TECOLOTE RESEARCH, INC. $\overline{\text { Bridging Engineering and Economics }}$ Since 1973

 How Many Iterations

 How Many Iterations}

Are Enough?

Alfred Smith
 2008 Joint SCEA/ISPA Annual Conference and Training Workshop

Pacific Palms Conference Resort, Industry Hills, CA
June 2008

- Setting the Stage
- Describe a cost uncertainty simulation model
- How to Test for Convergence
- Analytic test for convergence
- Test for convergence using simulation data
- Propose a simple, repeatable, tool independent approach
- Applying the Approach to Several Models
- Look for patterns
- Identify model characteristics that influence the iterations required
- Concluding Comments AFCAA CRUH Example File
$\boldsymbol{\Sigma}$ Missile System
- $\boldsymbol{\Sigma}$ Sys Dev and Demo
- $\boldsymbol{\Sigma}$ Air Vehicle
- \circ Design \& Development
- Prototypes
- Software
- Sys Engineering/Program Management
- System Test and Evaluation
- Training
- Data
- Support Equipment

$$
\ldots
$$

- $\boldsymbol{\Sigma}$ Production Phase
$-\boldsymbol{\Sigma}$ Air Vehicle
- Payload
- Propulsion
- Airframe
- Guidance and Control
. Integration, Assembly. Test and Checkout
- Engineering Changes
- Sys Engineering/Program Management
- System Test and Evaluation
- Training
- Data
- Peculiar Support Equipment
- Common Support Equipment
- Initial Spares and Repair Parts
- 21 WBS elements (lowest level), 38 input variables
- Most of the common estimating methods are represented
- Linear, loglinear, triad, factor, build-up, third party tools, throughputs
- Date driven methods (uncertainty on duration)
- Normal, lognormal, triangular, uniform uncertainty distributions
- Functional and applied correlation
- Includes 10 discrete (Bernoulli) distributions
- Modeled using @Risk, CB, ACEIT

AFCAA CRUH Example Total Cost
Calculated with 100 and 50 k iterations

- 100 iterations clearly not enough
- 1k iterations almost matches the 50k run
- No visual evidence that 10k any different from 50k iteration result

Convergence

Analytical Solution

$m=p(1-p)\left(\frac{c}{\Delta p}\right)^{2}$

■ Where:

- $m=$ number of iterations
- $p=$ the percentile of interest
- $c=$ inverse of the standard normal cumulative distribution
> For 95\% confidence, in Excel use Normsinv(0.975)
- $\Delta p=$ the percentile range of interest (for instance, use 0.05 if interested in $+/-5$ percentile)
■ Independent of distribution shape

Source: M Granger Morgan and Max Henrion, UNCERTAINTY, A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis, pp 202

- Observations
- More iterations required to converge on the 50 percentile than 90 percentile
> Morgan \& Henrion pp 202 describe the 50 percentile as "the least precise estimated percentile"
- Need 5 to 35 k iterations to have error less than 1\%
- Will Latin Hypercube sampling improve on this result?
- Goal: create a simple way to determine sufficient number of iterations to obtain "accurate" results using the simulation data
- Several potential metrics of interest:
- Mean, standard deviation, coefficient of variation
- Correlation coefficient
- Target percentile
- Other? All?

■ Selected: target percentile for the WBS element(s) of interest

- Selected because this is the result that tends to be the basis for budget recommendations
- $50 \%, 70 \%, 90 \%$ used in this study, but the one your decision maker needs might be a better choice

Several Issues to Resolve:

■ How do we know the "right answer"

- Comparing a complex cost model simulation result to an analytic solution is not feasible
- Literature identifies 10k iterations as the benchmark for "sufficient"
> Morgan MG, Henrion M (1990) Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis
> Garvey P (2000) Probability Methods for Cost Uncertainty Analysis: A Systems Engineering Perspective
■ How to gather the data?
- Use Latin Hypercube sampling rather than Monte Carlo
- Is it necessary to change the random seeds on each run?
- Is it necessary to perform separate runs, or is the data from a single 10k run sufficient?
- How to present results? Options include:
- Plot multiple statistics for a specific result
- Plot single statistic for multiple results
- Plot x iteration result as a \% difference from the "correct" result
- Selected: Plot x iteration result as the absolute \% difference to the "correct" result

Is it necessary to change random seed when checking for convergence?

- 25 identical CRUH files, but with a different set of random seeds
- All 25 files run at 500,2500 , 5000 and 10000 iterations
- 50, 70 and 90 percentile results at the Total level each compared to the average of the 10 k result across all 25 files
- Observation: random seed selection generally has less than +/- 0.5% impact on most results
- Conclusion: No need to change random seed to check for convergence

Separate Runs vs A Single Run

- Option 1: Generate separate runs:
- Perform a separate run for each x iterations that will be compared to the 10 k run
- Becomes extremely time consuming if any fidelity desired
- Option 2: Use data from a single 10k run:
- Obtain 10k iteration data and calculate statistics based on all 10k
- Recalculate the statistics based upon the first 200 iterations, first 300, first 400 and so on
> An alterative is to randomly sample with replacement from the 10k data
- Does not guarantee distributions are sampled across their entire range
- Far quicker and easier to manage than Option 1

■ Goal: Demonstrate that Option 2 is adequate when checking for convergence?

■ Results from first 200 iterations of a 10k run are compared to an independent run of 200 iterations and so on
■ Conclusion: analysis of a single 10k run is sufficiently accurate to test for stability

Recap and Way Ahead

- Recap:
- 10k iterations selected as the benchmark
> Two sources noted
- Ignore impact of random seed changes
> Random seed change has a +/- 0.5\% impact
- Use the data from a single 10 k simulation run
> Separate runs more completely sample the distribution, but statistics are generally less than 1\% different from statistics calculated from a single 10k run

■ Way Ahead:

- Create a tool to calculate the statistics for each sample of interest and compare them to the 10k statistics
- Design the tool so that the user may "drop in" the iteration data from any source

Calculating the Statistics In Excel

	A	B	D	E	F	G	H	J	L
49	Iteration	AFCAA CRUH Ex	Iterations	Mean	Stdev	CV	50\%	70\%	90\%
50									
51	1	1,091,662.539	200	933,676.143	226,372.848	0.242	904,350.555	1,044,847.101	1,244,415.362
52	2	727,810.096	300	931,061.0 9	236,901.474	0.254	893,181.84	1,047,547.887	1,250,782.683
53	3	1,205,285.272	400	928,610.71?	242,462.505	0.261	888,047.982	1,034,861.250	1,262,402.942
54	4	1,111,597.028	500	930,042.410	241,776.774	0.260	889,780.748	1,022,441.553	1,263,843.287
55	5	801 50ก 52¢	6กก	а2ว 221 105	ว28 172 кan	- 255	805 551 155	ก28 618 1 กa	1 วคว 550 กaa
- Mean = AVERAGE(INDIRECT("B\$51:B\$" \& 50+\$D51))									
$\square \%$ = LARGE(INDIRECT("B\$51:B\$" \& 50+\$D51),ROUND(\$D51-H\$49*\$D51,0))									

- Excel Functions:
- INDIRECT: allows column D to automatically calculate the statistic from the correct range
- LARGE: finds the value from the correct range for the percentile of interest
- Copy/paste iteration data from any simulation tool into Column B
- Column D can be edited to obtain any granularity of interest
- Create additional columns to calculate the \% difference from the selected max iterations (in our case, 10k was selected)
- Using this approach, the process becomes tool independent
- This tool was used to create the charts that follow

Revisiting The 10k Decision

Convergence Results for: AFCAA CRUH Ex Relative to 50k

■ Absolute \% difference from 50 k result is plotted for different confidence levels

- Any statistic of interest could be used
- If 0.5% different is considered "noise" then anything after 3 k qualifies as "accurate

■ Conclusion: 10k iterations as the reference for "accurate" stands for this model

Convergence Results for: AFCAA CRUH Ex Relative to 50k

Comparing Convergence Across Tools

- Results at each iteration are compared to the average of the three tool results at 10 k
- Patterns would differ if random seeds changed, but within +/- 0.5\%
- Conclusion: All three tools demonstrate similar convergence behavior

Convergence For Several Examples

Σ SMEXPhases B/C/D
$\boldsymbol{\Sigma}$ Project Mgmt/Mission Analysis/Sys Engr

- Project Management
- Project System Engineering
- Safety \& Mission Assurance
$\boldsymbol{\Sigma}$ Instruments System
$\square \boldsymbol{\Sigma}$ Instruments PMP
$-\boldsymbol{\Sigma}$ Instrument PMP NR Dev
- $\boldsymbol{\Sigma}$ Instrument 1 NR Dev
- $\boldsymbol{\Sigma}$ Instrument PMP Base NR 1
- Structures Subsystem-11 NR
- Electronics Subsystem-I1 NR
- Optics/Antenna Subsystem-11 NF
- Detector Subsystem-I1 NR
$\square \Sigma$ Instrument PMP Base Wrap NR 1
- Thermal Subsystem-11 NR
- Software Subsystem-I1 NR
$\pm \boldsymbol{\Sigma}$ Instrument 2 NR Dev
$\pm \boldsymbol{\Sigma}$ Instrument 3 NR Dev
$-\boldsymbol{\Sigma}$ Instrument PMP Rec Flight Units
- $\boldsymbol{\Sigma}$ Instrument 1 RecT1
- $\boldsymbol{\Sigma}$ Instrument PMP Base I1 Rec T1
- Structures Subsystem-I1 Rec T1
- Electronics Subsystem-I1 Rec T
- Optics/Antenna Subsystem-I1 Ri
- Detector Subsystem-I1 RecT1
$\square \Sigma$ Instrument PMP Base Wrap I1 Rec T
- Thermal Subsystem-11 Rec T1
- Software Subsystem-I1 RecT1
$\oplus \boldsymbol{\Sigma}$ Instrument 2 Rec T1
$\pm \boldsymbol{\Sigma}$ Instrument 3 RecT1
- Instruments Thruput Estimate
- $\boldsymbol{\Sigma}$ Instrument Mgmt \& SE
- - Program Mgmt-Instrument
- System Engr-Instrument
- Product Assurance-Instrument
- Intg 8 Test-Instrument
- Award Fee (Incld in WBS elements) - Instrumer
$-\Sigma$ Bus/Orbitor System
$-\boldsymbol{\Sigma}$ Bus/Orbitor Prime Mission Product
$\square \boldsymbol{\Sigma}$ Bus Non Rec Dev
- Structure NR Dev
- Thermal Control NR Dev
- Attitude Control System (ACS) NR De
- Propulsion (Reaction Control) NR Dev
- Electrical Power Supply (EPS) NR DE
- TT\&C and CD\&HNR Dev
$-\boldsymbol{\Sigma}$ Bus Rec Flight Units
- Structure Rec
- Thermal Control Rec
... - Attitude Control System (ACS) Rec
- Propulsion (Reaction Control) Rec
- Electrical Power Supply (EPS) Rec
- TT\&C and CD\&H Rec
- Space Software (Excludes Instruments)
$-\boldsymbol{\Sigma}$ Program Mgmt \& Sys Engr - Bus
- Bus Program Level - Nonrec
- Bus Program Level Recurring
$\square \boldsymbol{\Sigma}$ System Integration \& Test-Bus
- System Intg \& Test Non-Rec
- System Intg \& Test Rec
- Launch Ops \& Orbital Support (LOOS)
- Aerospace Ground Equip (AGE) - Bus
- Spacecraft System Fee
$\boldsymbol{\Sigma}$ Other Development
$\square \boldsymbol{\Sigma}$ Science
- Science Team SOCM SMEXScaled AnA
- Science Team Throughput Estimate
$-\Sigma$ Pre-Launch GDS/MOS Dev
- GDS/MOS Ground Hardware
- GDS/MOS Ground Software
- DSN/Tracking Support
- Mission Operations (Phase E/F)
- Education \& Public Outreach B/C/D

Over 70 WBS elements estimated using:

- Non-Linear CERs
- Linear CERs
- Factor Relationships
- Build-up estimates
- Data from $3^{\text {rd }}$ party tools
- Throughputs

Over 150 input variables such as:

- Labor rates
- Configuration Inputs (mass, power, etc)
- Programmatic Inputs (design life, schedule, etc)
- Factors
(overhead wraps, etc)

Identify Iterations For Convergence

Convergence Results for: SMEX Total

- 3500 iterations appears sufficient
- May be different if anything is changed in the model
- Note that distribution shape is not normal

ACEIT Example Files

Convergence Results for: Small ACEIT Example

Elements in Model	313	Includes WBS, Intermediate calcs and Inputs	
\# WBS Elements:	91	Includes Parents	
\# WBS Methods	60	65.9\%	
10k CV $=0.19$	Min	Sec	Scale to $10 k$ (Sec)
10k iterations	1	21.30	81.3
1 k Iterations	0	8.17	81.7
500 iterations	0	4.19	83.8
100 iterations		0.97	97.0
	Distributions	Group Names	Correlation Strength
Count	75	48	48
Unique	7	10	9
Ave \# Elements per group		4	

Elements in Model	33	Includes W calcs and	Intermediate ts
\# WBS Elements:	6	Includes P	ents
\# WBS Methods	4	66.7\%	
$10 \mathrm{k} C \mathrm{C}=0.27$	Min	Sec	Scale to 10k (Sec)
10k iterations	0	1.02	1.0
1k Iterations	0	0.14	1.4
500 iterations	0	0.09	1.8
100 iterations		0.05	5.0
	Distributions	Group Names	Correlation Strength
Count	6	2	2
Unique	3	1	2
Ave \# Elements per group		2	

Electronics

TECOLOTE RESEARCH, INC.

- After 1,000 iterations, the mean climbed (red line) as iterations increased
■ CV jumps up dramatically periodically (red line)

■ The top 100 results were "stripped" from the simulation and stats recalculated
■ Mean and CV settled out very quickly (green lines)

- Examination of model revealed rare "divide by zero" due to denominator distributions, explaining the occasional "huge" result that swamped all others

■ The percentile results were not affected. With all 10k iterations or with the lowest 9.9 k , the 50,70 and 90 percentile results all converge after several k iterations

TECOLOTE

Research, Inc.

Aircraft LCC

Convergence Results for: Small Aircraft LCC

Elements in Model	622	Includes WBS, Intermediate calcs and Inputs	
\# WBS Elements:	119	Includes Parents	
\# WBS Methods	83	69.7%	
10k CV =0.09	Min	Sec	Scale to 10k (Sec)
10k iterations	13	26.31	806.3
1k Iterations	1	20.00	800.0
500 iterations	0	40.06	801.2
100 iterations		20.45	2045.0
	Distribu- tions	Group Names	Correlation Strength
Count	345	144	144
Unique	4	8	4
Ave \# Elements per group	18		

Elements in Model	697	Includes WBS, Intermediate calcs and Inputs	
\# WBS Elements:	279	Includes Parents	
\# WBS Methods	195	69.9%	
10k CV = 0.21	Min	Sec	Scale to 10k (Sec)
10k iterations	11	33.06	693.1
1k Iterations	1	2.77	627.7
500 iterations	0	31.61	632.2
100 iterations		6.45	645.0
	Distribu- tions	Group Strength	Correlation Strength
Count	129	121	121
Unique	4	4	1
Ave \# Elements per group	30		

Space Systems

Elements in Model	2214	Includes WBS, Intermediate calcs and Inputs	
\# WBS Elements:	957	Includes Parents	
\# WBS Methods	732	76.5%	
10k CV = 0.2	Min	Sec	Scale to 10k (Sec)
10k iterations	36	54.08	2214.1
1k Iterations	8	1.88	4818.8
500 iterations	1	18.95	1579.0
100 iterations		16.28	1628.0
	Distribu- tions	Group Names	Correlation Strength
Count	486	397	396
Unique		3	2
Ave \# Elements per group	198		

Convergence Results for: Small Space

Elements in Model	82	Includes WBS, Intermediate calcs and Inputs	
\# WBS Elements:	9	Includes Parents	
\# WBS Methods	7	77.8%	
$10 \mathrm{k} \mathrm{CV} \mathrm{=} \mathrm{0.72}$	Min	Sec	Scale to 10k (Sec)
10k iterations	0	10.44	10.4
1k Iterations	0	1.11	11.1
500 iterations	0	0.58	11.6
100 iterations		0.23	23.0
	Distribu- tions	Group Names	Correlation Strength
Count			
Unique	3	3	3
Ave \# Elements per group	3	1	

- Model based upon following equation:
- 0.6636*V1^0.6567 * V2^0.1555 * V3^0.03226 * V4^0.4409 * V5^0.9142 * V6^-0.2879
- Uncertainty on each variable

■ CER result used to estimate other cost elements using uncertain factor relationships

One of the smallest models, takes the most iterations

Concluding Comments

- Convergence was defined as the number of iterations required such that statistic of interest stays within 0.5% of the 10k result
- 50, 70,90 percentile selected in this study as basis for testing for convergence

■ Simple Excel tool provides a consistent, tool independent way to test for convergence

■ Observations:

- None of the models generated a Normal distribution at the total level
- Can ignore impact of random seed changes
- Convergence can be estimated from a single 10k simulation run
- Models tested converged faster than analytic formula suggests, possibly due using Latin Hypercube over Monte Carlo
- Contrary to the analytic approach, more iterations are required as percentile increases
- CV more important than \# of elements in model when assessing iteration requirement
> 10 k iterations may be insufficient if model CV is high, i.e. > 0.6
- How many iterations are required?
- Unfortunately, the answer is: it depends
- Use a simple, consistent method to find out

Presented at the 2008 SCEA-ISPA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Backup

AFCAA CRUH 10k Iteration Example Results

- Results are tool independent
- The handbook does not endorse or recommended any specific tool

Different Ways to Present Results

- Derived from evaluating the iteration data from a 10k run

■ Appears that for this model (AFCAA CRUH Ex), 2-3 k iterations are sufficient

- Conclusion: Upper left selected as standard way to present analysis

