

## Market Mapping: What, Why & How

- What: Multidimensional Economic Maps are Analogous to a series of Geographic Maps
- Why: Economic Maps, like Geographic Maps, offer Direction and Obstacle Avoidance
- How:
  - Plot Demand Map
  - Derive Demand Equations
  - Depict Valued Attributes Map
  - Determine Predicted Value Equations
  - Compress Data into World View
  - Use this Data to Derive New Product Attributes

#### **Consider this Geographic Map**

This map has Important Information

> Lake Erie forms a boundary

Boundaries Change – In 1957 Cleveland Expanded Burke Lakefront Airport

> Cleveland has Malls



The Malls Compete Against Each Other – And they Spread out

### Now, Consider the Gross World Product (GWP)

This Pie-Cylinder has a Radius of I, and Vertical Log-Scaling

The GWP was ~ about \$78.4T in 2008

The Market for New Commercial Aircraft is about 0.2% of Total GWP

> How can we map part of that Market?



#### Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com Map of Market's Quantity-Price Points



The Aircraft Market's 233 Models each have a Quantity-Price Point Markets have Definable Boundaries

#### **Determining Market Demand**



We can Separate the Market into Bins and Determine Demand

#### We can do the Same for Sub-Markets



Business Aircraft & General Aviation Aircraft are Sub-Markets to the Market for all Aircraft – They have Their own Demand Curves

#### Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com **These Aircraft have Important Attributes**



Hypothesis: Aircraft Value is a function of these attributes

$$V_{M} = A_{I} * A_{2} * ... A_{N} * e_{i}$$

Where:

 $V_{M}$  = Value in a Market (as represented by sustainable prices)

 $A_i$  = contribution of i<sup>th</sup> attribute to product value

e<sub>i</sub> = error term of the equation

#### **Multiple Regression on the Data Yields**

|                                                                                               | Pearson's <sup>2</sup> | MAD       |
|-----------------------------------------------------------------------------------------------|------------------------|-----------|
| $V_{\rm m} = 0.0764 * {\rm Seats}^{0.940} * {\rm MPH}^{2.71}$                                 | <b>77.8</b> %          | 35.0% (5) |
| V <sub>m</sub> = 0.0946 * Seats <sup>0.618</sup> * MPH <sup>2.07</sup> * CabH <sup>2.64</sup> | 83.0%                  | 26.4% (6) |
| $V_m = 8.56E-05 * Seats^{0.573} * MPH^{0.936} * CabH^{3.01} * Alt^{1.26}$                     | 88.6%                  | 23.7% (7) |

# Where:Seats = typical number of seatsMPH = typical cruising speedCabin H = Cabin height (in feet)Alt = Maximum Cruising Height (in feet)Pearson's² = Pearson's Corr. Coefficient²MAD = Mean Absolute Deviation

#### Displaying Value Responses of the Market



If we let Cabin Height = 73", from Equation 6, our result is If we let Max Altitude = 45,000', from Equation 7, we obtain

#### **Structures Which Share an Axis Include**

Two-room Houses like this

They Have 4 Axes which Radiate from a Single Point (0,0,0,0)

If we move from Physical to Economic Structures and Rename the Axes, then



We have a 4 Dimensional Economic System, with Value Space & the Demand Plane Sharing a Currency Axis

#### We Just Examined a 4D Economic System



Here, the Value Response Surface Derived as Equation 7 Shares the Currency Axis with its Associated Demand Plane

> Given that this Approach works for one Market, will it work for Others?

#### Here's a 4D System for a Helicopter



Values for Helicopters & Regional Aircraft allow Demand Derivation for a Hypothetical Helicopter like the Sikorsky S-92 Note that the MPH axis has been Swapped for Balanced Field Length

### I Market (2 Rooms) Gave us Four Axes



#### Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com **2 Markets (4 Rooms) Yields Seven Axes**



# Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com **3 Markets (6 Rooms) Yields 10 Axes**



#### The Pattern leads to an Observation

| Number<br>of<br>Markets | Primary<br>Value<br>Dimensions | Quantity<br>Dimensions | Currency<br>Dimension | Total<br>Dimensions |
|-------------------------|--------------------------------|------------------------|-----------------------|---------------------|
| I                       | 2                              | I                      | I                     | 4                   |
| 2                       | 4                              | 2                      | I                     | 7                   |
| 3                       | 6                              | 3                      | I                     | 10                  |
| 4                       | 8                              | 4                      | I                     | 13                  |
| 5                       | 10                             | 5                      | I                     | 16                  |
| n                       | 2n                             | n                      | I                     | 3n + 1              |

To Consider "n" Markets, we Need to Plot in 3n+1 Dimensions

Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop - www.iceaaonline.com We Take Cartesian Coordinates : Log Space

Log-Polar Coordinates

We have the Base 10 Logs of MPH and Passengers as Axes

We Take their Polar Coordinates as we Adjust the Angle from 90°

Importantly, we can Return to 90°

Log-Polar Systems convert to Log-Cartesian



#### **Compressing Demand Plane Onto Value Space**



In Log Space, Power-Form Value Response Surfaces are Planar Demand Planes can Effectively Collapse on to their Value Spaces for Convenience Using Polar Coordinates

With Demand Planes flat against their Respective Value Spaces, we can Plot All of the Markets Simultaneously

#### Multiple Market Conversion

We Begin with a Single Market Taking 10° (1/36<sup>th</sup> or 2.8%) of Total

If this Market is Larger, We Accommodate it

If we need to show More Markets, We Accommodate them

This Method Considers N number of Markets – There is no Upper Limit



**Complete Analysis Requires Redrawn Axes for Specific Markets** 

#### Presented at the 2009 ISPA/SCEA Joint Annual Conference and Training Workshop www.iceaaonline.com Multiple Dual-Axis Polar-Log Coordinates

## **Dual** Axes

Dual-Axis Polar-Log Axes Serve 2 Functions as They

I) Plot Market Positions...These Angles Divide the Markets by Size

2) Plot Quantity & Value Attributes... These Axes Vary by Market

Theoretically, all Markets may be Simultaneously so Depicted







Then Vary Speed

**Then Seats** 

This Configuration Gives Some Distinction on Seats, but is Beyond the Demand Limit



Comparing Value to Cost Across a Variety of Market Openings & Configurations offers Best Design Possibilities

#### Summary and Conclusions

- Market Maps are Analogous to Physical Maps
- Market Maps Show Competitor Locations
- Economic Map Data offers Analysts the ability to
  - Find Boundaries
  - Find Market Openings
  - Estimate Demand
  - Estimate Value
- An N-Dimensional Log-Polar Coordinate System allows Compression and Expansion of all the World's Market Data