $2,014
Project 8 $1,031 1020.69 $1,268
Project 9 $1,271 1258.29 $1,563
Project 10 $1,937 1917.63 $2,382
Total $13,612 $16,740

80th Percentile
At Overall 
Level

 
Table 3. The Portfolio Effect Based on Empirical Data. 

 
Note that the portfolio effect based on empirical data offers much less savings. The effect 
in Table 3 also assumes independence, while in practice most projects are correlated. 
When 20% correlation is assumed between each of the 10 projects, each project must be 
funded at the 77% confidence level in order to achieve 80% confidence at the portfolio 
level. Thus, again, the portfolio effect is found to be a myth. Continued over reliance by 
policy makers on this nonexistent safety net will only mean continued issues with cost 
growth in excess of budgets and reserves. 
 
The lack of a portfolio effect should not be surprising.  The portfolio effect relies upon 
diversification, which, as stock pundit Jim Cramer has touted, is the “only free lunch on 
Wall Street” (Ref. 16). But that statement was made in 2007, before the recent stock 
market meltdown - no matter how diversified an individual’s stock portfolio most 
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probably lost money, perhaps a significant amount, in the recent collapse. As several 
people have noted, including science fiction author Robert Heinlein and Nobel Prize-
winning economist Milton Friedman “there ain’t no such thing as a free lunch” (Refs. 
17,18). Or, as the 19th century Hungarian mathematician Janos Bolyai wrote “One must 
do no violence to nature, nor model it in conformity to any blindly formed chimera” 
(Refs. 19,20). The lack of a portfolio effect is in keeping with this fundamental common-
sense notion. And “investing” in a NASA project is different than buying a stock. When 
an investor buys a stock, he or she can at most lose the initial investment. When NASA 
invests on a project, however, the initial investment, or budget, can be exceeded many 
times over. Rather than being a stock investor, NASA and other agencies are making 
highly-leveraged speculative bets on projects with multi-year timeframes. This is akin to 
some of the highly leveraged risk taking that helped to create the current Wall Street 
crisis.  
 
However, if cost growth could be capped at a specified percentage, such as 100%, then 
the portfolio effect does offer real savings. If each project is initially funded at the 50th 
percentile, in keeping with current NASA policy, and cost growth is limited to 100% 
growth in excess of the median, then achieving 80% confidence for the portfolio of 
missions only requires funding each mission at the 65.5th percentile, assuming lognormal 
distributions and 20% correlation between all projects. Table 4 displays the results. 
 

Project μ σ

65.5% 
Confidence 

Level
Project 1 $1,696 1679.04 $1,676
Project 2 $1,481 1466.19 $1,463
Project 3 $1,395 1381.05 $1,378
Project 4 $874 865.26 $864
Project 5 $840 831.6 $830
Project 6 $1,449 1434.51 $1,432
Project 7 $1,638 1621.62 $1,619
Project 8 $1,031 1020.69 $1,019
Project 9 $1,271 1258.29 $1,256
Project 10 $1,937 1917.63 $1,914
Total $13,612 $13,451

80th Percentile
At Overall 
Level

 
Table 4. the Portfolio Effect with Cost Growth Caps. 

 
Note that capping cost growth also significantly reduces the overall 80th percentile, to the 
point where it is less than the overall mean. Of course, capping cost growth to 100% may 
be hard to achieve in practice. Even without optimistic initial budgets, there may be 
external factors that can add to cost growth, such as funding instability and labor strikes.  
 
One possible way to implement a cost growth cap would be to cancel any mission as soon 
as cost growth exceeds 100%. This would provide managers with the incentive to be 
realistic in setting initial budgets. However, such a policy is draconian and would in 
many cases punish missions and project managers for externally-caused cost growth. It 
would also mean a loss of science. For example had this policy been in place at the time, 
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we wouldn’t have the scientific insights produced by the Hubble Space Telescope or 
Galileo Orbiter. 
 
Another, more practical way to implement a cost growth cap would be to purchase cost 
growth overrun insurance. Such insurance would have a high deductible, such as 100%, 
but pay dollar-for-dollar for any cost growth above a set amount. However, this insurance 
would not be free but would cost a substantial amount. One common way to price 
insurance is to use the equivalence principle, which simply states that the amount of the 
premium should equal the time-discounted expected payout (Ref. 21). In equation form 
this is  
 

Benefitsof.V.PemiumsProf.V.P = , 
 
where P.V. denotes present value. We can calculate this by looking at the mean payout 
for the 10 missions used in examples in Table 4, which is the mean of the values above 
the 100% cost growth cap. The total expected claim amount for this case is $2,854. 
Discounted to the beginning of the year at the current prime rate of 3.25%, the premium 
is $2,765, approximately 30% of the total budgets for the 10 projects. This is a large 
amount of money, but it does remove a great deal of uncertainty from the decision 
process, and may help NASA achieve its scientific objectives. A portfolio effect can be 
implemented, but it’s not free. After all “there ain’t no such thing as a free lunch!” 
 

Conditional Tail Expectation 
Nearly all risk management for DoD and NASA agencies seem to focus solely on finding 
a single percentile to budget against. NASA policy mentions 70% and 50%, for example. 
However risk management doesn’t stop at that point. Even funding at a 70% confidence 
level means that there is roughly a one-in-three chance of experiencing an overrun. What 
happens then? Does the project get cancelled? Unless there is an automatic implied 
policy of canceling any projects that overrun their budget, management faces a quandary. 
Even though they have applied modern risk management techniques, fully one third of all 
programs will still get into trouble on a regular basis. NASA and other agencies also need 
to set policy on a course of action once the 70% mark is exceeded. One useful statistical 
tool that comes in handy in such cases is conditional tail expectation. This is defined as 
the amount of cost growth to expect given that cost has exceeded a specified amount, that 
is 
 

[ ]αQX|XE > , 
 
where Qα is a specifed quantile. For example, Q0.95 is the 95th percentile. For a lognormal 
distribution, the formula for the conditional tail expectation (CTE) is 
 

[ ]
α
σ

σμ
Φ α

α −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−

⋅=
1

Qln
1

XECTE

2

, 
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whereΦ  is the cumulative normal distribution function. For example, for a single project 
for which cost risk has been modeled as a lognormal distribution with mean equal to 
$100 million and standard deviation equal to $50 million, μ = 4.49, σ = 0.72, and the 70th 
percentile is equal to 

.million6.114$e 72.0z49.4 70.0 ≈⋅+ . 
Thus, in this instance,  

.million7.159$
7.01
47.0

47.049.46.114ln1
100CTE

2

70.0 ≈
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
−

⋅=
Φ

 

Therefore, given that the 70th percentile has been reached, the expected amount needed to 
complete the project will be $160 million, roughly $46 million above the 70th percentile 
budget. This is 40% more than the budget. Table 5 displays the additional amount 
expected to be required if the budget is exceeded. Note that this amount ranges from 
around 10% if the budget is set at the 90th percentile and the coefficient of variation of the 
lognormal cost risk distribution is 20%, to 185% if the budget is set at the 30th percentile 
and the coefficient of variation is 100%. 
 

30th 40th 50th 60th 70th 80th 90th
20% 23.6% 20.5% 18.0% 15.9% 14.0% 12.2% 10.2%
30% 38.0% 32.7% 28.5% 25.0% 21.9% 19.0% 15.8%
40% 54.1% 46.1% 40.0% 34.9% 30.4% 26.2% 21.6%
50% 72.0% 60.9% 52.4% 45.5% 39.4% 33.7% 27.7%
60% 91.6% 76.8% 65.7% 56.7% 48.8% 41.5% 33.9%
70% 112.7% 93.8% 79.7% 68.3% 58.5% 49.5% 40.1%
80% 136.0% 112.0% 94.4% 80.5% 68.6% 57.6% 46.4%
90% 160.0% 131.0% 110.0% 93.0% 78.8% 65.9% 52.7%

100% 185.0% 151.0% 125.5% 105.8% 89.2% 74.2% 59.0%

Budget Set at

C
oe

ffi
ci

en
t o

f V
ar

ia
tio

n

 
Table 5. Additional Amount Expected if Budget Exceeded. 

 
Thus, reserve setting cannot stop with simply setting reserves at a relatively high 
confidence level. NASA and other agencies should expect to occasionally spend much, 
much more. For example, history indicates that the coefficient of variation is 100%, so if 
budgets are set at the 70th percentile, the average additional amount needed when an 
overrun occurs will be 89%! Thus in practice one third of missions will need an 
additional 89% above the budget, even when budgets are set at the 70th percentile. This 
has sobering policy implications. 

 
Schedule Growth and Schedule Risk 

Schedule growth has not been studied as much as cost growth, but that doesn’t mean it is 
not a significant problem. For this study we collected schedule growth for 48 missions. 
Schedule growth information has not been studied as much as cost growth, so less 
information was available.  
 
On a percentage basis schedule does not grow as much as cost. However, 90% of 
schedules overrun, on par with the 86% of missions that experience cost growth. The 
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average schedule growth is equal to 25.6%. The maximum was also much less than cost, 
at 113%. Unlike cost, schedule had no under runs. The schedule growth data are 
summarized in Figure 4. 
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Figure 4. Graphical Summary of NASA Schedule Growth. 

 
When it comes to fitting a distribution to schedule growth, there is no clear-cut winner as 
with cost growth. Different distributions provide better fits depending upon which test is 
used to rank the fits. See Table 6 for a comparison of the four distributions with the best 
test statistics.  
 
Distribution Anderson-Darling Chi-Square Kolmogorov-

Smirnov 
Weibull 1.0943 3.33 0.1237 
Exponential 17.8774 5.33 0.1437 
Beta 0.3802 5.67 0.0768 
Gamma 0.8502 11.333 0.1221 

Table 6. Comparison of Best-Fitting Distributions for Cost-Growth Data. 
 
Note that for schedule growth, the lognormal distribution is not a candidate at all, since it 
cannot be fit to values at 0. At the 5% significant level, the Kolmogorov-Smirnov critical 

value is 1963.0
48
36.1

N
36.1

≈= , so we cannot reject any of the distributions in Table 6 

based on that criterion. Also, the chi-square statistics are such that we do not reject any of 
these distributions at the 5% significance level. If we use the Anderson-Darling 
goodness-of-fit test, however, we can reject the exponential. However the goodness-of-fit 
statistics for the other tests are such that all four seem worthy of some consideration. One 
way to select a distribution would be to increase the significance level to the point where 
only one distribution is not rejected, although this would vary from test to test – the beta 
has the lowest Anderson-Darling and Kolmogorov-Smirnov test statistics, while the chi-
square statistic is lowest for the Weibull. Another way to rank among distributions is to 
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use the likelihood function, and use the Schwarz-Bayesian criterion (Ref. 22). The 
Schwarz-Bayesian criterion is an objective metric that compares the log likelihood values 
with a penalty for number of parameters, and is defined as  

( ) ( )nln
2
rl −θ , 

where r is the number of distribution parameters, n is the number of data points, and l(θ) 
is the value of the log likelihood function for the fitted parameters θ (in the case of 
multiple parameters θ  is a vector). The criterion chooses the distribution with the highest 
value. In the case of schedule growth n=48, and the number of parameters varies from a 
single parameter (rate) for the exponential, to four for the beta distribution. The Schwarz-
Bayesian values are displayed in Table 7. As seen from the table, according to the 
 

Distribution SBC
Gamma 29.79
Exponential 15.42
Weibull 9.66
Beta 8.43  

Table 7. Schwarz-Bayesian Values for the Beta, Exponential, Gamma, and Weibull 
Distributions. 
 
Schwarz-Bayesian criterion, the gamma distribution is the best choice. The exponential is 
ranked second because it has a smaller parameter penalty than the Weibull or beta. See 
Figure 7 for a graphical comparison. The exponential and Weibull have the same color in 
the chart because they cannot be distinguished from one another because their graphs are 
almost coincident. But the Schwarz-Bayesian gives the exponential more credit than the 
Weibull since the Weibull adds a parameter but provides almost the same fit as the 
exponential. This means that the addition of the parameter in the Weibull has little or no 
value. 
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Figure 5. Graphical Comparison of Empirical Schedule Growth Data and Fitted 
Distributions. 
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The gamma distribution is a two-parameter distribution with density function defined as  
 

( ) ( )
( ) k

1k

k
/xexpxxf

θΓ
θ

⋅
−

=
−

, 

 
where Γ (k) denotes the gamma function evaluated at k. The fitted gamma parameters are 
k= 0.655 and θ = 0.39. 
 
Just like with cost growth and risk, schedule growth and risk are strongly linked. 
Schedule growth is smaller as a percentage than cost growth which implies that the 
schedule risk mean should be closer to the schedule point estimate than the cost risk 
mean to the cost point estimate. Schedule risk can also be modeled as a gamma 
distribution. Based on the empirical data the point estimate is at the 10th percentile, and 
the mean is 25% higher. Given this information, a gamma distribution can be derived that 
matches the mean and the desired percentile. The mean of a gamma distribution is 

θ⋅k and the 10th percentile of a gamma distribution can be found by solving 

( ) ∫ −−=
θ

Γ

/x

0

t1k dtet
k

110.0 . 

 
While this is not a nice, easily solved equation, the parameters for a gamma distribution 
with given mean and 10th percentile can be derived using Excel’s Solver capability and 
by using the built-in gamma distribution and gamma function. For example given a 72-
month baseline schedule, given no other information about risk and by using history as a 
guide, one can set this value equal to the 10th percentile, and the mean equal to 1.25 times 
the point estimate, or 90 months. Using Excel Solver, setting the objective function to 
equal 90 months by varying the cells corresponding to the initial gamma parameters, with 
a constraint that the 10th percentile equal 72 months, one finds that the parameters of the 
gamma distribution are k = 38.57 and θ = 2.33. Note that in this case, the variance is 
equal to 21033.257.38 2 ≈⋅ , and thus the standard deviation is approximately equal to 
14.5, or 16.1% of the mean. That is the coefficient of variation for schedule risk based on 
history is approximately 16%. Comparing this with the 100% coefficient of variation 
implied by cost growth history, we see that on a percentage basis, schedules have much 
less risk than cost. See Figure 6 for a graphical comparison of relative cost and schedule 
risk, with both cost and schedule means set equal to 1. This does not imply that schedules 
are not risky, however. Schedule risk remains an important consideration for project 
managers, and projects should expect to experience schedule growth on a regular basis. 
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Figure 6. Schedule Risk Vs. Cost Risk Based on Empirical Data. 

 
Cost Risk and Schedule Risk Correlation 

Cost risk and schedule risk do not occur in isolation. They occur jointly and should be 
analyzed together. Project success involves meeting both a cost target and achieving a 
schedule, so confidence assessments should involve both as well. Recent NASA policy 
guidance has specified that confidence levels be set for joint cost and schedule, which is 
more stringent than considering cost or schedule alone. One simple way to assess joint 
confidence, proposed by Paul Garvey (Ref. 23), is to measure schedule risk and cost risk 
separately, then combine the two into a joint probability distribution by assigning 
correlation between cost and schedule. For the expanded 48-mission dataset, the 
correlation between cost and schedule growth is 71.5%. This provides a proxy for 
estimating cost and schedule risk correlation in the absence of any other correlation 
information. 

 
Conclusion 

NASA and other agencies have made significant strides in adopting modern financial risk 
management techniques. However, the portfolio effect is a pitfall that government 
agencies should avoid relying upon, as it is an imaginary free lunch that does not exist. 
However, cost overrun insurance offers the promise of a true portfolio effect if it can be 
implemented well. Despite these strides, however, the focus to date has been entirely 
upon setting budgets based on confidence levels. As we have demonstrated, this is not 
sufficient. Projects budgeted at the 70th percentile will on average require a great deal 
more money to complete. Setting reserves at level near the bulk of the distribution, such 
as at the 70th percentile, is a recipe for disaster without additional set asides for missions 
that exceed these limits.  
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