MT23: Instrument Schedule Delays Potential Impact on Mission Development Cost for Recent NASA Projects (Follow-On Study)

Presented at the 2011 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Stephen Ringler The Aerospace Corporation P.O. Box 92957, Los Angeles, CA 90009-2957 Stephen.C.Ringler@aero.org 310-336-0517

Co-Authors: Erin Chapman, Claude Freaner, Kristina Kipp and Luke Rinard

Abstract: This study explores instrument schedule delays and their potential impacts on mission development cost for recent NASA projects. Schedule data collected at key milestones for a number of NASA instruments is used to compare planned and actual instrument development times. The study shows average instrument development schedule growth is on the order of 30%. Comparing last instrument delivered development time and mission development cost growth shows a positive correlation, indicating that instrument schedule delays may increase total mission development cost. Instruments are binned by various categories such as instrument type, mass, power, etc. to explore specific trends. The results of this study can be used for planning purposes by project and program managers in charge of future NASA development efforts.

Instrument Schedule Delays Potential Impact on Mission Development Cost for Recent NASA Projects (Follow-on Study)

Kristina Kipp Stephen Ringler Erin Chapman Luke Rinard *The Aerospace Corporation*

Claude Freaner NASA

2011 ISPA/SCEA Conference and Training Workshop June 8-11, 2011

Overview

- Background & Motivation
- Study Objective
- Study Approach
- Data Analysis
- Results
- Conclusion

Background

Previous Study

- Initial study presented at 2010 NASA Cost Symposium
 - "Instrument Schedule Delays Potential Impact on Mission Development Cost for Recent NASA Projects"
 - Explore instrument schedule delays and their potential impacts on mission development cost for recent NASA projects

NASA Cost and Schedule Growth Establishes Need for Evaluating Cost & Schedule Drivers

Note:

1.As taken from "SMD Confirmation Metrics Study", Ringler, Rinard, Haas, Bitten, Emmons, 2009 (Average of 20 missions studied, most missions averaged in SMD Confirmation Metrics Study evaluated in this presentation)

2. Historical program data, same y axis scale on each graph

Cost and schedule overruns can affect the implementation of successive missions

Correlation Between Mission Development Cost and Schedule Growth Prompts Further Study

Correlation suggests that minimizing schedule growth could lower cost growth

Note:

1.As taken from "SMD Confirmation Metrics Study", Ringler, Rinard, Haas, Bitten, Emmons, 2009

Can reduction in instrument schedule growth translate to reduction in mission development schedule growth and hence

Correlation Between Mission Development Cost and Schedule Growth Prompts Further Study

- Previous study established a correlation between mission schedule and cost growth
 - Positive correlation between mission schedule growth and instrument schedule growth
 - Average instrument development schedule growth is on the order of 30% (10 months)
 - Positive correlation between development time of last instrument delivered and mission development cost growth

*Last Instrument Delivered Development Schedule Growth is the percentage growth of the last instrument to be delivered in a given mission

Objective of Follow-on Study

- Objective of follow-on study is to further investigate factors correlated to instrument schedule growth
- Determine schedule growth trends based on instrument parameters, such as mass, power, and instrument type
- Provide guidelines that can be used for planning purposes by project and program managers in charge of future NASA development efforts

Study Approach Overview

Consolidat Key Data Data Collection e Database Findings Analysi Data consolidated · Planned vs. 86 instruments • Key findings actual instrument into instrument assessed across reported in this schedules analyzed schedule database 32 missions briefing Data binned into

- Cost Analysis Data Requirements (CADRes)
- Milestone
 Presentations
- Monthly Management Reports

Mission	Mission Lead Center at Launch	Program at Launch	Destination at Launch
AIM	GSFC, Hampton University,	SMEX	Earth
CALIPSO	LRC.	ESSP	Earth
Chandra	GSFC	Physics of the Cosmos	Earth
ICESat	GSFC	Earth Systematic Missions	Earth
Terra	GSFC	Earth Systematic Missions	Earth
MER	PL	Mars Exploration	Mars
Phoenix	JPL	Mars Exploration	Mars
CloudSat	JPL	ESSP	Earth
Dawn	UCLA, JPL	Discovery	Vesta, Ceres
Deep Impact	UMD, JPL	Discovery	Comet
EO-1 NMP	Swales	New Milennium	Earth
Galex	JPL	SMEX	Earth
Genesis	JPL	Discovery	11
GLAST	GSFC	DOE/NASA SMD	Earth
GRACE	JPL	ESSP	Earth
IBEX	SwRt	SMEX	Earth
Kepler	JPL/Ames	Discovery	Earth-trailing heliocentric
Messenger	APL	Discovery	Mercury
New Horizons	UHL	New Frontiers	Pluto
000	JPL.	ESSP	Earth
Spitzer	JPL	Cosmic Origins	Earth-trailing Heliocentric
STEREO	GSFC	Solar Terrestrial Probe	Respectively lagging (STEREO A) and leading (STEREO B) the Earth in
SWIFT	GSFC	MDEX/	Earth
MRO	JPL	Mars Exploration	Mars
LRO	GSEC	Robotic Lunar	Moon

in the second			1000
Praining Calmanas	laws.	readen.	204
Volte and intered Mapping Spectrometer (118)	Deun	Spectrometer	out.
Earnine Rev and Neutron Detector (DReVD)	2941	Genome ray and maying detector	GML.
Vaprunese (Hag)	Deut	Magentanatar	wite -
Lase Altreau	Seen	Later artimeter	anc .
righ-Resources Instrument (HE)	Description.	Spectamente	
Medium Resolution Instrument (MRI)	Deep ingent	landoretar	
Impactor Targeting Serials (71)	Designment.	Sustana	
which Terminipe	Chevena	Telescope	

various categories

Instruments and Missions Included in Study

- Instruments binned using the following categories:
 - Mass
 - Power
 - Instrument Type
 - Spacecraft Destination

Schedule data collected for 86 instruments across 32 NASA missions

Mission	Mission Lead Center	Program	Destination
	GSFC, Hampton		
AIM	University, University	SMEX	Earth
	of Colorado, University		
40114	Of Alaska	Farth Calanaa	F orth
AQUA		Earth Science	Earth
CALIPSO	APL NASA/French	ESSP Astronomical Counch	Earth
Chandra	GSFC/MSFC	for Origins Program	Earth
CHIPS	GSFC/Wallops	UNEX	Earth
CloudSat	JPL	ESSP	Earth
Dawn UCLA, JPL		Discovery	Vesta, Ceres
Deep Impact	UMD, JPL	Discovery	Comet
EO-1 NMP	EO-1 NMP GSFC New Miller		Earth
FUSE	APL	New Millennium	Earth
GALEX	JPL	SMEX	Earth
Genesis	JPL	Discovery	Earth-Sun L1
GLAST	GSFC	DOE/NASA SMD	Earth
Hinode	JAXA		Earth
IBEX	SwRI	SMEX	Earth
ICESat	GSFC	Earth Science Mission	Earth
IMAGE	GSFC	MIDEX	Earth
Kepler	JPL/ARC	Discovery	Earth-trailing
Landsat 7	GSFC	Earth Science Mission	Earth
LRO	GSFC	Robotic Lunar Exploration	Moon
MRO	JPL	Mars Exploration	Mars
New Horizons	JHU	New Frontiers	Pluto
000	JPL	ESSP	Earth
Phoenix	JPL	Mars Exploration	Mars
RHESSI	GSFC	Heliophysics Explorers	Earth
SDO	GSFC	Living with a Star	Earth
		Cosmic Origins	Earth-trailing
Spitzer	JPL	Program	Heliocentric
STEREO	GSFC	Solar Terrestrial Probe	respectively lagging (STEREO A) and leading (STEREO B) the Earth in heliocentric orbit around the Sun
SWIFT	GSFC	MIDEX/ Astrophysics Explorer	Earth
Terra	GSFC	Earth Systematic	Earth
WIRE	GSFC	SMEX	Earth
WISE	JPL	Astrophysics Explorers	Earth

9

Instrument Durations Studied

AEROSPACE

Instrument Schedule Milestones and Phases for NASA Missions

Note: All planned durations taken from planned schedule at Phase B Start

Kristina.A.Kipp@aero.org Space Architecture Department

Instrument Schedule Growth by Milestone

A majority of schedule growth (absolute and percent) occurs from CDR to delivery.

Instrument Schedule Growth Binned by Mass

On average, larger mass instruments require longer development durations. Absolute schedule growth is positively correlated with instrument mass. For instruments >100 kg, 84% had more than 6.8 months schedule growth. It is unlikely that many of these had more than 6 months schedule slack built in.

Instrument Schedule Growth Binned by Power

Higher power instruments also require longer development times, and experience longer absolute schedule growth. For power and mass bins, average development time growth has large standard deviations, indicating that other variables should also be considered.

Instruments Binned by Mass and Power CDR - Delivery

Schedule growth from instrument CDR to instrument delivery is particularly pronounced for higher mass and power instruments.

Instruments Binned by Type

Primary Instrument Category	Secondary Instrument Category		
	Altimeter		
Active Optical	Imager		
	Sounder		
	Imager		
	Multi-spectral		
Passive Optical	Hyper-spectral		
	Radiometer/Photometer		
	Telescope		
	Arm/boom		
	Meteorology		
Landad Instrumenta	Sample collection		
Landed instruments	Sample analysis		
	Microscopes		
	X-ray		
	Neutral Mass		
Mass measurement	Ion Mass		
	Tunable Laser		
V rov	Imaging		
A-lay	Non-imaging		

Instruments Binned by Type

Largest schedule growth is experienced by optical instruments.

Most of the schedule growth occurs from CDR to Delivery.

AEROSPACE

Instruments Binned by Type

Average Actual Durations by Milestone

*Insufficient data for landed instruments

Typical instrument durations by phase can be used by program and project managers as a sanity check during early planning of instrument delivery schedules.

Instruments Binned by Secondary Type

Passive Optical Instruments

For passive optical instruments, the largest schedule growth (percent and absolute) occurs from CDR to Delivery. On average, passive optical instruments require 45.2 months from Phase B start to **Delivery and experience 29% (10 months)** schedule growth.

= number of instruments in each bin

Telescopes experience the largest schedule growth (47%, 17 months) of all passive optical instruments. Radiometer/photometer instruments require the longest development time (59 months).

Passive optical instruments account for over 50% of the data set

Kristina.A.Kipp@aero.org Space Architecture Department

Instruments Binned by Spacecraft Destination

Missions with constrained launch windows (i.e., missions to planetary bodies or comets/asteroids) have shorter development times and less schedule growth.

= number of instruments in each bin

Results plot the average of all instruments on a given spacecraft

Kristina.A.Kipp@aero.org Space Architecture Department

Conclusions (1 of 3)

- Observed trend: Most schedule growth (percent and absolute) occurs from CDR to Delivery
- Observed trend: Larger mass and power instruments require longer schedule durations and experience larger absolute schedule growth
- Observed trend: Optical instruments require the longest schedule durations; active optical instruments experience the largest schedule growth
- Observed **trend**: Missions beyond the Earth (constrained launch windows) have shorter development times and experience less schedule growth than Earth-orbiting or Earth trailing/leading missions.

Conclusions (2 of 3)

- More informed planning may help reduce schedule growth and hence possible reduce mission schedule and cost <u>growth</u>
- Previous study determined average instrument schedule growth across all instruments studied
 - Potential rule of thumb: Planned instrument development schedules may warrant extra scrutiny if...
 - Phase B Start to Delivery is less than 33 months
 - CDR to Instrument Delivery to Spacecraft is less than 15 months
- Certain types of instruments require longer than the typical schedule durations
 - **Potential rule of thumb:** Planned instrument development schedules may warrant extra scrutiny if planned Phase B Start to Instrument Delivery is less than...
 - 50 months for instruments with mass greater than 50 kg and power greater than 50 W
 - 58 months for active optical instruments
 - 46 months for passive optical instruments
 - 47 months for Earth-orbiting missions
 - 54 months for missions to Lagrange points or Earth-trailing/Earth-leading missions

Conclusions (3 of 3)

- Certain types of instruments require longer than the typical schedule durations
 - Potential rule of thumb: Planned instrument development schedules may warrant extra scrutiny if planned CDR to Instrument Delivery is less than...
 - 28 months for instruments with mass greater than 50 kg and power greater than 50 W
 - 30 months for active optical instruments
 - 25 months for passive optical instruments
 - 25 months for Earth-orbiting missions
 - 26 months for missions to Lagrange points or Earth-trailing/Earth-leading missions
- Rules of thumb are based on average durations for each instrument bin
 - Because of large standard deviations in the data, rules of thumb should be used to determine if planned schedule warrants extra scrutiny based on previous experience
 - Rules of thumb are not hard caps on shortest achievable instrument schedules

Next Steps

- Compare study results with respect to current schedule reserve guidelines
 - More informed planning may help reduce schedule growth and hence possibly reduce mission schedule and cost <u>growth</u>
- Review monthly program reviews and schedules to potentially identify causal effects between instrument and mission schedule growth
 - Current study establishes trends and correlations, not causation
- Identify instrument development problem areas and reasons for instrument schedule growth
 - Examine relationship between instrument schedule <u>growth</u> and instrument mass, power, and performance <u>growth</u>

Thank You