Presented at the 2009 ISPA/SCEA Joint AnnualConference and Training Workshop - www.iceaaonline.gom

- What: Multidimensional Economic Maps are Analogous to a series of Geographic Maps
- Why: Economic Maps, like Geographic Maps, offer Direction and Obstacle Avoidance
- How:
- Plot Demand Map
- Derive Demand Equations
- Depict Valued Attributes Map
- Determine Predicted Value Equations
- Compress Data into World View
- Use this Data to Derive New Product Attributes

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Consider this Geographic Map

This map has Important Information

Lake Erie forms a boundary

Boundaries Change - In 1957 Cleveland Expanded Burke Lakefront Airport

Cleveland has Malls

The Malls Compete Against Each Other - And they Spread out

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Now, Consider the Gross World Product (GWP)

This Pie-Cylinder has a Radius of I, and Vertical Log-Scaling

The GWP was ~ about \$78.4T in 2008

The Market for New
Commercial Aircraft is about $\mathbf{0 . 2 \%}$ of Total GWP

How can we map part of that Market?

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Map of Market's Quantity-Price Points

Aggregate Aircraft Demand 2004-13

Producer Rate/Quantity Requirements - Not Enough Units For Profitability

Market Absorption Issues - Not Enough Money to buy More $\$ 100,000,000$ Unit Price

The Aircraft Market's 233 Models each have a Quantity-Price Point Markets have Definable Boundaries

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Determining Market Demand

We can Separate the Market into Bins and Determine Demand

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

We can do the Same for Sub-Markets

Gen. Aviation/Business Aircraft Demand 2004-13

Business Aircraft \& General Aviation Aircraft are Sub-Markets to the Market for all Aircraft - They have Their own Demand Curves

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com
These Aircraft have Important Attributes

Hypothesis: Aircraft Value is a function of these attributes

$$
V_{M}=A_{1} * A_{2} * \ldots A_{N} * e_{i}
$$

Where:

$\mathbf{V}_{\mathbf{M}}=$ Value in a Market (as represented by sustainable prices)
$A_{i}=$ contribution of $i^{\text {th }}$ attribute to product value
$e_{i}=$ error term of the equation

Multiple Regression on the Data Yields

$\mathbf{V}_{\mathrm{m}}=0.0764 *$ Seats $^{0.940} *$ MPH $^{2.71}$
$\mathbf{V}_{\mathrm{m}}=0.0946 *$ Seats $^{0.618} *$ MPH $^{2.07} * \mathbf{C a b H}^{2.64}$
$\mathbf{V}_{\mathrm{m}}=8.56 \mathrm{E}-05 *$ Seats $^{0.573} * \mathrm{MPH}^{0.936} * \mathrm{CabH}^{3.01} *$ Alt $^{1.26}$
Pearson's ${ }^{2}$ MAD
77.8\% 35.0\%
83.0\% 26.4\%
88.6\% 23.7\%

Where:

Seats $=$ typical number of seats
MPH = typical cruising speed
Cabin H = Cabin height (in feet)
Alt $=$ Maximum Cruising Height (in feet)
Pearson's ${ }^{2}=$ Pearson's Corr. Coefficient ${ }^{2}$
MAD = Mean Absolute Deviation

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Displaying Value Responses of the Market

If we let Cabin Height = 73", from Equation 6, our result is If we let Max Altitude $=45,000$ ', from Equation 7, we obtain

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Structures Which Share an Axis Include

Two-room Houses like this

They Have 4 Axes which Radiate from a Single Point (0,0,0,0)

If we move from Physical to Economic Structures and Rename the Axes, then

We have a 4 Dimensional Economic System, with Value Space \& the Demand Plane Sharing a Currency Axis

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

We Just Examined a 4D Economic System

Here, the Value Response Surface Derived as Equation 7 Shares the Currency Axis with its Associated Demand Plane

Given that this Approach works for one Market, will it work for Others?

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com
Here's a 4D System for a Helicopter

Values for Helicopters \& Regional Aircraft allow Demand Derivation for a Hypothetical Helicopter like the Sikorsky S-92

Note that the MPH axis has been Swapped for Balanced Field Length

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com
I Market (2 Rooms) Gave us Four Axes

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com 2 Markets (4 Rooms) Yields Seven Axes

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training,Workshop - www.iceaaonline.com 3 Markets (6 Rooms) Yields 10 Axes

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com The Pattern leads to an Observation

Number of Markets	Primary Value Dimensions	Quantity Dimensions	Currency Dimension	Total Dimensions
I	2	l	l	4
2	4	2	l	7
3	6	3	l	10
4	8	4	l	13
5	10	5	l	16
n	$2 n$	n	l	$3 n+\mathrm{l}$

To Consider " n " Markets, we Need to Plot in 3n+I Dimensions

Advantage of

 Log-Polar CoordinatesWe have the Base IO Logs of MPH and Passengers as Axes

We Take their Polar Coordinates as we Adjust the Angle from 90°

Importantly, we can Return to 90°

Log-Polar Systems convert to LogCartesian

Cartesian Coordinates: Log Space

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Compressing Demand Plane Onto Value Space

In Log Space, PowerForm Value Response Surfaces are Planar

Demand Planes can Effectively Collapse on to their Value Spaces for Convenience Using Polar Coordinates

With Demand Planes flat against their Respective Value Spaces, we can Plot All of the Markets Simultaneously

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Multiple Market Conversion

 We Begin with a Single Market Taking 10° (I/36 ${ }^{\text {th }}$ or 2.8%) of TotalIf this Market is Larger, We Accommodate it

If we need to show More Markets, We
Accommodate them

This Method Considers N number of Markets There is no Upper Limit

Multiple Dual-Axis Polar-Log Coordinates

Presented at the 2009 ISPA/SCEA Nint Annual Conferenceand Trainipg Workshop cwwiccaanonine.com Dual Axes

Dual-Axis PolarLog Axes Serve 2 Functions as They
I) Plot Market Positions...These Angles Divide the Markets by Size
2) Plot Quantity \& Value Attributes... These Axes Vary by Market

Theoretically, all Markets may be Simultaneously so Depicted

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com

Partial Worldview

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Market Map of Value and Demand

Begin with a Hypothetical Configuration Then Vary Speed

Then Seats

This

Configuration Gives Some Distinction on Seats, but is Beyond the Demand Limit

Comparing Value to Cost Across a Variety of Market Openings \& Configurations offers Best Design Possibilities

Summary and Conclusions

- Market Maps are Analogous to Physical Maps
- Market Maps Show Competitor Locations
- Economic Map Data offers Analysts the ability to
- Find Boundaries
- Find Market Openings
- Estimate Demand
- Estimate Value
- An N-Dimensional Log-Polar Coordinate System allows Compression and Expansion of all the World's Market Data

