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The Problem

• Need to give decision makers the best available data
• Risk is important

– Point estimate alone could provide misleading results
• You want to include risk in your analysis

– Cost or Benefits
– Schedule risk possibly also applicable

• Time is limited
• Currently only have a point estimate

What to Do?
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Quick Risk Methodology

• Original concept developed by Dr. Steve Book, MCR 
LLC

• Provides a simple approach for applying risk
• Requires only a few assumptions

– Point Estimate (value and probability)
– Overall uncertainty range
– Most-Likely (Mode) probability (for some distributions)

• NOT a substitute for a complete analysis
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Conceptual Overview

• Risk Analysis is composed of assigning statistical 
distributions to individual components (e.g., WBS)

• Combine all these distributions into single total 
distribution

• “Quick Risk” skips these steps and creates the single 
“final” distribution directly
– Based on typical results for the point estimate and 

range of the results
– Initial development uses a simple Triangular 

distribution
– Expanded to include Normal and Log-Normal

• Let’s now talk about the “typical” input values
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The “Point Estimate”
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Uncertainty Range

• Basic uncertainty range defined by the ratio of the 
“high” and the “low” estimates
– “High” is a reasonable upper bound
– “Low is a reasonable lower bound
– Does not use the absolute difference (i.e., High – Low)

– A Triangular Distribution has a built-in Upper & Lower 
limits

– Normal Distribution (and similar) is infinite in extent 
(not reasonable for limits)

• Let’s start with the basic Triangular Distribution
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Triangular Distribution
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Summary Triangular Equations

• Given the assumed values we can solve for the 
Triangular distribution parameters (L,M,H)
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Note that the point estimate (Tp) is at the 
25th percentile as a typical example only.
Similarly the H and L are shown at +/- 2σ

In a similar fashion we develop the method for a Normal Distribution 
using the concept of high and low values
* An important distribution due to the Central Limit Theorem
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Develop the Quick Risk Equations

• The Assumptions
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Normal Quick Risk Equations

• Given the previous assumptions we can solve for the 
unknowns (   ,    ,    ,     ):
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The full development is provided in the backup along with the log-normal
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Application

• Typical Values:
p = 25% with n = 2 (standard deviations)
for Triangular a pm = 30%
H/L can range from 2 to 8 depending on the

program complexity
• Assess, based on the historical record of cost 

experience, the ratio H/L
– Hardware: H = 3L
– Software: H = 8L
– Testing: H = 2L
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Quick Risk Example

As an example here are the inputs for each
of the methods developed here:
Normal: n = 2, H/L = 3, Tp = 100, p = 25%
Triangular: H/L = 3, Tp = 100, p = 25%, Pm = 30%
Lognormal: n = 2, H/L = 3, Tp = 100, p = 25%

Results at the 80% confidence level are:
Normal: 145.6
Triangular: 145.5
Lognormal: 151.6

We need a minimum of 46% more funding than at the 
point estimate.
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What if it’s a High Risk Project?

•Results at the 80% confidence level for H/L = 8, are :
•Normal: 180
•Triangular: 184.5
•Lognormal: 220

We need a minimum of 80 % more funding than the 
original estimate
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Conclusions

• We developed a quick and “dirty” methodology for 
performing a “quick-risk” analysis given a simple 
point estimate and some simple assumptions

• Equations for using three different statistical 
distributions (Triangular, Normal & Log-Normal) have 
been developed and provided

• When combined with the assumptions, this 
methodology allows the decision maker to estimate 
the high-confidence cost or benefits and make a 
more informed decision

• Not a substitute for the detailed analysis
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Backup - Triangular

BACK UP Notes: “How to Make Your Point Estimate Look Like a 
Cost-Risk Analysis”  
 
 
Triangular Distribution 
 
For a quick risk analysis we begin solving below the triangular distribution equations.  
We assume: 
 

pT  = Point Estimate with p = to the cumulative probability at the point estimate 
 kLH = where H is the High value in the triangular distribution and L is the Low value  )1( HxxLM −+= where M is the Mode or Most-Likely 

where 
  1 mpx −=

 
and mp  is the cumulative probability at the mode of the distribution 
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Backup - Triangular

The two general equations for a Triangular Distribution are as follows: 
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where pT  is value of the distribution at cumulative probability p  
 
In order to use these two equations we need to solve for one of the variables as a 
function of the given information.  We have chosen to solve for L. 

a) Starting with the triangular equation in case 1 we can solve for L: 
 
First substitute for H and M into equation 1: 
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Backup - Triangular

 
Finally solve for L: 
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b) Starting with the triangular equation in case 2 we can solve for L: 
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Backup - Normal

The more general form of the equations, allowing H & L to be any σn off the mean 
yields: 
 
H = xL                 (1) 
H = μ + nσ          (2) 
L = μ - nσ            (3) 

pT = μ - aσ           (4) 
a = -norminv(Tp, 0, 1) 
 
In order to use these equations we need to solve for one of the variables as a function of 
the given information.  We have chosen to solve for L.  We begin by replacing H into L’s 
equation (3) from above: 
 
xL = μ + nσ 
μ = xL - nσ 
 
Then,  
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Backup - Normal
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From equation (2) we know: 
μ = L + nσ   
 
It follows that: 
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Backup - Normal
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Summing the following equations from above: 
 
H = μ + nσ 
L = μ - nσ 
 
We determine: 
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Quick-Risk LogNormal 
Distribution
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•The Assumptions:
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Summary Quick-Risk LogNormal 
Equations 
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Backup - LogNormal
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Extending the method to a Log-
Normal distribution is only a little 
more complicated than the Normal 
distribution.

The first step is to convert to 
“Normal” space by taking the natural 
logarithm of the values.  Thus if your 
point estimate is 100 then in 
“Normal” space value is Ln(100) or 
4.60517.

Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com




