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Objectives

B Recommend using an objective approach, not an assumption, to
model CER error distributions

e A hypothesized distribution (e.g., normal, log-normal, triangular, etc.)
may not be appropriate to model the errors of a cost estimating
relationship (CER) for cost uncertainty analysis

B Develop easy-to-follow guidance for analysts to derive distribution
fitting results for cost uncertainty analysis

e The fitted distribution should be adjusted properly to build prediction
intervals for cost uncertainty analysis

Our goal is to derive CER error distributions from real data

ti

WPRT- 152 29 Mar 2013 Approved for Public Release 2



Professional Development & Training Workshop - www.iceaaonline.com

Outline

m Objectives

m Common Questions for Fitting CER Errors

m Prediction Interval (Pl) Analysis

m Adjustment Factors for Uncertainty Analysis

m Easy-to-Follow Implementation Steps

m Concerns about Analyzing Different CER Errors Together
m Analyzing Errors for USCM9 Subsystem-Level CERs

m Conclusions and Recommendations
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Common Questions for Fitting CER Errors (1/3)

What should we analyze for OLS CERs?

e residuals (yi — )“/) Y; : Actual Observation i=1..n

Pa : i n=sample size
e standardized residuals ((y; — §,)/se(y, — y;)) Ji: CER Predicted Value /=

What should we analyze for MUPE and ZMPE CERs?
e ratios of actual to predicted (y/y,)

e percentage errors ((y; — ¥:)/¥,)

m Findings:

e Just like residual vs. standardized residual plots, the histograms of
residuals and standardized residuals look very similar. It is adequate to
fit residuals to find the error distribution for additive CERSs.

e Percentage errors are centered on zero; hence, they cannot be fitted by
a log-normal distribution unless a location parameter is used

Analyze (1) residuals (y; -y, for additive error models and

(2) ratios of y,/y; for MUPE and ZMPE CERs

WPRT- 152 29 Mar 2013
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Common Questions for Fitting CER Errors (2/3)

m What should we analyze for log-error CERSs, y./y. in unit or log space?

® Two methods are commonly used to fit a log-normal distribution

e Maximume-Likelihood Estimation (MLE) solution for u and ¢ in log space

-~ .Zzll (n(y)-In(5,)) . # and o are evaluated in log space; |
a n . ushould be zero for log-linear CER.

n R , & .\ . CBuses (n-1) in the denominatorto
A Z(In(yi/yi)_o) ' (In(yi)_ In(yi)) . estimate ; @Risk uses the sample size |
o =12 - == T . n. Itshould be (nmg) to account for DF.

where ObsFreq = the number of sample points equal to y;, inclusive
NumObsBelow = the number of observations below the value of y,

e MLE and Unit-space Least Square solutions are different

Fit ratios of y;/y; in log space for log space OLS (LOLS)
CERs for consistency

WPRT- 152 29 Mar 2013 Approved for Public Release S



Common Questions for Fitting CER Errors (3/3)

Should we apply any adjustments to the distribution fitting tool
results for uncertainty analysis?

m Findings:

e We should apply adjustments when fitting distributions to CER errors,
as well as sample data. Otherwise, the range of the Pl will be smaller
than it should be

Adjustments should be applied when using distribution

?PRT- 152 29 Mar 2013 Approved for Public Release



Use prediction interval (Pl)
concept to derive adjustments
for CER uncertainty analysis
when using a distribution
fitting tool
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Pl for 0|.s. Y a+ bhX* g (s~N(O, lc2))

m A (1-0)100% PI for OLS is given below When X =X, (an estimating point):

---- 1 (X i) 5., The PI formula

0 4Ny * - can be extended

PI — yO - (ta/2 n— 2) SE n _._ yO i (ta/2,n—2) (Adj' SE) to include mu|t|p|e
...... XX driver variables

X, is the value of the predictor variable used in calculating the estimate
Y, is the estimated value from the CER when X = x,

SE is CER’s standard error of estimate; “n-2” is degrees of freedom (DF)
“‘Adj. SE” is the adjusted standard error for Pl

tiw2, n-2) IS the upper o/2 cut-off point for a t distribution with “n-2" DF

x=(3" x)/n and SS, =Y. (X —X)’

m Use Student’s t distribution to model CER uncertainty: enter the “Ad,.
SE” in the scale field and specify DF in the degrees of freedom field

m If the data set is unavailable, we can use a heuristic approach to
approximate the “Adj. SE” measure

PRT- 152 29 Mar 2013 Approved for Public Release 8
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Pl for WLS: Y = ¢ *+ BX + g = f(X) + & (s ~N(0,Vo2))

can be extended
o include multipl

m A (1 -a)100% Pl for WLS when X = x, (an estimating point): [The Pl f°rm“'a}
....................................................... t ]

driver variables

............................................................................ —
Pl =1(x) % t(a/2n2)*§E*\/ : + s +(XO ) .‘,,..}*:f(xo)it(a/z,n—z)*(Adj-SE)

f(x,), i.e., ¥y, is the estimated value from the CER when X = x_

w, is the weighting factor for y when x = x, (w, = (1/f(x,))? for MUPE)
w; is the weighting factor for the it data point (w; =1/(f(x,))? for MUPE)
“‘Adj. SE” is the adjusted standard error for Pl

t(a/z n- 2) is the upper a/2 cut-off point for a t distribution with “n-2” DF

Xy = iy Wi (X, )/Z Wi and SS,, Zin:lwi (% —%)°

m Use Student’s t distribution to model CER uncertainty: enter the “Ad,.
SE” in the scale field and specify DF in the degrees of freedom field

m If the data set is unavailable, we can use a heuristic approach to
approximate the “Adj. SE” measure

WPRT- 152 29 Mar 2013 Approved for Public Release
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Uncertainty Analysis’
Pl for MUPE Factor CER: Y = BX * 5 (¢ ~N(0,lc2)) (1/2)

m A (1-0)100% PI for MUPE Factor CER when X = x, (an estimating point):

1 (%)’ T Adjusted SE for a Adi
o . justed SE for
Yo 0201 ’{f‘.SE* \/ " + ” ‘ weighted factor CER . a MUPE/ZMPE
............ 0 ':1WiXi factor CER

Yo (=bx,) is the estimated value from the CER when X = x,

w, is the weighting factor for y when x = x, (w, = 1/(bx,)? for MUPE)
w; is the weighting factor for the it data point (w; =1/(bx;)? for MUPE)
“‘Adj. SE” is the adjusted standard error for PI

t(ws2, n-1) 1S the upper o/2 cut-off point for a t distribution with “n-1" DF

m Use Student’s t distribution to model CER uncertainty: enter the “Ad,.
SE” in the scale field and specify DF in the degrees of freedom field

m We do not need the actual data set to a build Pl for MUPE and ZMPE
factor CERs since the adjustment is a constant factor

PRT- 152 29 Mar 2013 Approved for Public Release 10
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Uncertatnty Anaiysis
Pl for MUPE Factor CER: Y = BX * ¢ (¢ ~N(0,152)) (2/2)

m A (1-0)100% PI for MUPE Factor CER when X = x, (an estimating point):

~~..__  Adjusted SE for
™ a MUPE/ZMPE

e b is the estimated factor for MUPE/ZMPE CER; z = y/x factor CER
o SE S,/z = CV(Z) where z = y/x and S, is the standard deviation of Z

5 = L w; =1/(bx;)?
MUPE/ZMPE

—[—z(—)z—]—[—zu 1 -

I Note the Pl for MUPE (and ZMPE) factor CER can be expressed by a
simple closed form formula

WPRT- 152 29 Mar 2013 Approved for Public Release "
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Pl for LOLS. Y = *X'B*e (&~ I.N(o, Ic2))

m A (1-0)100% PI for LOLS is given below when X = x,_ (an estimating point):

------------- o ) Ad justed SE for LOLS
Pl = Exp ylog t(t,202) *SE * 1+ i"‘ (In(x,) = In(X))
N> (In(x) - In(x))? . The PI formula
.................................................... can be extended
A I T ——— 0 inclod o)
- EXp (ylog T (ta/2, n—2) * (Adj ) SE)) Odll’?\?el: Vealr;léllerjse

e X, is the value of the predictor variable used in calculating the estimate
® Y, is the estimated value in log space when X = X,
e SE is CER'’s standard error of estimate in log space

e In(x) is the average of all the values of x.'s evaluated in log space

m Use Log-t distribution to model CER uncertainty: enter “Adj. SE” in the
scale field and specify DF in the degrees of freedom field

m If Log-t distribution is not available, use Student’s t distribution in log
space, but make sure to bring the results back to unit space

Tip: Use Log-T distribution to construct Pl for LOLS CERs

WPRT- 152 29 Mar 2013 Approved for Public Release 12
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Pl for Univariate Analysis

m Given a random sample {y,, ¥,,..., ¥,,} from a normal distribution, a
(1-a)100% PI for a future observation is given by

* tpong "Sy 1+F =y (1+ €, 00 *7Y n .’

(1% t,5 0y * (Adj. SE))

Pl =

<l|

Il
<l

Adj. SE for Univariate

o y=0. . v)In is the sample mean

o S, =0 (i-¥))I(n-1) is the sample standard deviation

e “Adj. SE” is the adjusted standard error for PI

® ty2 n-1)is the upper a/2 cut-off point for a t distribution with “n-1" DF

m Use Student’s t distribution to model the uncertainty: enter the “Adj.
SE” in the scale field and specify DF in the degrees of freedom field

m The PI for univariate analysis is the same as the Pl for the MUPE/ZMPE
factor CER

WPRT- 152 29 Mar 2013 Approved for Public Release 13
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Two factors can be easily identified
using the Pl formula:

1) location factor (from SE to Adj.SE)
2) ¢z, pr) (from normal to t distribution)

There is a third one: sample factor

14



Presentedatthe2013ICE SSIOI’] Developm Fralnln
NdfGStment Factors
for Uncertainty Analysis (14)

m A distribution fitting tool does not know
e whether the data set is an entire population or a random sample

e how many coefficients are estimated by the CER (when modeling the
CER errors)

m Sample Factor is given by

m Use Sample Factor to account for
e the difference between sample and population

e the appropriate degrees of freedom if certain parameters are estimated
by the sample

e Note: “df’ stands for the degrees of freedom of the CER

WPRT- 152 29 Mar 2013 Approved for Public Release 15
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AdfGstiment Factors
for Uncertainty Analysis (24)

m Use Location Factor to account for the distance of the estimating
point (i.e., X,) from the center of the database

e In a simple linear model, the location adjustment factor is given by

_ ) 1 (Xo_)_()2 ) 1 (x, X)/Sx) ...........................................................................
éLocatlonFactor_\/1+H+T_ 1+H+ - S =SS, /n= \/Z (x, —X)° /n

where X, is the value of the predictor variable used in calculatlng the estimate
and Sy is the uncorrected sample standard deviation

e Pl gets larger when the estimating point moves further away from the
center of the database

e [f the data set is unavailable, we can use a heuristic approach to
approximate the “Adj. SE” measure:

Heuristic Assessment:
(0.25 Very Similar
: . Distance = (Xg — X)
0.75 Similar 0
I?lstance = ) Driver Stdev = S,
Driver Stdev |1.50 Somewhat Different

13.00 Very Different

gz PRT- 152 29 Mar 2013

Approved for Public Release 16



Presentedatthe2013ICE ' SSIOI’] Developm ra|n|n
NdfGStient Factors
for Uncertainty Analysis (3/4)

m Use DF Factor to account for small samples

....................................................................

DF factor — df Note: “df” stands for the degrees of freedom of the CER,
: df —2 | which is the DF of Student’s t (or Log-t) distribution

e The DF adjustment factor accounts for the broader tails of Student’s t
(or Log-t) distribution for small samples. For example, we should
multiply the Adj. SE by the DF factor if we use normal instead of t
distribution for uncertainty analysis.

e The DF factor is the standard deviation of a Student’s t distribution with
a scale parameter one and “df’ degrees of freedom

e Do not apply the DF adjustment factor if a Student’s t or a Log-t
distribution is chosen to model the CER errors

m Consider applying Sample, Location, and DF Factors when using a
distribution fitting tool for cost uncertainty analysis. Otherwise, the
range of the Pl will be smaller than it should be.

WPRT- 152 29 Mar 2013
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Location Factor by Model Type

Location Factor = (Adj. SE) /SE

" (n(x,) — In(x))?

M |
oes (for one predictor variable)
— 5 >
Additive Linear:\/ 1+1+ (6 =X)1S,) Factor: [1+ Xo 5
n n Z Xi
_ 2
Log-Linear \/1+%+ (In(x,) — In(x))

MUPE (Linear)

1 (% = X,)
1+ = + =
\/ yg Z Wi yg (stxx)

MUPE (Factor)
Univariate

Heuristic

‘/ 1+E
n
\/ 1.1 (Dlstance/Drlver Stdev)?®
n n

DriverStdev

HeuristicAssessment

0.25 VerySimilar

0.75 Similar
“)150 SomewhatDifferent
3.00 VeryDifferent

Distance

m X, is the value of the independent variable used in calculating the estimate and
Y, is the estimated value from the CER when X = x,

m Distance = (x, — x); Driver Stdev =S, =/SS,, /n =\/Zi”_l(xi -x)’/n (uncorrected stdev)

g‘; PRT- 152 29 Mar 2013

Approved for Public Release
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Easy-to-Follow implementation Steps (113)

m Summary Table of Adjustments:

Model Type |Adjustments

Additive (y;i — V) * (Net Factor)

Log-Error (In(y;)) — In(y;)) * (Net Factor)

MUPE/ZMPE | (y,/ ) * (Net Factor) — Shift

Univariate (y; /'y) * (Net Factor) — Shift

m Net Factor (NF) = (Sample Factor) * (Location Factor) * (DF Factor)

e Do not apply the DF factor to compute NF if (1) deg of freedom > 50 or (2) a
Student’s t or a Log-t distribution is chosen to model the CER error distribution

m  Shift=NF -1

e Shift is applied to (1) MUPE and ZMPE CERs to ensure the fitted distribution is
centered on 1 and (2) univariate analysis to preserve the sample mean

ip: Make appropriate adjustments before using a distribution fitting too

WPRT- 152 29 Mar 2013

Approved for Public Release 19
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Easy-to-Follow implementation Steps (213)

Model Type 'Adjustments

Additive (yi = V) * (Net Factor)

Log-Error (In(y;)) = In(y,)) * (Net Factor)
MUPE/ZMPE | (y,/ V) * (Net Factor) — Shift

Univariate (y; /'y) * (Net Factor) — Shift

m For consistency, we should know how the CERs/PERs were derived
e Fit residuals for additive models
e Fit residuals in log space for log-error models; e.g., log-linear CERs
e Fit percentage errors in ratios of y, to y. for MUPE and ZMPE CERs

m Deduce the fitting hypothesis if the method is unknown:
o X(y—y)=0  >OLS
e X(In(y;) —In(y))) = 0> LOLS

o (X(yi—y)y)/n=1> MUPE or ZMPE (or LOLS with PING Factor or
Smearing Estimate)

WPRT- 152 29 Mar 2013
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Easy-to-Follow implementation Steps (313)

Model Type 'Adjustments

Additive (yi = V) * (Net Factor)

Log-Error (In(y;) = In(y;)) * (Net Factor)
MUPE/ZMPE | (y;/ Vi) * (Net Factor) — Shift
Univariate 7 ﬁ) * (Net Factor) — Shift

m Suggest using an additional cell for the error distribution besides PE

e Make sure the error term is applied to the PE appropriately

m Be careful when using one cell for both the PE and error term
e Mean = PE, SD (for Student’s t) = ¢, (from curve-fitting tool) * PE —
e Mean = PE, Mode (for Triangular) = 3*PE — Min* PE — Max* PE L For MUPE and
ZMPE CERs
e Mean = PE, o in log space (for Log-normal) =4/ In(L+c?)

—

e Median = PE, scale parameter (for Log-t) = o (in log space) for log-error model

TPRT- 152 29 Mar 2013 Approved for Public Release 21



A MUPE CER Example: Cost = a + b*Wt (12)

Model Type | Adjustments
MUPE/ZMPE | (y,/9) * (Net Factor) — Shift

A MUPE CER: Cost = 220.0895 + 3.8112 * Weight (SE =28.13%, N = 49)

Given: x, = 300 Ibs, §, = 1,363.45, SS,,, = 1.072, X,=469.475, and Tw, =
8.2795*107-6

Sample, DF, and Location Factors are given by n‘j;,;i“sfiijgﬁ'g"::‘t’;]‘ef’j‘jf;fargie

e Sample Factor = sqrt(49/47) = 1.0211 ratio to address the similarity
i between the estimating system
e DF Factor = sqrt(47/45) = 1.022 | andthe CER database. .

1 (X, —X,)2 \/ 1076 (300 — 469.4747)?

- + = g + a =1.03893
YIS W, Y2(SS ) (1346 .45)°(8.27953)  (1346.45)%(1.07202)

e Location Factor = J 1+

Net Factor = 1.0211*1.022*1.038933 = 1.084125
Shift = Net Factor — 1 =0.084125
Fit: (y;/y;) * (Net Factor) — Shift = (y,/y;) * (1.084125) — 0.084125

WPRT- 152 29 Mar 2013 Approved for Public Release 22



A MUPE CER Example: Cost = a + h*Wt 22

m Results derived by Distribution Finder for the “adjusted % errors”:

Sample LogNormal  |Normal Triangular |Beta Uniform
Mean 1.0000 1.0035 1.0000 1,0000 1.0002 1.0000
StdDev 03125 03009 03093 0.3049 0.3078 0.2057
cv 03125 0.2998 0.3093 0.3049 0.3078 0.2057
Min 0.2255 03005  -0.6144 04878
Mode 0.8819 1.0000 09130 0.9734
Max 1.8066 1.7866 3.8257 1.5122
Alpha 17.1439
Beta 30.0000
Data Count 49 %<0= 0.06% None 0.01% None
Standard Error of Estimate 0.0679 0.0504 0.0584 0.0518 0.0926
Rank 4 1 3 2 5
SEE/ Fit Mean 6.76% 5.04% 5.84% 5.18% 9.26%
Chi*2 Fit test 9 Bins, Sig 0.0 Good (43%)  Good (32%)| Good (31%)|  Good (18%)  Poor (0%)
.
c 80 7

Normal distribution is ranked #1 with % Ny /
an estimated standard deviation of . 4
0.3093, which is almost the same as | W

20 /
the number reported in the i N

00 +—=——"=

regression Pl output.

gz PRT- 152 29 Mar 2013

023 038 054 070 08 1.02 117 133 149 165 181 1.96

—— LogNormal (4) — —Normal (1) —— Triangular (3) — —Beta(2) —— Uniform (5)
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Emrs Together (1//2)

The CER errors from different CERs may not be identically distributed

e For example, the distribution of errors from the Structure CER may not be
the same as the distribution of errors from the Electrical Power Subsystem
(EPS) CER

B The CER errors associated with different subsystems might not be
independently distributed either

e \We should examine whether or not these CER errors are correlated before
pooling them together

m This approach may not be feasible when fitting a distribution with
three or more parameters

e Beta distribution: the alpha, beta, Low, and High parameters for the error
distributions may not be the same across different CERSs, even if all the
normalized CER errors have the same mean and same variance

e Log-normal distribution: we cannot define a global location parameter (in
a meaningful way) for a shifted log-normal distribution when analyzing the
“normalized” errors for several different CERs all together

WPRT- 152 29 Mar 2013 Approved for Public Release 24
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Errors Together (22)

m If X~LN(u, ¢?),i.e., LN(u, 02 0),thenY =aX + b ~LN(u + In(a), c2, b)

e LN(u, o2, b) denotes a shifted log-normal distribution with a mean of p,
variance o? (both in log space), and a location parameter b (in unit space)

m Consider k different MUPE (or ZMPE) CERs:

y; = f.c where E(g) =1, Stdev(g) =o,,, & 5~ LN(n,, 5;?) fori=1, ..., k

° M -Gi2/2 and o :\/m G; !s ?n Iog space
( L — 9)/9I — (E:‘\ — 1) LN(HU G|2’ _1) — LN( 2/2 G| | _1) c,,is in unit space

o e =((y,—¥y)¥)o, = (5 — 1o, ~LN(-6%/2 - In(c,,), 6, -1/c,)

m Properties of these normalized percentage errors (e;,’s):

e E(e) =0 and Stdev(e;) = 1 for k different CERs (i = 1,..., k)

e e's do not have the same mean and variance in log space; their
location parameters are also different

m e/’s should not be analyzed together using a distribution fitting tool

e The analysis results will be misleading and inaccurate if we combine
these e/'s (from different CERs) and analyze them all together

PRT- 152 29 Mar 2013 Approved for Public Release



A0 Normalizsa

PEreent Errors Tor OSENMD

Subsystem-Level CERs (%error + 1)

Results derived by Distribution Finder for “adjusted % errors + 1”:

Sample LN Normal | Triangular Beta Uniform
Mean 1.0000 1.0801 1.0000 1.0000 1.0003 1.0000
StdDev 0.9746 0.8385 0.9565 0.9527 0.9674 0.9127
CV 0.9746 0.7763 0.9565 0.9527 0.9671 0.9127 One is added to th lized
Mode 0.5323 1.0000 0.4655 0.6295
Max 47993 3.5544 | 15.3924 2.5808
Alpha 4.7874
Beta 29.7871
Data Count 440 %<0= 14.79% 15.31% 14.45% 18.37%
Std Error of Estimate 0.3231 0.1888 0.2016 0.1206 0.3396
Rank 4 2 3 1 5
SEE / Fit Mean 29.92% 18.88% 20.16% 12.06% 33.96%
Chi~2 Fit test 22 Bins, | Sig 0.05 | Poor (0%) | Poor (0%) | Poor (0%) Poor .(UO%) Poor (0%) | /"\
140.0 / \‘
. . . . 5 120.0 /
1. Beta distribution fits the 5 .00 [ 4><\
. ) . 7/
frequency histogram better than 2 ZERNN
o . w \
the other four distributions. 600 77 W
. . . . / AN
2. None of these five distributions 00 ' X
. 20.0 7
pass the Chi-square test. o 222 / e
-123 -062 -002 058 118 179 239 299 359 420 480 540
—LogNormal (4) — —Normal (2) —— Triangular (3) — —Beta (1) —— Uniform (5)

gz PRT- 152 29 Mar 2013
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Subsystem-Level CERs (%error + 3.8231)

T ——

Results derived by Distribution Finder for “adjusted % errors + 3.8231”:

Sample LN Normal | Triangular Beta Uniform This example illustrates the
Mean 3.8231 3.8235 3.8231 3.8231 3.8234 3.8231 shifted log-normal distribution is
StdDev 0.9746 | 0.9709 0.9565 0.9527 0.9674 0.9127 more useful than LN(u,52,0).
CV 0.2549 | 0.2539 0.2502 0.2492 0.2530 0.2387 Solver dto find a locat
Min 1,5959 18031 | 15126 | 2.2423 olvers used to find a focation
parameter when fitting a regular
Mode 3.4814 3.8231 3.2886 3.4520 log-normal distribution (LN(U,GZ,O)).
Max 7.6224 6.3775 | 18.2559 | 5.4039
Alpha 4.7803 3.8231 is an average location
Beta 20.8555 parameter for these 8 subsystems.
Data Count 440 | %<0= | 000% | None None None Itis not a meaningful number.
Std Error of Estimate 0.1011 0.1888 0.2016 0.1206 0.3396
Rank 1 3 4 2 5
SEE / Fit Mean 2.64% 4.94% 5.2T% 3.15% 8.88%
Chi~2 Fit test 22 Bins, | Sig 0.05 | Poor (3%) | Poor (0%) | Poor (0%) | Poor (0%) | Poor (0%)
120.0

1. LN distribution fits the frequency histogram | & 1o

better than the other four distributions, but § 80.0

none of them pass the Chi-square test. 2 60
2. LN distribution has a standard deviation of 100 1 \\

0.25 in log space, which is smaller than 200 AN

. ' N

the smallest SPE of all the eight " j =

Subsystem CERs under investigation. The 160 220 280 340 401 461 521 581 642 7.02 762 823

fitted results are doubtful. —— LogNormal (1) — — Normal (3) —— Triangular (4) — — Beta(2) —— Uniform (5)

T
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Use Distribution Finder to model
the error distribution for USCM9
Subsystem-Level CERs

No specific locations are
considered in the analysis, as it
is a generalized assessment

28
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% Errors (y;/$:)

r. gorksh

Results derived by Distribution Finder for the ratios of y,/y;:

gz PRT- 152 29 Mar 2013

Sample LogNormal Normal Triangular | Beta Uniform
Mean 1.0000 1.0039 1.0000 1.0001 1.0008 1.0000
StdDev 0.3776 0.3732 0.3722 0.3698 0.3761 0.3562| | a. Raw percent errors (i.e., y;/y,)
cv 0.3776 0.3718 0.3722 0.3697 0.3758 0.3562 are analyzed by Distribution
Min 0.1490 0.2359 0.0684 0.3830 Finder. No correction factors are
Mode 0.8268 10000 0.7637 0.8536 applied due to large sample size.
Max 2.0583 2.0006 6.4772 1.6170] | b. These raw % errors are not
Alpha 5.1081 normalized, as they are from the
Beta 29.9987 same subsystem.
Data Count 56 %< 0= 0.36% None None None
Standard Error of Estimate 0.0521 0.0696 0.0645 0.0463 0.1171
Rank 2 4 3 1 5
SEE / Fit Mean 5.19% 6.96% 6.45% 4.63% 11.71% G
Chi2 Fit test 10 Bins, Sig 0.05 Good (74%)  Good (17%)| Good (41%)|  Good (41%)  Poor (4%) N \

NN

1. Both Beta and LN distributions fit the 3 ., % \\\\
frequency histogram reasonably well. % 7 \\Q\

2. Uniform distribution does not pass the Chi- g /// \\
square test (the other four pass the test). 40 /7 \\“\\

3. Beta and LN distributions seem to be 20 =1 ‘g
popular candidates to model the CER 0 2B T~
uncertainties. 015 034 053 072 091 110 129 149 168 187 206 225

——LogNormal (2) — —Normal (4) —— Triangular (3) — —Beta (1) —— Uniform (5)
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Results derived by Distribution Finder for the ratios of y,/y;:

WPRT- 152 29 Mar 2013

Sample LogNormal  |Normal Triangular  |Beta Uniform
Mean 1,0000 1.0038 1,0000 1,0000 1,0004 1.0000
StdDev 0.3620 0.3550 0.3570 0.3523 0.3578 03384 | a. Raw percent errors (i.e., y./§) are
cv 0.3620 0.3536 0.3570 0.3523 0.3576 0.3384 analyzed by Distribution Finder.
Min 0.2047 0.2185 -0.3405 0.4139 No correction factors are applied.
Mode 0.8412 1,0000 0.8556 0.9343 b. These raw % effors are not
Max 2.0452 1.926f 4.1226 1.5861 normalized, as they are from the
Alpha 10.0616 same subsystem.
Beta 27.9286
Data Count 54 %< 0= 0.25% None 0.01% None
Standard Error of Estimate 0.0624 0.0657 0.0735 0.0584 0.1212
Rank 2 3 4 1 5
SEE / Fit Mean 6.22% 6.57% 7.35% 5.84% 12.12%
Chi*2 Fit test 10 Bins, Sig 0.05 Good (84%)| Good (28%)  Good (20%)| Good (11%)  Good (9%) / A~
> 100 4 Q\\\\
1. Both Beta and LN distributions fit the § . / A//\z\\\\
frequency histogram reasonably well. g b/ .
2. All five distributions pass the Chi?2 test. L 59 7 N\
3. Beta and LN distributions seem to be 40 Vi \
popular candidates to model the CER 20 // --------
uncertainties. o 2L =

020 039 057 076 094 112 131 149 168 186 205 223

——LogNormal (2) — —Normal(3) —— Triangular (4) — —Beta(1) — Uniform (5)
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Results derived by Distribution Finder for the ratios of y,/y;:
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Sample LogNormal  |Normal Triangular  |Beta Uniform
Mean 1.0000 1.0037 1.0000 1.0001 1.0013 1.0000
cv 0.4438 0.4441 0.4308 0.4296 0.4421 0.4097 analyzed by Distribution Finder.
Min 0.2315 0.1556 0.2236 0.2904 No correction factors are applied
Mode 0.7662 1.0000 0.6654 0.7501 due to the large sample size.
Max 29675 211%2 2'5042 1.709% b. These raw % errors are not
Alpha 7440 normalized, as they are from the
Beta 30.0000 same subsystem.
Data Count 62 %<0= 1.01% None None None
Standard Error of Estimate 0.0489 0.1111 0.1016 0.0578 0.1638
Rank 1 4 3 2 5
SEE/ Fit Mean 4.87% 11.11% 10.16% 5.771% 16.38%
Chi*2 Fit test 10 Bins, Sig 0.05 Good (33%),  Good (17%),  Good (18%),  Good (16%)  Poor (2%) ~
140 £ i\
Y / OO
. . : 2 120 -~y A
1. Both Beta and LN distributions fit the 5 /N
frequency histogram reasonably well. S 7/ / \
2. Uniform distribution fails the Chi*2 test, s, G AN
but the other four pass. ‘0 /’ \\\\\
3. Beta and LN distributions seem to be 2 77/ N
popular candidates to model the CER 00 -2 R =
Uncertainties 023 047 070 093 117 140 163 187 210 233 257 280
——LogNormal (1) — =—Normal(4) —— Triangular (3) — —Beta(2) —— Uniform (5)
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Conclusions

B Sample size can be a concern when using a distribution fitting tool

B Suggest fitting (1) residuals for additive error models, (2) percent
errors in the form of ratios (i.e., y,/y,) for MUPE and ZMPE CERs, (3)
residuals in log space for log-error models, and (4) ratios of actual to
the mean (y;/y) for univariate analysis

m Consider three adjustment factors when using a distribution fitting
tool for cost uncertainty analysis: sample, DF, and location factors

e Do not apply the DF factor when the sample size is fairly large (e.g., DF > 50)
or when a Student’s t or a Log-t distribution is used to model the CER errors

e Define a shift factor (1) for MUPE/ZMPE CERs, so the CER errors are centered
on one and (2) for univariate analysis, so the sample mean stays the same

B Do not pool all the residuals (or percentage errors) from various CERs
to analyze them together using a distribution finding tool
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Recommendations and Future Study

m Enrich distribution gallery

e Besides commonly used distributions, consider including the following
distributions: Student’s t, Log-t, Weibull, Shifted Log-Normal, Gamma, Extreme
Value distribution, User-Defined Cumulative Distribution Function (CDF), etc.

m Examine whether we should adjust DF for additional constraints

e If constraint is specified for the unknown parameters, then one restriction is
probably equivalent to a gain of one DF

e Should the inequality constraints be adjusted? If yes, how do we adjust them?

m Consider applying User-Defined CDF to model sample data with two
or multiple modes

B Additional research for Beta and Log-Normal distributions: can the
“world” be described by Beta and Log-Normal?
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