

Adding Process Tailoring to Product Size for Better Cost Estimation

David Bloom, Chris Fudge Raytheon Space and Airborne Systems 04 March 2013

Copyright © 2013 Raytheon Company. All rights reserved. *Customer Success Is Our Mission* is a registered trademark of Raytheon Company. Adding Process Tailoring to Product Size for Better Cost Estimation

By David Bloom

Generally, when one is looking to create a parametric model to predict costs of an activity, then one looks to size relationships associated with that activity. For example, if one were to develop a parametric model for estimating the development of a Field Programmable Gate Array (FPGA), then, because most of the work to complete an FPGA revolves around software code development, building a parametric model around new code, modified code and reused code (with other size relationships) would probably be a good place to start.

However, as many aerospace organizations are incorporating the Capability Maturity Model Integration (CMMI) approach to process improvement, there is now substantially more development activity information available to parametric model development than just size (size being the number of lines of FPGA code). Further, there are normally pre-tailored process lists for any product type associated with an end application (such as manned flight FPGAs or space FPGAs).

This paper looks at the ability to incorporate repeatable processes into simple parametric models in order to improve the predictive capability. This paper will not be a rigorous mathematical approach into Bayesian statistics, but will be focus on the simple concepts of associating the effort to improve process repeatability that many aerospace organizations have made to become CMMI level 5 compliant with the ability to improve cost estimation practices.

- Introduction
- Example of cost prediction using only sizing elements
- Introduction to development processes
- Detailed look at work products
- Results

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Introduction

- Common parametric models are typically based on some key sizing mechanism (pounds, terminations, SLOC etc)
- However, many costs are incurred in the aerospace industry not only by how "big" a job is, but also by the processes that are required by the customer.
- For this presentation' processes are simply defined as the work products that need to be accomplished on any development
- Key concept: repeatability is the key to predictability

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com SEER Electronics Example

- Full-tactical Type-1 encryptor
- First product generation
- Base year 2012
- Customer has solid requirements
- 10 Prototypes
- Ground mobile environment
- Development environment has been experiencing some challenges.
- Considerable integration done at board level.

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Using SEER to predict FPGA Development Costs

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com SEER General Element Selections

Created Application ? Signal Processor 3/19/2013 Date: Time: 1:43:01 PM Ground-Mobile Platform Modified O & S Descr ? 3/19/2013 Date: Chooser 1:43:40 PM Acquisition Time: ? Make Category ? Military - Full Standard OK Change ? Insert Next Work Element Class These help to set the overall context of the input parameters for a given condition.

Board

This Item Is:

Level 3

Element Types

Electronics

Knowledge Base Selections

FPGA

Element	Types	This Item Is:	Lovel 2
	Field Programmable Gate Arrays (FPGA) 🔹	This Item Is.	
Application	2 Signal Processing - Medium Logic		Created
Application	.,		Date: 3/19/2013
Platform	? Ground-Mobile		Time: 9:59:27 AM
O & S Descr			Modified
Chooser			Date: 3/19/2013
Acquisition Category	? Make		Time: 10:54:25 AM
Standard	? Military - Full		OK Change
Class	2		Insert Next Work Element

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com SEER Systems Level inputs

These are top level inputs over board and chip

∑ 1.1: Encryption Electronics				Not	- Note yellow rollup		
	• 1.1: Encryption	FPGA		act	vation		
	🖣 🖗 1.1.2: Encryption	Board					
				/			
SY	STEM LEVEL COST ANALYSIS		YES				
	System Engineering and Integration (SEI)		NO				
÷	Integration, Assembly and Test (IAT)		YES	K			
	IAT Development Complexity	Hi-	Hi	Hi+	1		
	···· IAT Development Experience	Nom	Nom	Nom			
	IAT Production Complexity	Hi-	Hi	Hi+			
	IAT Production Experience	Nom	Nom	Nom			
-	System Program Management (SPM)		NO		1		
-	System Test Operations (STO)		NO				
-	System Support Equipment (SSE)		NO				

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com SEER FPGA Inputs

ld Programmable Gate Arrays (FPGA): Encryption FPGA	Least	Likely	Most	Note	
PRODUCT DESCRIPTION				Key sizina	
KEY TECHNICAL/PERFORMANCE PARAMETERS					
Material Classification HP Signal Processing			Innuts Thes	are	
Speed Grade		High		inputs. mest	
Feature Size (nanometers)		40		done in logic	celle
Active IO Pins Per Chip	225	250	300	done in logic	
Clock Speed (MHz)	270.00	300.00	330.00		
- Effective Logic Cells		222,758	A		
Logic Cells	50,000	200,000	450,000		
Logic Cells Complexity	Nom-	Nom	Nom+		
IP Logic Cells	18,000	20,000	22,000		
IP Logic Cells Complexity	Nom-	Nom	Nom+		
Memory (Mbits)	2.00	2.50	3.00		
Memory (Mbits) Complexity	Nom-	Nom	Nom+		
- Additional Sizing Parameters					
System Gates	0	0	0		
Logic Elements	0	0	0		
Multipliers	0	0	0		
Transceivers	0	0	0		
Flip Flops	0	0	0		
DSP Blocks	0	0	0		
Proxy Unit X	0	0	0		
Proxy Unit X Factor	0	0	0		
PROGRAM DESCRIPTION					
New Design	70.00%	80.00%	100.00%		
Design Replication	0.00%	0.00%	0.00%		
Utilization	50.00%	60.00%	70.00%		
Overall Technical Complexity	Nom+	Hi-	Hi	Note herita	
Complexity - Architecture Design	Nom-	Nom	Nom+		ge
Complexity - Design Capture	Nom-	Nom	Nom+	inputs.	
Complexity - Place and Route	Nom-	Nom	Nom+		
Complexity - Verification	Nom-	Nom	Nom+		
Complexity - Prototype Development	Nom-	Nom	Nom+		
Complexity - Integration and Test	Nom-	Nom	Nom+		

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Using SEER to Predict the Cost of Developing the CCA

Electronics: Encryption Board		Least	Likely	Most	Note
<u> </u>	PRODUCT DESCRIPTION				
	Total Printed Circuit Boards	1.00	1.00	1.00	
	···· PCB Size (in²)	30.00	30.00	30.00	
	РСВ Туре		Glass Epoxy		
	- CIRCUITRY COMPOSITION				
	Percent Analog	0.01%	0.01%	0.01%	
	···· Percent Digital	80.00%	95.00%	100.00%	
	Percent Hybrid	0.01%	5.00%	10.00%	
	···· Discrete Components Per PCB	35	48	75	
	Surface Mount Discretes	60.00%	80.00%	100.00%	
	Integrated Circuits Per PCB	15	40	60	
	Surface Mount ICs	50.00%	70.00%	90.00%	
	···· Input/Output Pins Per PCB	95	230	300	
	···· Clock Speed (MHz)	200.00	500.00	625.00	
	Packaging Density	Nom	Nom	Nom+	
	···· Component Technology	Nom	Hi	VHi	
	Custom Chip Usage		NO		
÷	MISSION DESCRIPTION				
	Operating Environment		Ground		
	Electronics Classification		Computational		
	···· Electronics Fault Detection	0.01%	10.00%	20.00%	
	Electronics Fault Isolation	0.01%	5.00%	10.00%	
- PROGRAM DESCRIPTION					
	···· New Design	70.00%	80.00%	100.00%	
	···· Design Replication	0.00%	0.00%	0.00%	
	Design Complexity	Nom	Nom	Nom	
	···· Certification Level	Low+	Nom-	Nom-	
	Subsystem Integration Level	Nom	Nom+	Hi	
<u> </u>	DEVELOPMENT ENVIRONMENT				
	Developer Capability & Experience	Low+	Nom	Hi	
	Development Tools & Practices	Nom	Nom	Nom	
	···· Requirements Volatility	Nom-	Nom	VHi	
	Prototype Insertion Method	Nom	Nom	Nom	

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com SEER Outputs – FPGA

SEER-IC Detail Estimate Report

	Hours	Material Cost	Total Cost	Elapsed Months
DEVELOPMENT TOTAL	10,258	28,953	2,274,566	10.98
Architectural Design	1,846		410,413	1.98
Design Capture	2,257		493,330	2.42
Layout, Place and Route	410		89,573	0.44
Verification	3,385		737,961	3.62
Prototype Development	821		178,900	0.88
Integration and Test	1,539		335,437	1.65

Encryption FPGA: Development Cost Risk

This report is used to show cost distribution.

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com SEER Outputs - Board roll up

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com **Processes Generally Implied**

- Military applications generally require the same type of processes, documentation and review, so lumping all of these into 1 bucket is reasonable
- Generally, most bucket collections revolve around tech demo, tactical and space. There are also subsets for manned space and manned tactical.
- However, the modern customer is now commonly trying to cut costs wherever possible and is willing to accept risk in some cases for tailoring out certain processes in order to reduce costs.

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Capability Maturity Model Integration (CMMI)

- CMMI is a process improvement approach that helps organizations improve their performance. CMMI can be used to guide process improvement across a project, a division, or an entire organization.
- CMMI in <u>software engineering</u> and <u>organizational development</u> is a process improvement approach that provides <u>organizations</u> with the essential elements for effective process improvement.
- CMMI is a trademark owned by <u>Software</u> <u>Engineering Institute</u> of <u>Carnegie Mellon</u> <u>University</u>.
- According to the <u>Software Engineering</u> <u>Institute</u> (SEI, 2008), CMMI helps "integrate traditionally separate organizational functions, set process improvement goals and priorities, provide guidance for quality processes, and provide a point of reference for appraising current processes."

- Maturity Levels
 - There are Five maturity levels. However, maturity level ratings are awarded for levels 2 through 5.

Maturity Level 2 - Managed

- CM Configuration Management
- MA Measurement and Analysis
- PMC Project Monitoring and Control
- PP Project Planning
- PPQA Process and Product Quality Assurance
- REQM Requirements Management
- SAM Supplier Agreement Management

Maturity Level 3 - Defined

- DAR Decision Analysis and Resolution
- IPM Integrated Project Management +IPPD
- OPD Organizational Process Definition +IPPD
- OPF Organizational Process Focus
- OT Organizational Training
- PI Product Integration
- RD Requirements Development
- RSKM Risk Management
- TS Technical Solution
- VAL Validation
- VER Verification
- Maturity Level 4 Quantitatively Managed
 - QPM Quantitative Project Management
 - OPP Organizational Process Performance
- Maturity Level 5 Optimizing
 - CAR Causal Analysis and Resolution
 - OPM Organizational Performance Management

Levels 4 and 5

commonly referred to as

"High Maturity" maturity

At Level 3, an organization	At level 4 (High Maturity), an organization additionally
 defined work products ordered work products these are processes complies to its process standards makes process improvements contributes lessons learned captures and reacts to measures performs corrective action 	 uses measures to <u>predict</u> performance and take <u>proactive</u> corrective actions achieves its expected outcome through changes required by a <u>predicted outcome</u> And for Level 5: looks to <u>eliminate</u> special cause and common cause <u>variation</u> drives for incremental and innovative process improvements based on its <u>quantified goals</u>

Predictability ⇒ Achieving Business Goals

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

What Do Work Products Look Like?

Copyright © 2013 Raytheon Company. All rights reserved.

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com
Turn Work Products into Scheduled Tasks

The problem is that tracking 130 TTDs is too much

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com

Creating an Achievable Execution Plan

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Tracking Developing Costs in a List

- Notice that the design process now becomes a repeatable process
- Repeatable is the key to predictable
- Further, for things that are repeated, examples and templates can be developed for increasing the amount of reuse
- In terms of analysis, each of the tasks in the phases can now be evaluated for productivity improvement when enablers come on board

Phase	Set of Tasks	Notional Hours
	Tailoring Plan	40
dn-	Project Management Plan	40
Star	Hardware Development Plan	40
	Architectural & Concept. Design Plan	40
pui	Target Cost Plan	40
nts a ture	Product Specification	40
itec	Interface Control Document	40
quir∈ Arch	Simulation & Analysis Report	40
Rec ,	Requirements & Architectural Review Package	40
	Supplier Statement of Work	40
ign	Parts List / Plan	40
Des	Grounding & Shielding Drawing	40
nary	Schematic	40
limi	Stress Analysis Report	40
Pre	Power Dissipation & Analysis Report	40
	Source Control Drawing	40
pe u	PWB Layout Plan & Routing	40
esig	Test Procedure	40
De	CDR Package	40
<u>&</u> V	Integration & Test Report	40
1<8	Verification Review Package	40

Presented at the 2013 ICEAA Professional Development & Training Workshop - www.iceaaonline.com Improved Productivity and Predictivity

- Key concept is repeatability is the key to predictability
- The ability to break down a development effort in terms of repeatable processes (work products) is beneficial for the cost estimation process
- Attacking each of the process areas is how to fundamentally improve costs

Backup and Bio slides

Biography:

After graduating from the University of California at Davis in 1983, Mr. Bloom has worked for the Naval Weapons Center, Lockheed Martin, Lawrence Livermore National Labs and since 2008, for Raytheon Space and Airborne Systems (SAS) where he is a Sr. Engineering Manager.

Mr. Bloom is currently the Cost Estimation Subject Matter Expert (SME) for the Electronics Center of SAS. He has developed parametric models for all Electronics Center products and helped transform the culture of the organization in the use of parametric bidding methodologies.

In addition to Mr. Bloom's focus for the Electronics Center in developing parametric cost models for the design and development cycle activity of electronics sub-products, he is also leading the effort to reduce the cost of FPGA and ASIC development by modernizing the Digital Verification methods and establishing reproducible re-use methods.

Mr. Bloom has 2 patents and a software copyright along with a number of publications ranging from electromagnetic boundary value problems to cost estimation. In 2006, he won the International R&D 100 Award for innovating a cost effective Gigapixel Camera for persistent surveillance applications.

Biography:

Chris Fudge has been in the Aerospace & Defense Electronics business for over 30 years. He began his career at Hughes Aircraft Electro-Optical Systems in Manufacturing and transitioned to engineering in 1991. Chris was divested to DRS Sensors and Targeting Systems in 1998 where he held positions of Chief Engineer, Program Manager and Deputy VP of Engineering. Upon his return to Raytheon in 2005, Chris has held positions as lead Systems Engineer, Chief Engineer and is currently the Department Manager of the Mixed Signal & Power Products organization. In addition to his management background, Chris has designed electronic circuit cards and FPGA's for a host of military platforms including the M1A2 tank, Bradley Fighting Vehicle and the Apache helicopter. Chris holds a Bachelors of Science degree in Electrical Engineering from Long Beach State University.