

Cost-Risk Analysis of Satellite Bandwidth Services

Sam Bresnahan 2007 ISPA/SCEA Conference

Los Angeles
Washington, D.C.
Boston
Chantilly
Huntsville
Dayton
Santa Barbara
Albuquerque
Colorado Springs
Columbus
Ft. Meade
Ft. Monmouth
Montgomery
Ogden
Patuxent River
Pensacola
San Diego
Charleston
Cleveland
Denver
New Orleans
Oklahoma City
Silver Spring
Warner Robins AFB
Vandenberg AFB

Outline

Setting the stage

Conduct the analysis

- 1. Collect data
- 2. Build point estimate
- 3. Build risk distributions
- 4. Specify correlation
- 5. Run the simulation
- View and interpret results
- Concluding observations

Setting the Stage

CSCI Testing em Integration/Test

vational Test and Evaluation

What is ECCS?

Expeditionary Command and Control Suite

What does it do?

- Establishes secure voice and data communications via satellite from remote locations
- Enroute / early-entry
- Small footprint
- High bandwidth (capable of 512 kbps or higher)

Program Details

- Marine Corps program, ACAT IV(T)
- AoA required for pending Milestone B decision

AoA Alternatives

Alternative A: SwiftLink USCG System

- Designed and integrated by TeleCommunication Systems, Inc. for USCG
- Procurement decision by USCG in April 2006.
- Similar to Alternative C (Dataline's DCD-MN system)
- Ku, BGAN, public Internet

AoA Alternatives

Alternative B: PM WIN-T SECOMP-I System

- Secure Enroute Communications Package, Improved. Upgrade of previous system.
- Managed by PM WIN-T at Ft. Monmouth, NJ. MS C in 4Q FY06.
- Current FFP IDIQ contract with General Dynamics
- Designed primarily for use on aircraft
- Limited to UHF TACSAT (up to 56 kbps) and INMARSAT M4 (64 kbps per channel)

AoA Alternatives

Alternative C: DCD-MN

- Data Communications Device, Multi-Network
- Developed and integrated by Dataline, Inc.
- Similar to Alternative A (SwiftLink USCG System
- Ku, BGAN, public Internet

Estimate bandwidth costs (O&MMC) for each AoA alternative

- SwiftLink, TeleCommunication Systems, Inc. (TCS)
- SECOMP-I, PM WIN-T, Ft. Monmouth
- DCD-MN, Dataline, Inc.
- Estimate should be adjusted for risk

Provide recommendation to decision makers on how much to budget each year for bandwidth.

These objectives are very vague!

Conduct the Analysis

CSCI Testing

rational Test and Evaluation

Analysis Steps

- Step 1. Collect data
- Step 2. Build point estimate
- Step 3. Build risk distributions
- Step 4. Specify correlation
- Step 5. Run the simulation

Tecolote Tecolote Research, Inc. Bridging Engineering and Economics Since 1973	Step 1.
Data collection framework	
Questions to consider	Variables
How is the system employed operationally?	Mission type
How long does each mission last?	Mission duration
How often does each mission occur?	Mission frequency
What communication pathways are available in each alternative?	Communication pathway
What is the cost of various kinds of satellite bandwidth?	Bandwidth cost per unit time
For each alternative, how will air time be allocated among the different communication pathways?	Bandwidth allocation

Data collection framework

Step 1a. Define mission types and mission duration

MISSION TYPE	DURATION	DESCRIPTION	
	Low: 1 day	This support could be anything from a site survey for an exercise in a remot	
Advance Party Operations (APO)	Med: 3 days	for a much larger scale operation. The survey or advance party team could be 2-20 personnel providing operational, intelligence, logistics, and	
	High: 4 days	existing infrastructure (buildings, power, etc.), or operate out of a hotel.	
	Low: 3 day	This communications requirement would support an assessment team or operations detached from a deployed command. Examples might include a humanitarian relief assessment, Non-combatant Evacuation Operations	
Support for Forward Deployed Operations (FDO)	Med: 7 days	Requirements for split operations from deployed Component Command, Marine Expeditionary Unit (MEU), Marine Expeditionary Brigade (MEB) and/or Marine Expeditionary Force (MEF) operations could use the ECCS capabilities to provide operations support to remote areas for early entry or	
	High: 14 days	limited duration operations. The ECCS capability is ideally suited for planning support of Marine Operators for deployed exercises and/or advance force operations.	

Step 1a. Define mission types and mission duration

MISSION TYPE	DURATION	DESCRIPTION	
	Low: 14 days	This communications requirement would support an assessment team with operations detached from a parent command (MEF) for up to 30 days. Examples would include humanitarian relief operations such as Hurricane Katrina/Rita or Tsunami relief efforts.	
Emergency Relief / Aid Missions (ERM)	Med: 21 days		
	High: 30 days		
	Low: 3 day	This communications requirement would support an early assessment team with follow on operations for a JTF/Component operation of longer standing duration. Any one of a number of scenarios might dictate this support which would be characterized by perhaps ISP. INMAPSAT and/or BCAN support	
First Force Communications (FFC)	Med: 7 days	initially and followed by Ku-Band support, if/as required, for longer duration. This scenario would build from the preceding scenarios wherein ECCS provides both early entry (until other communications capabilities are	
	High: 14 days	MEU, MEB and/or MEF commands could use the ECCS capabilities to provide operations support to remote areas for early entry as well as detached operations.	

Step 1b. Define mission frequency

		annual frequency		
		low	mid	high
	advance party ops	10	12	15
mission type	supt for fwd deployed ops	18	20	23
	emergency relief / aid missions	5	7	10
	first force communications	15	17	20

Step 1c. Identify bandwidth data to be collected.

Allocate bandwidth usage to each alternative

		Hardware		
		DCD-MN	SwiftLink	SECOMP-I
th	M4 (2 x 64kbps)	_	- 🤇	90%
Pa'	BGAN Streaming (256 kbps)	20%	20%	_
atior	BGAN IP (up to 492 kbps)	20%	20%	_
nunic	DSTS-G (9MHz)	10%	10%	_
omm	On-Demand Ku (512 kbps)	40%	40%	_
C	Local ISP (T1)	10%	10%	10%
	Total	100%	100%	100%

Mission Duration and Frequency

- Triangular distributions based on SME opinion
 - Low value = lower bound (15% CL)
 - Middle value = mode
 - > High value = upper bound (85% CL)

Bandwidth Rates

- Triangular distributions based on actual data collected.
- Subjective risk distribution applied to on-demand Kuband cost.

Bandwidth Allocation

- No risk applied.
- Use sensitivity analysis to look at discrete cases.

Worked with SMEs to generate subjective assessment of correlation

Specified correlation on inputs only

Inputs separated into logical groups

- cost per minute
- duration
- frequency

Latin Hypercube sampling method with 10,000 iterations.

View and Interpret Results

m Integration/Test

ational Test and Evaluation

View and Interpret Results

Bridging Engineering and Economics Since 1973

TECOLOTE

Concluding Observations

m Integration/Test

rational Test and Evaluation

Bandwidth costs for SECOMP-I will approximately double that of SwiftLink and DCD-MN.

Decision makers should closely examine assumptions in this study before choosing an O&M funding level.

Santa Barbara Los Angeles Washington, D.C. Chantilly Huntsville Dayton Albuquerque Boston ■ Montgomery ■ Ogden ■ San Diego ■ Colorado Springs Cleveland Vandenberg AFB Denver Silver Springs Oklahoma City San Antonio Tacoma New Orleans Patuxent River

Backup Slides

CSCI Testing em Integration/Test

vational Test and Evaluation

References

Interpreting upper and lower bounds

- The Difficulty in Assessing Uncertainty, Capen, EC, Society of Petroleum Engineers Conference, Dallas TX, 1975
- Improving Cost Risk Analyses, Biery, Fred, David Hudak, and Shishu Gupta, Journal of Cost Analysis, pp. 57-85, Spring 1994.

Satellite link budgets

• Larson, Wiley J. and James R. Wertz, eds. 1992. Space Mission Analysis and Design. Torrance, Calif.: Microcosm, Inc.

General cost-analysis reference

 Smith, Alfred, Jeff McDowell, Shu-Ping Hu, Lew Fichter, Tecolote Research. "Air Force Cost Analysis Agency Cost Risk Handbook." Summer 2007 (expected).

INMARSAT M4 (GAN) – 64 kbps

- Intelsat GSA Schedule
- SATCOM GSA Price Catalog
- MJ Sales, Inc.

INMARSAT BGAN (background IP and streaming)

- Telenor GSA Schedule
- SATWEST BGAN Airtime Pricing
- Outfitter Satellite, Inc. BGAN Rates
- GMPCS BGAN Airtime Rates

DISA DSTS-G Commercial Ku-band

- Arrowhead Global Solutions, Inc.
- Hourly, daily, weekly, monthly, yearly rates
- 36, 18, 9, 1 MHz
- Minimum 9 MHz required for 512 kbps download speed

On-Demand Ku-band

- Segovia (Bob Otten, Dataline)
- immixGroup GSA Schedule
- Sprint GSA Schedule
- TeleCommunication Systems, Inc. GSA Schedule

à

Build point estimate

M4 (GAN) - 64 kbps	\$/Min
Intelsat	6.34
SATCOM	5.75
MJ Sales, Inc.	6.96
Mean	6.35

Up to 492 kbps

BGAN / Background IP	\$/Min	BGAN / 256 kbps streaming	\$/Min
Telenor	6.89	Telenor	18.39
SATWEST	5.93	SATWEST	18.05
Outfitter Satellite, Inc.	6.95	Outfitter Satellite, Inc.	19.90
GMPCS	6.50	GMPCS	18.07
Mean	6.57	Mean	(18.60

RESEARCH, INC.

Bridging Engineering and Economics Since 1973

Build point estimate

DISA DSTS-G

9 MHz Ku-band	Mean \$
Yearly	543,426
Monthly	56,088
Weekly	18,424
Daily	3,256
Hourly	1,085

On Demand Ku-band

Cost for 24/7 service 512 kbps/512kbps	Cost (FY06 \$)
1 day	\$460.07 / day
2 weeks	\$5,367.50
1-3 months	\$5,367.50 / month

Step 4b. Specify additional correlation as required.

Correlation Group	Cor. Strength
BGAN	
BGAN - 32 kbps Streaming (Cost Per Min)	0.9
BGAN - 64 kbps Streaming (Cost Per Min)	0.9
BGAN - 128kbps Streaming (Cost Per Min)	0.9
BGAN - 256 kbps Streaming (Cost Per Min)	0.9
BGAN - Background IP (Cost Per Min)	0.9
DSTS-G Ku	
Ku Band - Mean (Cost Per Year)	0.9
Ku Band - Mean (Cost Per Monthly)	0.9
Ku Band - Mean (Cost Per Weekly)	0.9
Ku Band - Mean (Cost Per Daily)	0.9
Ku Band - Mean (Cost Per Hourly)	0.9
On Demand Ku	
512kbps / 512kbps (Cost Per Month - 24/7)	0.9
1024kbps / 512kbps (Cost Per Week - 8 hr. Day)	0.9
512kbps / 512kbps (Cost Per Week - 4 hr. Day)	0.9
512 kbps / 512 kbps (Cost Per Day - 24 hr. Day)	0.9

Correlation Group	Cor. Strength
Mission Duration	
Advance Party Operations (APO)	0.9
Support for Forward Deployed Operations (FDO)	0.9
Emergency Relief/Aid Missions (ER)	
First Force Communications (FFC)	0.9
Mission Frequency	
Advance Party Operations (APO)	0.9
Support for Forward Deployed Operations (FDO)	0.9
Emergency Relief Missions (ERM)	
First Force Communications (FFC)	0.9

Apply correlation

Impact of Correlation

Impact of Correlation

Correlated risk, % delta relative to non-correlated risk

Impact of Correlation

Correlation has greatest impact at tails of distribution

Correlation added a moderate amount of cost risk that otherwise would have remained unaccounted for

Breakdown by mission type (hours/yr)

Mean cost per mission

Mean cost per year (Total USMC)

Comparison of alternatives

Comparison of alternatives

